2016-09-08 17:41:43 +08:00
|
|
|
/**
|
|
|
|
* \brief Multi-precision integer library, ESP32 hardware accelerated parts
|
|
|
|
*
|
|
|
|
* based on mbedTLS implementation
|
|
|
|
*
|
|
|
|
* Copyright (C) 2006-2015, ARM Limited, All Rights Reserved
|
|
|
|
* Additions Copyright (C) 2016, Espressif Systems (Shanghai) PTE Ltd
|
|
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
|
|
*
|
|
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); you may
|
|
|
|
* not use this file except in compliance with the License.
|
|
|
|
* You may obtain a copy of the License at
|
|
|
|
*
|
|
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
*
|
|
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
|
|
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
* See the License for the specific language governing permissions and
|
|
|
|
* limitations under the License.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <malloc.h>
|
|
|
|
#include "mbedtls/bignum.h"
|
|
|
|
#include "mbedtls/bn_mul.h"
|
|
|
|
#include "rom/bigint.h"
|
|
|
|
|
|
|
|
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) || defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
|
|
|
|
|
|
|
/* Constants from mbedTLS bignum.c */
|
|
|
|
#define ciL (sizeof(mbedtls_mpi_uint)) /* chars in limb */
|
|
|
|
#define biL (ciL << 3) /* bits in limb */
|
|
|
|
|
|
|
|
static _lock_t mpi_lock;
|
|
|
|
|
|
|
|
/* At the moment these hardware locking functions aren't exposed publically
|
|
|
|
for MPI. If you want to use the ROM bigint functions and co-exist with mbedTLS,
|
|
|
|
please raise a feature request.
|
|
|
|
*/
|
|
|
|
static void esp_mpi_acquire_hardware( void )
|
|
|
|
{
|
|
|
|
/* newlib locks lazy initialize on ESP-IDF */
|
|
|
|
_lock_acquire(&mpi_lock);
|
|
|
|
ets_bigint_enable();
|
|
|
|
}
|
|
|
|
|
|
|
|
static void esp_mpi_release_hardware( void )
|
|
|
|
{
|
|
|
|
ets_bigint_disable();
|
|
|
|
_lock_release(&mpi_lock);
|
|
|
|
}
|
|
|
|
|
2016-09-20 21:02:07 +10:00
|
|
|
/* Given a & b, determine u & v such that
|
|
|
|
|
|
|
|
gcd(a,b) = d = au + bv
|
|
|
|
|
|
|
|
Underlying algorithm comes from:
|
|
|
|
http://www.ucl.ac.uk/~ucahcjm/combopt/ext_gcd_python_programs.pdf
|
|
|
|
http://www.hackersdelight.org/hdcodetxt/mont64.c.txt
|
|
|
|
*/
|
|
|
|
static void extended_binary_gcd(const mbedtls_mpi *a, const mbedtls_mpi *b,
|
|
|
|
mbedtls_mpi *u, mbedtls_mpi *v)
|
|
|
|
{
|
|
|
|
mbedtls_mpi ta, tb;
|
|
|
|
|
|
|
|
mbedtls_mpi_init(&ta);
|
|
|
|
mbedtls_mpi_copy(&ta, a);
|
|
|
|
mbedtls_mpi_init(&tb);
|
|
|
|
mbedtls_mpi_copy(&tb, b);
|
|
|
|
|
|
|
|
mbedtls_mpi_lset(u, 1);
|
|
|
|
mbedtls_mpi_lset(v, 0);
|
|
|
|
|
|
|
|
/* Loop invariant:
|
|
|
|
ta = u*2*a - v*b. */
|
|
|
|
while (mbedtls_mpi_cmp_int(&ta, 0) != 0) {
|
|
|
|
mbedtls_mpi_shift_r(&ta, 1);
|
|
|
|
if (mbedtls_mpi_get_bit(u, 0) == 0) {
|
|
|
|
