mirror of
https://github.com/espressif/esp-idf
synced 2025-03-09 17:19:09 -04:00
heap: Add new multi_heap heap implementation to replace FreeRTOS-based tagged heaps
This commit is contained in:
parent
9b30f66fac
commit
5ee49fd311
@ -329,6 +329,12 @@ static void main_task(void* args)
|
||||
// Now that the application is about to start, disable boot watchdogs
|
||||
REG_CLR_BIT(TIMG_WDTCONFIG0_REG(0), TIMG_WDT_FLASHBOOT_MOD_EN_S);
|
||||
REG_CLR_BIT(RTC_CNTL_WDTCONFIG0_REG, RTC_CNTL_WDT_FLASHBOOT_MOD_EN);
|
||||
#if !CONFIG_FREERTOS_UNICORE
|
||||
// Wait for FreeRTOS initialization to finish on APP CPU, before replacing its startup stack
|
||||
while (port_xSchedulerRunning[1] == 0) {
|
||||
;
|
||||
}
|
||||
#endif
|
||||
//Enable allocation in region where the startup stacks were located.
|
||||
heap_alloc_enable_nonos_stack_tag();
|
||||
app_main();
|
||||
|
@ -1,3 +0,0 @@
|
||||
#pragma once
|
||||
#warning heap_alloc_caps.h has been renamed to esp_heap_alloc_caps.h. The old header file is deprecated and will be removed in v3.0.
|
||||
#include "esp_heap_alloc_caps.h"
|
@ -83,6 +83,7 @@ SECTIONS
|
||||
_iram_text_start = ABSOLUTE(.);
|
||||
*(.iram1 .iram1.*)
|
||||
*libfreertos.a:(.literal .text .literal.* .text.*)
|
||||
*libheap.a:(.literal .text .literal.* .text.*)
|
||||
*libesp32.a:panic.o(.literal .text .literal.* .text.*)
|
||||
*libesp32.a:core_dump.o(.literal .text .literal.* .text.*)
|
||||
*libesp32.a:heap_alloc_caps.o(.literal .text .literal.* .text.*)
|
||||
|
@ -1,591 +0,0 @@
|
||||
/*
|
||||
FreeRTOS V8.2.0 - Copyright (C) 2015 Real Time Engineers Ltd.
|
||||
All rights reserved
|
||||
|
||||
VISIT http://www.FreeRTOS.org TO ENSURE YOU ARE USING THE LATEST VERSION.
|
||||
|
||||
This file is part of the FreeRTOS distribution.
|
||||
|
||||
FreeRTOS is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License (version 2) as published by the
|
||||
Free Software Foundation >>!AND MODIFIED BY!<< the FreeRTOS exception.
|
||||
|
||||
***************************************************************************
|
||||
>>! NOTE: The modification to the GPL is included to allow you to !<<
|
||||
>>! distribute a combined work that includes FreeRTOS without being !<<
|
||||
>>! obliged to provide the source code for proprietary components !<<
|
||||
>>! outside of the FreeRTOS kernel. !<<
|
||||
***************************************************************************
|
||||
|
||||
FreeRTOS is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
FOR A PARTICULAR PURPOSE. Full license text is available on the following
|
||||
link: http://www.freertos.org/a00114.html
|
||||
|
||||
***************************************************************************
|
||||
* *
|
||||
* FreeRTOS provides completely free yet professionally developed, *
|
||||
* robust, strictly quality controlled, supported, and cross *
|
||||
* platform software that is more than just the market leader, it *
|
||||
* is the industry's de facto standard. *
|
||||
* *
|
||||
* Help yourself get started quickly while simultaneously helping *
|
||||
* to support the FreeRTOS project by purchasing a FreeRTOS *
|
||||
* tutorial book, reference manual, or both: *
|
||||
* http://www.FreeRTOS.org/Documentation *
|
||||
* *
|
||||
***************************************************************************
|
||||
|
||||
http://www.FreeRTOS.org/FAQHelp.html - Having a problem? Start by reading
|
||||
the FAQ page "My application does not run, what could be wrong?". Have you
|
||||
defined configASSERT()?
