vfs_uart: refactor to have static context structure

This commit is contained in:
Michael (XIAO Xufeng) 2019-06-20 01:18:20 +08:00 committed by chenjianqiang
parent 91ae40e2ff
commit 00b33a8e14

View File

@ -37,6 +37,22 @@
// Token signifying that no character is available // Token signifying that no character is available
#define NONE -1 #define NONE -1
#if CONFIG_NEWLIB_STDOUT_LINE_ENDING_CRLF
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_CRLF
#elif CONFIG_NEWLIB_STDOUT_LINE_ENDING_CR
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_CR
#else
# define DEFAULT_TX_MODE ESP_LINE_ENDINGS_LF
#endif
#if CONFIG_NEWLIB_STDIN_LINE_ENDING_CRLF
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_CRLF
#elif CONFIG_NEWLIB_STDIN_LINE_ENDING_CR
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_CR
#else
# define DEFAULT_RX_MODE ESP_LINE_ENDINGS_LF
#endif
// UART write bytes function type // UART write bytes function type
typedef void (*tx_func_t)(int, int); typedef void (*tx_func_t)(int, int);
// UART read bytes function type // UART read bytes function type
@ -50,33 +66,55 @@ static int uart_rx_char(int fd);
static void uart_tx_char_via_driver(int fd, int c); static void uart_tx_char_via_driver(int fd, int c);
static int uart_rx_char_via_driver(int fd); static int uart_rx_char_via_driver(int fd);
// Pointers to UART peripherals typedef struct {
static uart_dev_t* s_uarts[UART_NUM] = { // Pointers to UART peripherals
&UART0, uart_dev_t* uart;
&UART1, // One-character buffer used for newline conversion code, per UART
int peek_char;
// per-UART locks, lazily initialized
_lock_t read_lock;
_lock_t write_lock;
// Per-UART non-blocking flag. Note: default implementation does not honor this
// flag, all reads are non-blocking. This option becomes effective if UART
// driver is used.
bool non_blocking;
// Newline conversion mode when transmitting
esp_line_endings_t tx_mode;
// Newline conversion mode when receiving
esp_line_endings_t rx_mode;
// Functions used to write bytes to UART. Default to "basic" functions.
tx_func_t tx_func;
// Functions used to read bytes from UART. Default to "basic" functions.
rx_func_t rx_func;
} vfs_uart_context_t;
#define VFS_CTX_DEFAULT_VAL(uart_dev) (vfs_uart_context_t) {\
.uart = (uart_dev),\
.peek_char = NONE,\
.tx_mode = DEFAULT_TX_MODE,\
.rx_mode = DEFAULT_RX_MODE,\
.tx_func = uart_tx_char,\
.rx_func = uart_rx_char,\
}
//If the context should be dynamically initialized, remove this structure
//and point s_ctx to allocated data.
static vfs_uart_context_t s_context[UART_NUM] = {
VFS_CTX_DEFAULT_VAL(&UART0),
VFS_CTX_DEFAULT_VAL(&UART1),
#if UART_NUM > 2 #if UART_NUM > 2
&UART2 VFS_CTX_DEFAULT_VAL(&UART2),
#endif #endif
}; };
// One-character buffer used for newline conversion code, per UART static vfs_uart_context_t* s_ctx[UART_NUM] = {
static int s_peek_char[UART_NUM] = { &s_context[0],
NONE, &s_context[1],
NONE,
#if UART_NUM > 2 #if UART_NUM > 2
NONE &s_context[2],
#endif #endif
}; };
// per-UART locks, lazily initialized
static _lock_t s_uart_read_locks[UART_NUM];
static _lock_t s_uart_write_locks[UART_NUM];
// Per-UART non-blocking flag. Note: default implementation does not honor this
// flag, all reads are non-blocking. This option becomes effective if UART
// driver is used.