// Remove common factor of 2 in u & v
|
|
|
|
mbedtls_mpi_shift_r(u, 1);
|
|
|
|
mbedtls_mpi_shift_r(v, 1);
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
/* u = (u + b) >> 1 */
|
|
|
|
mbedtls_mpi_add_mpi(u, u, b);
|
|
|
|
mbedtls_mpi_shift_r(u, 1);
|
|
|
|
/* v = (v >> 1) + a */
|
|
|
|
mbedtls_mpi_shift_r(v, 1);
|
|
|
|
mbedtls_mpi_add_mpi(v, v, a);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
mbedtls_mpi_free(&ta);
|
|
|
|
mbedtls_mpi_free(&tb);
|
|
|
|
|
|
|
|
/* u = u * 2, so 1 = u*a - v*b */
|
|
|
|
mbedtls_mpi_shift_l(u, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* inner part of MPI modular multiply, after Rinv & Mprime are calculated */
|
|
|
|
static int mpi_mul_mpi_mod_inner(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *M, mbedtls_mpi *Rinv, uint32_t Mprime, size_t num_words)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
mbedtls_mpi TA, TB;
|
|
|
|
size_t num_bits = num_words * 32;
|
|
|
|
|
|
|
|
mbedtls_mpi_grow(Rinv, num_words);
|
|
|
|
|
|
|
|
/* TODO: fill memory blocks directly so this isn't needed */
|
|
|
|
mbedtls_mpi_init(&TA);
|
|
|
|
mbedtls_mpi_copy(&TA, A);
|
|
|
|
mbedtls_mpi_grow(&TA, num_words);
|
|
|
|
A = &TA;
|
|
|
|
mbedtls_mpi_init(&TB);
|
|
|
|
mbedtls_mpi_copy(&TB, B);
|
|
|
|
mbedtls_mpi_grow(&TB, num_words);
|
|
|
|
B = &TB;
|
|
|
|
|
|
|
|
esp_mpi_acquire_hardware();
|
|
|
|
|
|
|
|
if(ets_bigint_mod_mult_prepare(A->p, B->p, M->p, Mprime,
|
|
|
|
Rinv->p, num_bits, false)) {
|
|
|
|
mbedtls_mpi_grow(X, num_words);
|
|
|
|
ets_bigint_wait_finish();
|
|
|
|
if(ets_bigint_mod_mult_getz(M->p, X->p, num_bits)) {
|
|
|
|
X->s = A->s * B->s;
|
|
|
|
ret = 0;
|
|
|
|
} else {
|
|
|
|
printf("ets_bigint_mod_mult_getz failed\n");
|
|
|
|
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
printf("ets_bigint_mod_mult_prepare failed\n");
|
|
|
|
ret = MBEDTLS_ERR_MPI_BAD_INPUT_DATA;
|
|
|
|
}
|
|
|
|
esp_mpi_release_hardware();
|
|
|
|
|
|
|
|
/* unclear why this is necessary, but the result seems
|
|
|
|
to come back rotated 32 bits to the right... */
|
|
|
|
uint32_t last_word = X->p[num_words-1];
|
|
|
|
X->p[num_words-1] = 0;
|
|
|
|
mbedtls_mpi_shift_l(X, 32);
|
|
|
|
X->p[0] = last_word;
|
|
|
|
|
|
|
|
mbedtls_mpi_free(&TA);
|
|
|
|
mbedtls_mpi_free(&TB);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* X = (A * B) mod M
|
|
|
|
|
|
|
|
Not an mbedTLS function
|
|
|
|
|
|
|
|
num_bits guaranteed to be a multiple of 512 already.
|
|
|
|
|
|
|
|
TODO: ensure M is odd
|
|
|
|
*/
|
|
|
|
int esp_mpi_mul_mpi_mod(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *M, size_t num_bits)
|
|
|
|
{
|
|
|
|
int ret = 0;
|
|
|
|
mbedtls_mpi RR, Rinv, Mprime;
|
|
|
|
uint32_t Mprime_int;
|
|
|
|
size_t num_words = num_bits / 32;
|
|
|
|
|
|
|
|
/* Rinv & Mprime are calculated via extended binary gcd
|
|
|
|
algorithm, see references on extended_binary_gcd above.