|
||||
|
||||
http://www.FreeRTOS.org/support - In return for receiving this top quality
|
||||
embedded software for free we request you assist our global community by
|
||||
participating in the support forum.
|
||||
|
||||
http://www.FreeRTOS.org/training - Investing in training allows your team to
|
||||
be as productive as possible as early as possible. Now you can receive
|
||||
FreeRTOS training directly from Richard Barry, CEO of Real Time Engineers
|
||||
Ltd, and the world's leading authority on the world's leading RTOS.
|
||||
|
||||
http://www.FreeRTOS.org/plus - A selection of FreeRTOS ecosystem products,
|
||||
including FreeRTOS+Trace - an indispensable productivity tool, a DOS
|
||||
compatible FAT file system, and our tiny thread aware UDP/IP stack.
|
||||
|
||||
http://www.FreeRTOS.org/labs - Where new FreeRTOS products go to incubate.
|
||||
Come and try FreeRTOS+TCP, our new open source TCP/IP stack for FreeRTOS.
|
||||
|
||||
http://www.OpenRTOS.com - Real Time Engineers ltd. license FreeRTOS to High
|
||||
Integrity Systems ltd. to sell under the OpenRTOS brand. Low cost OpenRTOS
|
||||
licenses offer ticketed support, indemnification and commercial middleware.
|
||||
|
||||
http://www.SafeRTOS.com - High Integrity Systems also provide a safety
|
||||
engineered and independently SIL3 certified version for use in safety and
|
||||
mission critical applications that require provable dependability.
|
||||
|
||||
1 tab == 4 spaces!
|
||||
*/
|
||||
|
||||
/*
|
||||
* This is a heap allocator that can allocate memory out of several tagged memory regions,
|
||||
* with the regions having differing capabilities. In the ESP32, this is used to
|
||||
* allocate memory for the various applications within the space the MMU allows them
|
||||
* to work with. It can also be used to e.g. allocate memory in DMA-capable regions.
|
||||
*
|
||||
* Usage notes:
|
||||
*
|
||||
* vPortDefineHeapRegions() ***must*** be called before pvPortMalloc().
|
||||
* pvPortMalloc() will be called if any task objects (tasks, queues, event
|
||||
* groups, etc.) are created, therefore vPortDefineHeapRegions() ***must*** be
|
||||
* called before any other objects are defined.
|
||||
*
|
||||
* vPortDefineHeapRegions() takes a single parameter. The parameter is an array
|
||||
* of HeapRegionTagged_t structures. HeapRegion_t is defined in portable.h as
|
||||
*
|
||||
* typedef struct HeapRegion
|
||||
* {
|
||||
* uint8_t *pucStartAddress; << Start address of a block of memory that will be part of the heap.
|
||||
* size_t xSizeInBytes; << Size of the block of memory.
|
||||
* BaseType_t xTag; << Tag
|
||||
* } HeapRegionTagged_t;
|
||||
*
|
||||
* 'Tag' allows you to allocate memory of a certain type. Tag -1 is special;
|
||||
* it basically tells the allocator to ignore this region as if it is not
|
||||
* in the array at all. This facilitates disabling memory regions.
|
||||
*
|
||||
* The array is terminated using a NULL zero sized region definition, and the
|
||||
* memory regions defined in the array ***must*** appear in address order from
|
||||
* low address to high address. So the following is a valid example of how
|
||||
* to use the function.
|
||||
*
|
||||
* HeapRegionTagged_t xHeapRegions[] =
|
||||
* {
|
||||
* { ( uint8_t * ) 0x80000000UL, 0x10000, 1 }, << Defines a block of 0x10000 bytes starting at address 0x80000000, tag 1
|
||||
* { ( uint8_t * ) 0x90000000UL, 0xa0000, 2 }, << Defines a block of 0xa0000 bytes starting at address of 0x90000000, tag 2
|
||||
* { NULL, 0, 0 } << Terminates the array.