static bool s_non_blocking[UART_NUM];
/* Lock ensuring that uart_select is used from only one task at the time */ /* Lock ensuring that uart_select is used from only one task at the time */
static _lock_t s_one_select_lock; static _lock_t s_one_select_lock;
@ -88,46 +126,9 @@ static fd_set *_readfds_orig = NULL;
static fd_set *_writefds_orig = NULL; static fd_set *_writefds_orig = NULL;
static fd_set *_errorfds_orig = NULL; static fd_set *_errorfds_orig = NULL;
// Newline conversion mode when transmitting
static esp_line_endings_t s_tx_mode =
#if CONFIG_NEWLIB_STDOUT_LINE_ENDING_CRLF
ESP_LINE_ENDINGS_CRLF;
#elif CONFIG_NEWLIB_STDOUT_LINE_ENDING_CR
ESP_LINE_ENDINGS_CR;
#else
ESP_LINE_ENDINGS_LF;
#endif
// Newline conversion mode when receiving
static esp_line_endings_t s_rx_mode[UART_NUM] = { [0 ... UART_NUM-1] =
#if CONFIG_NEWLIB_STDIN_LINE_ENDING_CRLF
ESP_LINE_ENDINGS_CRLF
#elif CONFIG_NEWLIB_STDIN_LINE_ENDING_CR
ESP_LINE_ENDINGS_CR
#else
ESP_LINE_ENDINGS_LF
#endif
};
static void uart_end_select(); static void uart_end_select();
// Functions used to write bytes to UART. Default to "basic" functions.
static tx_func_t s_uart_tx_func[UART_NUM] = {
&uart_tx_char,
&uart_tx_char,
#if UART_NUM > 2
&uart_tx_char
#endif
};
// Functions used to read bytes from UART. Default to "basic" functions.
static rx_func_t s_uart_rx_func[UART_NUM] = {
&uart_rx_char,
&uart_rx_char,
#if UART_NUM > 2
&uart_rx_char
#endif
};
static int uart_open(const char * path, int flags, int mode) static int uart_open(const char * path, int flags, int mode)
{ {
@ -146,14 +147,14 @@ static int uart_open(const char * path, int flags, int mode)
return fd; return fd;
} }
s_non_blocking[fd] = ((flags & O_NONBLOCK) == O_NONBLOCK); s_ctx[fd]->non_blocking = ((flags & O_NONBLOCK) == O_NONBLOCK);
return fd; return fd;
} }
static void uart_tx_char(int fd, int c) static void uart_tx_char(int fd, int c)
{ {
uart_dev_t* uart = s_uarts[fd]; uart_dev_t* uart = s_ctx[fd]->uart;
while (uart->status.txfifo_cnt >= 127) { while (uart->status.txfifo_cnt >= 127) {
; ;
} }
@ -172,7 +173,7 @@ static void uart_tx_char_via_driver(int fd, int c)
static int uart_rx_char(int fd) static int uart_rx_char(int fd)
{ {
uart_dev_t* uart = s_uarts[fd]; uart_dev_t* uart = s_ctx[fd]->uart;
if (uart->status.rxfifo_cnt == 0) { if (uart->status.rxfifo_cnt == 0) {
return NONE; return NONE;
} }
@ -186,7 +187,7 @@ static int uart_rx_char(int fd)
static int uart_rx_char_via_driver(int fd) static int uart_rx_char_via_driver(int fd)
{ {
uint8_t c; uint8_t c;
int timeout = s_non_blocking[fd] ? 0 : portMAX_DELAY; int timeout = s_ctx[fd]->non_blocking ? 0 : portMAX_DELAY;
int n = uart_read_bytes(fd, &c, 1, timeout); int n = uart_read_bytes(fd, &c, 1, timeout);
if (n <= 0) { if (n <= 0) {
return NONE; return NONE;
@ -202,18 +203,18 @@ static ssize_t uart_write(int fd, const void * data, size_t size)
* a dedicated UART lock if two streams (stdout and stderr) point to the * a dedicated UART lock if two streams (stdout and stderr) point to the
* same UART. * same UART.