|
|
|
|
*/
|
|
|
|
mbedtls_mpi_init(&Rinv);
|
|
|
|
mbedtls_mpi_init(&RR);
|
|
|
|
mbedtls_mpi_set_bit(&RR, num_bits+32, 1);
|
|
|
|
mbedtls_mpi_init(&Mprime);
|
|
|
|
extended_binary_gcd(&RR, M, &Rinv, &Mprime);
|
|
|
|
|
|
|
|
/* M' is mod 2^32 */
|
|
|
|
Mprime_int = Mprime.p[0];
|
|
|
|
|
|
|
|
ret = mpi_mul_mpi_mod_inner(X, A, B, M, &Rinv, Mprime_int, num_words);
|
|
|
|
|
|
|
|
mbedtls_mpi_free(&RR);
|
|
|
|
mbedtls_mpi_free(&Mprime);
|
|
|
|
mbedtls_mpi_free(&Rinv);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
2016-09-08 17:41:43 +08:00
|
|
|
/*
|
|
|
|
* Helper for mbedtls_mpi multiplication
|
|
|
|
* copied/trimmed from mbedtls bignum.c
|
|
|
|
*/
|
|
|
|
static void mpi_mul_hlp( size_t i, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d, mbedtls_mpi_uint b )
|
|
|
|
{
|
|
|
|
mbedtls_mpi_uint c = 0, t = 0;
|
|
|
|
|
|
|
|
for( ; i >= 16; i -= 16 )
|
|
|
|
{
|
|
|
|
MULADDC_INIT
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_STOP
|
|
|
|
}
|
|
|
|
|
|
|
|
for( ; i >= 8; i -= 8 )
|
|
|
|
{
|
|
|
|
MULADDC_INIT
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_CORE MULADDC_CORE
|
|
|
|
MULADDC_STOP
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
for( ; i > 0; i-- )
|
|
|
|
{
|
|
|
|
MULADDC_INIT
|
|
|
|
MULADDC_CORE
|
|
|
|
MULADDC_STOP
|
|
|
|
}
|
|
|
|
|
|
|
|
t++;
|
|
|
|
|
|
|
|
do {
|
|
|
|
*d += c; c = ( *d < c ); d++;
|
|
|
|
}
|
|
|
|
while( c != 0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Helper for mbedtls_mpi subtraction
|
|
|
|
* Copied/adapter from mbedTLS bignum.c
|
|
|
|
*/
|
|
|
|
static void mpi_sub_hlp( size_t n, mbedtls_mpi_uint *s, mbedtls_mpi_uint *d )
|
|
|
|
{
|
|
|
|
size_t i;
|
|
|
|
mbedtls_mpi_uint c, z;
|
|
|
|
|
|
|
|
for( i = c = 0; i < n; i++, s++, d++ )
|
|
|
|
{
|
|
|
|
z = ( *d < c ); *d -= c;
|
|
|
|
c = ( *d < *s ) + z; *d -= *s;
|
|
|
|
}
|
|
|
|
|
|
|
|
while( c != 0 )
|
|
|
|
{
|
|
|
|
z = ( *d < c ); *d -= c;
|
|
|
|
c = z; i++; d++;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/* The following 3 Montgomery arithmetic function are
|
|
|
|
copied from mbedTLS bigint.c verbatim as they are static.