|
||||
* };
|
||||
*
|
||||
* vPortDefineHeapRegions( xHeapRegions ); << Pass the array into vPortDefineHeapRegions().
|
||||
*
|
||||
* Note 0x80000000 is the lower address so appears in the array first.
|
||||
*
|
||||
* pvPortMallocTagged can be used to get memory in a tagged region.
|
||||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
|
||||
ToDo:
|
||||
- This malloc implementation can be somewhat slow, especially when it is called multiple times with multiple tags
|
||||
when having low memory issues. ToDo: Make it quicker.
|
||||
-JD
|
||||
*/
|
||||
|
||||
|
||||
#include <stdlib.h>
|
||||
|
||||
/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
|
||||
all the API functions to use the MPU wrappers. That should only be done when
|
||||
task.h is included from an application file. */
|
||||
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
||||
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include "heap_regions_debug.h"
|
||||
|
||||
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE
|
||||
|
||||
#include "heap_regions.h"
|
||||
|
||||
#include "rom/ets_sys.h"
|
||||
|
||||
/* Block sizes must not get too small. */
|
||||
#define heapMINIMUM_BLOCK_SIZE ( ( size_t ) ( uxHeapStructSize << 1 ) )
|
||||
|
||||
/* Assumes 8bit bytes! */
|
||||
#define heapBITS_PER_BYTE ( ( size_t ) 8 )
|
||||
|
||||
/* Define the linked list structure. This is used to link free blocks in order
|
||||
of their memory address. This is optimized for size of the linked list struct
|
||||
and assumes a region is never larger than 16MiB. */
|
||||
#define HEAPREGIONS_MAX_REGIONSIZE (16*1024*1024)
|
||||
typedef struct A_BLOCK_LINK
|
||||
{
|
||||
struct A_BLOCK_LINK *pxNextFreeBlock; /*<< The next free block in the list. */
|
||||
int xBlockSize: 24; /*<< The size of the free block. */
|
||||
int xTag: 7; /*<< Tag of this region */
|
||||
int xAllocated: 1; /*<< 1 if allocated */
|
||||
} BlockLink_t;
|
||||
|
||||
//Mux to protect the memory status data
|
||||
static portMUX_TYPE xMallocMutex = portMUX_INITIALIZER_UNLOCKED;
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/*
|
||||
* Inserts a block of memory that is being freed into the correct position in
|
||||
* the list of free memory blocks. The block being freed will be merged with
|
||||
* the block in front it and/or the block behind it if the memory blocks are
|
||||
* adjacent to each other.
|
||||
*/
|
||||
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert );
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
/* The size of the structure placed at the beginning of each allocated memory
|
||||
block must be correctly byte aligned. */
|
||||
static const uint32_t uxHeapStructSize = ( ( sizeof ( BlockLink_t ) + BLOCK_HEAD_LEN + BLOCK_TAIL_LEN + ( portBYTE_ALIGNMENT - 1 ) ) & ~portBYTE_ALIGNMENT_MASK );
|
||||
|
||||
/* Create a couple of list links to mark the start and end of the list. */
|
||||
static BlockLink_t xStart, *pxEnd = NULL;
|
||||
|
||||
/* Keeps track of the number of free bytes remaining, but says nothing about
|
||||
fragmentation. */
|
||||
static size_t xFreeBytesRemaining[HEAPREGIONS_MAX_TAGCOUNT] = {0};
|
||||
static size_t xMinimumEverFreeBytesRemaining[HEAPREGIONS_MAX_TAGCOUNT] = {0};
|
||||
|
||||
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void *pvPortMallocTagged( size_t xWantedSize, BaseType_t tag )
|
||||
{
|
||||
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
|
||||
void *pvReturn = NULL;
|
||||
|
||||
/* The heap must be initialised before the first call to
|
||||
prvPortMalloc(). */
|
||||
configASSERT( pxEnd );
|
||||
|
||||
taskENTER_CRITICAL(&xMallocMutex);
|
||||
{
|
||||
/* The wanted size is increased so it can contain a BlockLink_t
|
||||
structure in addition to the requested amount of bytes. */