*/ */
_lock_acquire_recursive(&s_uart_write_locks[fd]); _lock_acquire_recursive(&s_ctx[fd]->write_lock);
for (size_t i = 0; i < size; i++) { for (size_t i = 0; i < size; i++) {
int c = data_c[i]; int c = data_c[i];
if (c == '\n' && s_tx_mode != ESP_LINE_ENDINGS_LF) { if (c == '\n' && s_ctx[fd]->tx_mode != ESP_LINE_ENDINGS_LF) {
s_uart_tx_func[fd](fd, '\r'); s_ctx[fd]->tx_func(fd, '\r');
if (s_tx_mode == ESP_LINE_ENDINGS_CR) { if (s_ctx[fd]->tx_mode == ESP_LINE_ENDINGS_CR) {
continue; continue;
} }
} }
s_uart_tx_func[fd](fd, c); s_ctx[fd]->tx_func(fd, c);
} }
_lock_release_recursive(&s_uart_write_locks[fd]); _lock_release_recursive(&s_ctx[fd]->write_lock);
return size; return size;
} }
@ -224,19 +225,19 @@ static ssize_t uart_write(int fd, const void * data, size_t size)
static int uart_read_char(int fd) static int uart_read_char(int fd)
{ {
/* return character from peek buffer, if it is there */ /* return character from peek buffer, if it is there */
if (s_peek_char[fd] != NONE) { if (s_ctx[fd]->peek_char != NONE) {
int c = s_peek_char[fd]; int c = s_ctx[fd]->peek_char;
s_peek_char[fd] = NONE; s_ctx[fd]->peek_char = NONE;
return c; return c;
} }
return s_uart_rx_func[fd](fd); return s_ctx[fd]->rx_func(fd);
} }
/* Push back a character; it will be returned by next call to uart_read_char */ /* Push back a character; it will be returned by next call to uart_read_char */
static void uart_return_char(int fd, int c) static void uart_return_char(int fd, int c)
{ {
assert(s_peek_char[fd] == NONE); assert(s_ctx[fd]->peek_char == NONE);
s_peek_char[fd] = c; s_ctx[fd]->peek_char = c;
} }
static ssize_t uart_read(int fd, void* data, size_t size) static ssize_t uart_read(int fd, void* data, size_t size)
@ -244,13 +245,13 @@ static ssize_t uart_read(int fd, void* data, size_t size)
assert(fd >=0 && fd < 3); assert(fd >=0 && fd < 3);
char *data_c = (char *) data; char *data_c = (char *) data;
size_t received = 0; size_t received = 0;
_lock_acquire_recursive(&s_uart_read_locks[fd]); _lock_acquire_recursive(&s_ctx[fd]->read_lock);
while (received < size) { while (received < size) {
int c = uart_read_char(fd); int c = uart_read_char(fd);
if (c == '\r') { if (c == '\r') {
if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CR) { if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CR) {
c = '\n'; c = '\n';
} else if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CRLF) { } else if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CRLF) {
/* look ahead */ /* look ahead */
int c2 = uart_read_char(fd); int c2 = uart_read_char(fd);
if (c2 == NONE) { if (c2 == NONE) {
@ -277,7 +278,7 @@ static ssize_t uart_read(int fd, void* data, size_t size)
break; break;
} }
} }
_lock_release_recursive(&s_uart_read_locks[fd]); _lock_release_recursive(&s_ctx[fd]->read_lock);
if (received > 0) { if (received > 0) {
return received; return received;
} }
@ -303,11 +304,11 @@ static int uart_fcntl(int fd, int cmd, int arg)
assert(fd >=0 && fd < 3); assert(fd >=0 && fd < 3);
int result = 0; int result = 0;
if (cmd == F_GETFL) { if (cmd == F_GETFL) {
if (s_non_blocking[fd]) { if (s_ctx[fd]->non_blocking) {
result |= O_NONBLOCK; result |= O_NONBLOCK;
} }
} else if (cmd == F_SETFL) { } else if (cmd == F_SETFL) {
s_non_blocking[fd] = (arg & O_NONBLOCK) != 0; s_ctx[fd]->non_blocking = (arg & O_NONBLOCK) != 0;
} else { } else {
// unsupported operation // unsupported operation
result = -1; result = -1;
@ -340,9 +341,9 @@ static int uart_access(const char *path, int amode)
static int uart_fsync(int fd) static int uart_fsync(int fd)
{ {