|
|
|
|
|
|
|
|
TODO: find a way to support making the versions in mbedtls
|
|
|
|
non-static.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Fast Montgomery initialization (thanks to Tom St Denis)
|
|
|
|
*/
|
|
|
|
static void mpi_montg_init( mbedtls_mpi_uint *mm, const mbedtls_mpi *N )
|
|
|
|
{
|
|
|
|
mbedtls_mpi_uint x, m0 = N->p[0];
|
|
|
|
unsigned int i;
|
|
|
|
|
|
|
|
x = m0;
|
|
|
|
x += ( ( m0 + 2 ) & 4 ) << 1;
|
|
|
|
|
|
|
|
for( i = biL; i >= 8; i /= 2 )
|
|
|
|
x *= ( 2 - ( m0 * x ) );
|
|
|
|
|
|
|
|
*mm = ~x + 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Montgomery multiplication: A = A * B * R^-1 mod N (HAC 14.36)
|
|
|
|
*/
|
|
|
|
static int mpi_montmul( mbedtls_mpi *A, const mbedtls_mpi *B, const mbedtls_mpi *N, mbedtls_mpi_uint mm,
|
|
|
|
const mbedtls_mpi *T )
|
|
|
|
{
|
|
|
|
size_t i, n, m;
|
|
|
|
mbedtls_mpi_uint u0, u1, *d;
|
|
|
|
|
|
|
|
if( T->n < N->n + 1 || T->p == NULL )
|
|
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
|
|
|
|
memset( T->p, 0, T->n * ciL );
|
|
|
|
|
|
|
|
d = T->p;
|
|
|
|
n = N->n;
|
|
|
|
m = ( B->n < n ) ? B->n : n;
|
|
|
|
|
|
|
|
for( i = 0; i < n; i++ )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* T = (T + u0*B + u1*N) / 2^biL
|
|
|
|
*/
|
|
|
|
u0 = A->p[i];
|
|
|
|
u1 = ( d[0] + u0 * B->p[0] ) * mm;
|
|
|
|
|
|
|
|
mpi_mul_hlp( m, B->p, d, u0 );
|
|
|
|
mpi_mul_hlp( n, N->p, d, u1 );
|
|
|
|
|
|
|
|
*d++ = u0; d[n + 1] = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy( A->p, d, ( n + 1 ) * ciL );
|
|
|
|
|
|
|
|
if( mbedtls_mpi_cmp_abs( A, N ) >= 0 )
|
|
|
|
mpi_sub_hlp( n, N->p, A->p );
|
|
|
|
else
|
|
|
|
/* prevent timing attacks */
|
|
|
|
mpi_sub_hlp( n, A->p, T->p );
|
|
|
|
|
|
|
|
return( 0 );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Montgomery reduction: A = A * R^-1 mod N
|
|
|
|
*/
|
|
|
|
static int mpi_montred( mbedtls_mpi *A, const mbedtls_mpi *N, mbedtls_mpi_uint mm, const mbedtls_mpi *T )
|
|
|
|
{
|
|
|
|
mbedtls_mpi_uint z = 1;
|
|
|
|
mbedtls_mpi U;
|
|
|
|
|
|
|
|
U.n = U.s = (int) z;
|
|
|
|
U.p = &z;
|
|
|
|
|
|
|
|
return( mpi_montmul( A, &U, N, mm, T ) );
|
|
|
|
}
|
|
|
|
|
2016-09-19 18:00:03 +10:00
|
|
|
#if defined(MBEDTLS_MPI_MUL_MPI_ALT) /* MBEDTLS_MPI_MUL_MPI_ALT */
|
2016-09-08 17:41:43 +08:00
|
|
|
|
2016-09-19 18:00:03 +10:00
|
|
|
/* Number of words used to hold 'mpi', rounded up to nearest
|
|
|
|
16 words (512 bits) to match hardware support
|
|
|
|
*/
|
|
|
|
static inline size_t hardware_words_needed(const mbedtls_mpi *mpi)
|
2016-09-08 17:41:43 +08:00
|
|
|
{
|
2016-09-19 18:00:03 +10:00
|
|
|
size_t res;
|
|
|
|
for(res = mpi->n; res > 0; res-- ) {
|
|
|
|
if( mpi->p[res - 1] != 0 )
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
res = (res + 0xF) & ~0xF;
|
|
|
|
return res;
|
2016-09-08 17:41:43 +08:00
|
|
|
}
|
|
|
|
|
2016-09-20 21:02:07 +10:00
|
|
|
|
|
|
|
/* Special-case multiply, where we use hardware montgomery mod
|
|
|
|
multiplication to solve the case where A or B are >2048 bits so
|
|
|
|
can't do standard multiplication.
|
|
|
|
|
|
|
|
the modulus here is chosen with M=(2^num_bits-1)
|
|
|
|
to guarantee the output isn't actually modulo anything. This means
|
|
|
|
we don't need to calculate M' and Rinv, they are predictable
|
|
|
|
as follows:
|
|
|
|
M' = 1
|
|
|
|
Rinv = (1 << (num_bits - 32)
|
|
|
|
|
|
|
|
(See RSA Accelerator section in Technical Reference for derivation
|
|
|
|
of M', Rinv)
|
|
|
|
*/
|
|
|
|
static int esp_mpi_mult_mpi_failover_mod_mult(mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B, size_t num_words)
|
|
|
|
{
|
|
|
|
mbedtls_mpi M, Rinv;
|
|
|
|
int ret;
|
|
|
|
size_t mprime;
|
|
|
|
size_t num_bits = num_words * 32;
|
|
|
|
|
|
|
|
mbedtls_mpi_init(&M);
|
|
|
|
mbedtls_mpi_init(&Rinv);
|
|
|
|
|
|
|
|
/* TODO: it may be faster to just use 4096-bit arithmetic every time,
|
|
|
|
and make these constants rather than runtime derived
|
|
|
|
derived. */
|
|
|
|
/* M = (2^num_words)-1 */
|
|
|
|
mbedtls_mpi_grow(&M, num_words);
|
|
|
|
for(int i = 0; i < num_words*32; i++) {
|
|
|
|
mbedtls_mpi_set_bit(&M, i, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Rinv = (2^num_words-32) */
|
|
|
|
mbedtls_mpi_grow(&Rinv, num_words);
|
|
|
|
mbedtls_mpi_set_bit(&Rinv, num_bits - 32, 1);
|
|
|
|
|
|
|
|
mprime = 1;
|
|
|
|
|
|
|
|
ret = mpi_mul_mpi_mod_inner(X, A, B, &M, &Rinv, mprime, num_words);
|
|
|
|
|
|
|
|
mbedtls_mpi_free(&M);
|
|
|
|
mbedtls_mpi_free(&Rinv);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2016-09-08 17:41:43 +08:00
|
|
|
int mbedtls_mpi_mul_mpi( mbedtls_mpi *X, const mbedtls_mpi *A, const mbedtls_mpi *B )
|
|
|
|
{
|
|
|
|
int ret = -1;
|
2016-09-19 18:00:03 +10:00
|
|
|
size_t words_a, words_b, words_x, words_mult;
|
2016-09-08 17:41:43 +08:00
|
|
|
|
|
|
|
mbedtls_mpi TA, TB;
|
|
|
|
|
|
|
|
mbedtls_mpi_init( &TA ); mbedtls_mpi_init( &TB );
|
|
|
|
|
2016-09-19 18:00:03 +10:00
|
|
|
/* Count words needed for A & B in hardware */
|
|
|
|
words_a = hardware_words_needed(A);
|
|
|
|
words_b = hardware_words_needed(B);
|
|
|
|
|
2016-09-20 21:02:07 +10:00
|
|
|
words_mult = (words_a > words_b ? words_a : words_b);
|
|
|
|
|
2016-09-19 18:00:03 +10:00
|
|
|
/* Take a copy of A if either X == A OR if A isn't long enough
|
|
|
|
to hold the number of words needed for hardware.
|
|
|
|
|
|
|
|
(can't grow A directly as it is const)
|
|
|
|
|
|
|
|
TODO: growing the input operands is only necessary because the
|
|
|
|
ROM functions only take one length argument. It should be
|
|
|
|
possible for us to just copy the used data only into the
|
|
|
|
hardware buffers, and set the remaining bits to zero - saving
|
|
|
|
RAM. But we need to reimplement ets_bigint_mult_prepare() in
|
|
|
|
software for this.