assert(fd >= 0 && fd < 3); assert(fd >= 0 && fd < 3);
_lock_acquire_recursive(&s_uart_write_locks[fd]); _lock_acquire_recursive(&s_ctx[fd]->write_lock);
uart_tx_wait_idle((uint8_t) fd); uart_tx_wait_idle((uint8_t) fd);
_lock_release_recursive(&s_uart_write_locks[fd]); _lock_release_recursive(&s_ctx[fd]->write_lock);
return 0; return 0;
} }
@ -511,11 +512,11 @@ static int uart_tcsetattr(int fd, int optional_actions, const struct termios *p)
} }
if (p->c_iflag & IGNCR) { if (p->c_iflag & IGNCR) {
s_rx_mode[fd] = ESP_LINE_ENDINGS_CRLF; s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_CRLF;
} else if (p->c_iflag & ICRNL) { } else if (p->c_iflag & ICRNL) {
s_rx_mode[fd] = ESP_LINE_ENDINGS_CR; s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_CR;
} else { } else {
s_rx_mode[fd] = ESP_LINE_ENDINGS_LF; s_ctx[fd]->rx_mode = ESP_LINE_ENDINGS_LF;
} }
// output line endings are not supported because there is no alternative in termios for converting LF to CR // output line endings are not supported because there is no alternative in termios for converting LF to CR
@ -694,9 +695,9 @@ static int uart_tcgetattr(int fd, struct termios *p)
memset(p, 0, sizeof(struct termios)); memset(p, 0, sizeof(struct termios));
if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CRLF) { if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CRLF) {
p->c_iflag |= IGNCR; p->c_iflag |= IGNCR;
} else if (s_rx_mode[fd] == ESP_LINE_ENDINGS_CR) { } else if (s_ctx[fd]->rx_mode == ESP_LINE_ENDINGS_CR) {
p->c_iflag |= ICRNL; p->c_iflag |= ICRNL;
} }
@ -953,31 +954,33 @@ void esp_vfs_dev_uart_register()
void esp_vfs_dev_uart_set_rx_line_endings(esp_line_endings_t mode) void esp_vfs_dev_uart_set_rx_line_endings(esp_line_endings_t mode)
{ {
for (int i = 0; i < UART_NUM; ++i) { for (int i = 0; i < UART_NUM; ++i) {
s_rx_mode[i] = mode; s_ctx[i]->rx_mode = mode;
} }
} }
void esp_vfs_dev_uart_set_tx_line_endings(esp_line_endings_t mode) void esp_vfs_dev_uart_set_tx_line_endings(esp_line_endings_t mode)
{ {
s_tx_mode = mode; for (int i = 0; i < UART_NUM; ++i) {
s_ctx[i]->tx_mode = mode;
}
} }
void esp_vfs_dev_uart_use_nonblocking(int uart_num) void esp_vfs_dev_uart_use_nonblocking(int uart_num)
{ {
_lock_acquire_recursive(&s_uart_read_locks[uart_num]); _lock_acquire_recursive(&s_ctx[uart_num]->read_lock);
_lock_acquire_recursive(&s_uart_write_locks[uart_num]); _lock_acquire_recursive(&s_ctx[uart_num]->write_lock);
s_uart_tx_func[uart_num] = uart_tx_char; s_ctx[uart_num]->tx_func = uart_tx_char;
s_uart_rx_func[uart_num] = uart_rx_char; s_ctx[uart_num]->rx_func = uart_rx_char;
_lock_release_recursive(&s_uart_write_locks[uart_num]); _lock_release_recursive(&s_ctx[uart_num]->write_lock);
_lock_release_recursive(&s_uart_read_locks[uart_num]); _lock_release_recursive(&s_ctx[uart_num]->read_lock);
} }
void esp_vfs_dev_uart_use_driver(int uart_num) void esp_vfs_dev_uart_use_driver(int uart_num)
{ {
_lock_acquire_recursive(&s_uart_read_locks[uart_num]); _lock_acquire_recursive(&s_ctx[uart_num]->read_lock);
_lock_acquire_recursive(&s_uart_write_locks[uart_num]); _lock_acquire_recursive(&s_ctx[uart_num]->write_lock);
s_uart_tx_func[uart_num] = uart_tx_char_via_driver; s_ctx[uart_num]->tx_func = uart_tx_char_via_driver;
s_uart_rx_func[uart_num] = uart_rx_char_via_driver; s_ctx[uart_num]->rx_func = uart_rx_char_via_driver;
_lock_release_recursive(&s_uart_write_locks[uart_num]); _lock_release_recursive(&s_ctx[uart_num]->write_lock);
_lock_release_recursive(&s_uart_read_locks[uart_num]); _lock_release_recursive(&s_ctx[uart_num]->read_lock);
} }