|
|
|
|
*/
|
2016-09-20 21:02:07 +10:00
|
|
|
if( X == A || A->n < words_mult) {
|
2016-09-19 18:00:03 +10:00
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TA, A ) );
|
2016-09-20 21:02:07 +10:00
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &TA, words_mult) );
|
2016-09-19 18:00:03 +10:00
|
|
|
A = &TA;
|
|
|
|
}
|
|
|
|
/* Same for B */
|
2016-09-20 21:02:07 +10:00
|
|
|
if( X == B || B->n < words_mult ) {
|
2016-09-19 18:00:03 +10:00
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &TB, B ) );
|
2016-09-20 21:02:07 +10:00
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &TB, words_mult) );
|
2016-09-19 18:00:03 +10:00
|
|
|
B = &TB;
|
|
|
|
}
|
2016-09-08 17:41:43 +08:00
|
|
|
|
2016-09-19 18:00:03 +10:00
|
|
|
/* Result X has to have room for double the larger operand */
|
|
|
|
words_x = words_mult * 2;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, words_x ) );
|
|
|
|
/* TODO: check if lset here is necessary, hardware should zero */
|
2016-09-08 17:41:43 +08:00
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( X, 0 ) );
|
|
|
|
|
2016-09-20 21:02:07 +10:00
|
|
|
/* If either operand is over 2048 bits, we can't use the standard hardware multiplier
|
|
|
|
(it assumes result is double longest operand, and result is max 4096 bits.)
|
2016-09-19 18:00:03 +10:00
|
|
|
|
2016-09-20 21:02:07 +10:00
|
|
|
However, we can fail over to mod_mult for up to 4096 bits.
|
|
|
|
*/
|
2016-09-19 18:00:03 +10:00
|
|
|
if(words_mult * 32 > 2048) {
|
2016-09-20 21:02:07 +10:00
|
|
|
/* TODO: check if there's an overflow condition if words_a & words_b are both
|
|
|
|
the bit lengths of the operands, result could be 1 bit longer
|
2016-09-19 18:00:03 +10:00
|
|
|
*/
|
2016-09-20 21:02:07 +10:00
|
|
|
if((words_a + words_b) * 32 > 4096) {
|
|
|
|
printf("ERROR: %d bit operands (%d bits * %d bits) too large for hardware unit\n", words_mult * 32, mbedtls_mpi_bitlen(A), mbedtls_mpi_bitlen(B));
|
|
|
|
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
ret = esp_mpi_mult_mpi_failover_mod_mult(X, A, B, words_a + words_b);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
|
|
|
|
/* normal mpi multiplication */
|
|
|
|
esp_mpi_acquire_hardware();
|
|
|
|
if (ets_bigint_mult_prepare(A->p, B->p, words_mult * 32)) {
|
|
|
|
ets_bigint_wait_finish();
|
|
|
|
/* NB: argument to bigint_mult_getz is length of inputs, double this number (words_x) is
|
|
|
|
copied to output X->p.
|
|
|
|
*/
|
|
|
|
if (ets_bigint_mult_getz(X->p, words_mult * 32) == true) {
|
|
|
|
X->s = A->s * B->s;
|
|
|
|
ret = 0;
|
|
|
|
} else {
|
|
|
|
printf("ets_bigint_mult_getz failed\n");
|
|
|
|
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
|
|
}
|
|
|
|
} else{
|
|
|
|
printf("Baseline multiplication failed\n");
|
|
|
|
ret = MBEDTLS_ERR_MPI_NOT_ACCEPTABLE;
|
|
|
|
}
|
|
|
|
esp_mpi_release_hardware();
|
|
|
|
}
|
2016-09-08 17:41:43 +08:00
|
|
|
cleanup:
|
|
|
|
|
|
|
|
mbedtls_mpi_free( &TB ); mbedtls_mpi_free( &TA );
|
|
|
|
|
|
|
|
return( ret );
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* MBEDTLS_MPI_MUL_MPI_ALT */
|
|
|
|
|
|
|
|
#if defined(MBEDTLS_MPI_EXP_MOD_ALT)
|
|
|
|
/*
|
|
|
|
* Sliding-window exponentiation: X = A^E mod N (HAC 14.85)
|
|
|
|
*/
|
|
|
|
int mbedtls_mpi_exp_mod( mbedtls_mpi* X, const mbedtls_mpi* A, const mbedtls_mpi* E, const mbedtls_mpi* N, mbedtls_mpi* _RR )
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
size_t wbits, wsize, one = 1;
|
|
|
|
size_t i, j, nblimbs;
|
|
|
|
size_t bufsize, nbits;
|
|
|
|
mbedtls_mpi_uint ei, mm, state;
|
|
|
|
mbedtls_mpi RR, T, W[ 2 << MBEDTLS_MPI_WINDOW_SIZE ], Apos;
|
|
|
|
int neg;
|
|
|
|
|
|
|
|
if( mbedtls_mpi_cmp_int( N, 0 ) < 0 || ( N->p[0] & 1 ) == 0 )
|
|
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
|
|
|
|
if( mbedtls_mpi_cmp_int( E, 0 ) < 0 )
|
|
|
|
return( MBEDTLS_ERR_MPI_BAD_INPUT_DATA );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Init temps and window size
|
|
|
|
*/
|
|
|
|
mpi_montg_init( &mm, N );
|
|
|
|
mbedtls_mpi_init( &RR ); mbedtls_mpi_init( &T );
|
|
|
|
mbedtls_mpi_init( &Apos );
|
|
|
|
memset( W, 0, sizeof( W ) );
|
|
|
|
|
|
|
|
i = mbedtls_mpi_bitlen( E );
|
|
|
|
|
|
|
|
wsize = ( i > 671 ) ? 6 : ( i > 239 ) ? 5 :
|
|
|
|
( i > 79 ) ? 4 : ( i > 23 ) ? 3 : 1;
|
|
|
|
|
|
|
|
if( wsize > MBEDTLS_MPI_WINDOW_SIZE )
|
|
|
|
wsize = MBEDTLS_MPI_WINDOW_SIZE;
|
|
|
|
|
|
|
|
j = N->n + 1;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( X, j ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[1], j ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &T, j * 2 ) );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Compensate for negative A (and correct at the end)
|
|
|
|
*/
|
|
|
|
neg = ( A->s == -1 );
|
|
|
|
if( neg )
|
|
|
|
{
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &Apos, A ) );
|
|
|
|
Apos.s = 1;
|
|
|
|
A = &Apos;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If 1st call, pre-compute R^2 mod N
|
|
|
|
*/
|
|
|
|
if( _RR == NULL || _RR->p == NULL )
|
|
|
|
{
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_lset( &RR, 1 ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_shift_l( &RR, N->n * 2 * biL ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &RR, &RR, N ) );
|
|
|
|
|
|
|
|
if( _RR != NULL )
|
|
|
|
memcpy( _RR, &RR, sizeof( mbedtls_mpi) );
|
|
|
|
}
|
|
|
|
else
|
|
|
|
memcpy( &RR, _RR, sizeof( mbedtls_mpi) );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* W[1] = A * R^2 * R^-1 mod N = A * R mod N
|
|
|
|
*/
|
|
|
|
if( mbedtls_mpi_cmp_mpi( A, N ) >= 0 )
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_mod_mpi( &W[1], A, N ) );
|
|
|
|
else
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[1], A ) );
|
|
|
|
|
|
|
|
mpi_montmul( &W[1], &RR, N, mm, &T );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* X = R^2 * R^-1 mod N = R mod N
|
|
|
|
*/
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( X, &RR ) );
|
|
|
|
mpi_montred( X, N, mm, &T );
|
|
|
|
|
|
|
|
if( wsize > 1 )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* W[1 << (wsize - 1)] = W[1] ^ (wsize - 1)
|
|
|
|
*/
|
|
|
|
j = one << ( wsize - 1 );
|
|
|
|
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[j], N->n + 1 ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[j], &W[1] ) );
|
|
|
|
|
|
|
|
for( i = 0; i < wsize - 1; i++ )
|
|
|
|
mpi_montmul( &W[j], &W[j], N, mm, &T );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* W[i] = W[i - 1] * W[1]
|
|
|
|
*/
|
|
|
|
for( i = j + 1; i < ( one << wsize ); i++ )
|
|
|
|
{
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_grow( &W[i], N->n + 1 ) );
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_copy( &W[i], &W[i - 1] ) );
|
|
|
|
|
|
|
|
mpi_montmul( &W[i], &W[1], N, mm, &T );
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
nblimbs = E->n;
|
|
|
|
bufsize = 0;
|
|
|
|
nbits = 0;
|
|
|
|
wbits = 0;
|
|
|
|
state = 0;
|
|
|
|
|
|
|
|
while( 1 )
|
|
|
|
{
|
|
|
|
if( bufsize == 0 )
|
|
|
|
{
|
|
|
|
if( nblimbs == 0 )
|
|
|
|
break;
|
|
|
|
|
|
|
|
nblimbs--;
|
|
|
|
|
|
|
|
bufsize = sizeof( mbedtls_mpi_uint ) << 3;
|
|
|
|
}
|
|
|
|
|
|
|
|
bufsize--;
|
|
|
|
|
|
|
|
ei = (E->p[nblimbs] >> bufsize) & 1;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* skip leading 0s
|
|
|
|
*/
|
|
|
|
if( ei == 0 && state == 0 )
|
|
|
|
continue;
|
|
|
|
|
|
|
|
if( ei == 0 && state == 1 )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* out of window, square X
|
|
|
|
*/
|
|
|
|
mpi_montmul( X, X, N, mm, &T );
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* add ei to current window
|
|
|
|
*/
|
|
|
|
state = 2;
|
|
|
|
|
|
|
|
nbits++;
|
|
|
|
wbits |= ( ei << ( wsize - nbits ) );
|
|
|
|
|
|
|
|
if( nbits == wsize )
|
|
|
|
{
|
|
|
|
/*
|
|
|
|
* X = X^wsize R^-1 mod N
|
|
|
|
*/
|
|
|
|
for( i = 0; i < wsize; i++ )
|
|
|
|
mpi_montmul( X, X, N, mm, &T );
|
|
|
|
|
|
|
|
/*
|
|
|
|
* X = X * W[wbits] R^-1 mod N
|
|
|
|
*/
|
|
|
|
mpi_montmul( X, &W[wbits], N, mm, &T );
|
|
|
|
|
|
|
|
state--;
|
|
|
|
nbits = 0;
|
|
|
|
wbits = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* process the remaining bits
|
|
|
|
*/
|
|
|
|
for( i = 0; i < nbits; i++ )
|
|
|
|
{
|
|
|
|
mpi_montmul( X, X, N, mm, &T );
|
|
|
|
|
|
|
|
wbits <<= 1;
|
|
|
|
|
|
|
|
if( ( wbits & ( one << wsize ) ) != 0 )
|
|
|
|
mpi_montmul( X, &W[1], N, mm, &T );
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* X = A^E * R * R^-1 mod N = A^E mod N
|
|
|
|
*/
|
|
|
|
mpi_montred( X, N, mm, &T );
|
|
|
|
|
|
|
|
if( neg )
|
|
|
|
{
|
|
|
|
X->s = -1;
|
|
|
|
MBEDTLS_MPI_CHK( mbedtls_mpi_add_mpi( X, N, X ) );
|
|
|
|
}
|
|
|
|
|
|
|
|
cleanup:
|
|
|
|
|
|
|
|
for( i = ( one << ( wsize - 1 ) ); i < ( one << wsize ); i++ )
|
|
|
|
mbedtls_mpi_free( &W[i] );
|
|
|
|
|
|
|
|
mbedtls_mpi_free( &W[1] ); mbedtls_mpi_free( &T ); mbedtls_mpi_free( &Apos );
|
|
|
|
|
|
|
|
if( _RR == NULL || _RR->p == NULL )
|
|
|
|
mbedtls_mpi_free( &RR );
|
|
|
|
|
|
|
|
return( ret );
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif /* MBEDTLS_MPI_EXP_MOD_ALT */
|
|
|
|
|
|
|
|
#endif /* MBEDTLS_MPI_MUL_MPI_ALT || MBEDTLS_MPI_EXP_MOD_ALT */
|
|
|
|
|