|
||||
if( xWantedSize > 0 )
|
||||
{
|
||||
xWantedSize += uxHeapStructSize;
|
||||
|
||||
/* Ensure that blocks are always aligned to the required number
|
||||
of bytes. */
|
||||
if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
|
||||
{
|
||||
/* Byte alignment required. */
|
||||
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
|
||||
if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining[ tag ] ) )
|
||||
{
|
||||
/* Traverse the list from the start (lowest address) block until
|
||||
one of adequate size is found. */
|
||||
pxPreviousBlock = &xStart;
|
||||
pxBlock = xStart.pxNextFreeBlock;
|
||||
while( ( ( pxBlock->xTag != tag ) || ( pxBlock->xBlockSize < xWantedSize ) ) && ( pxBlock->pxNextFreeBlock != NULL ) )
|
||||
{
|
||||
// ets_printf("Block %x -> %x\n", (uint32_t)pxBlock, (uint32_t)pxBlock->pxNextFreeBlock);
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
{
|
||||
mem_check_block(pxBlock);
|
||||
}
|
||||
#endif
|
||||
|
||||
pxPreviousBlock = pxBlock;
|
||||
pxBlock = pxBlock->pxNextFreeBlock;
|
||||
}
|
||||
|
||||
/* If the end marker was not reached then a block of adequate size
|
||||
was found. */
|
||||
if( pxBlock != pxEnd )
|
||||
{
|
||||
/* Return the memory space pointed to - jumping over the
|
||||
BlockLink_t structure at its start. */
|
||||
pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + uxHeapStructSize - BLOCK_TAIL_LEN - BLOCK_HEAD_LEN);
|
||||
|
||||
/* This block is being returned for use so must be taken out
|
||||
of the list of free blocks. */
|
||||
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
|
||||
|
||||
/* If the block is larger than required it can be split into
|
||||
two. */
|
||||
|
||||
if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
|
||||
{
|
||||
/* This block is to be split into two. Create a new
|
||||
block following the number of bytes requested. The void
|
||||
cast is used to prevent byte alignment warnings from the
|
||||
compiler. */
|
||||
pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize);
|
||||
|
||||
/* Calculate the sizes of two blocks split from the
|
||||
single block. */
|
||||
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
|
||||
pxNewBlockLink->xTag = tag;
|
||||
pxBlock->xBlockSize = xWantedSize;
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
{
|
||||
mem_init_dog(pxNewBlockLink);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* Insert the new block into the list of free blocks. */
|
||||
prvInsertBlockIntoFreeList( ( pxNewBlockLink ) );
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
|
||||
xFreeBytesRemaining[ tag ] -= pxBlock->xBlockSize;
|
||||
|
||||
if( xFreeBytesRemaining[ tag ] < xMinimumEverFreeBytesRemaining[ tag ] )
|
||||
{
|
||||
xMinimumEverFreeBytesRemaining[ tag ] = xFreeBytesRemaining[ tag ];
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
|
||||
/* The block is being returned - it is allocated and owned
|
||||
by the application and has no "next" block. */
|
||||
pxBlock->xAllocated = 1;
|
||||
pxBlock->pxNextFreeBlock = NULL;
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
{
|
||||
mem_init_dog(pxBlock);
|
||||
mem_malloc_block(pxBlock);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
|
||||
traceMALLOC( pvReturn, xWantedSize );
|
||||
}
|
||||
taskEXIT_CRITICAL(&xMallocMutex);
|
||||
|
||||
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
|
||||
{
|
||||
if( pvReturn == NULL )
|
||||
{
|
||||
extern void vApplicationMallocFailedHook( void );
|
||||
vApplicationMallocFailedHook();
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
return pvReturn;
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vPortFreeTagged( void *pv )
|
||||
{
|
||||
uint8_t *puc = ( uint8_t * ) pv;
|
||||
BlockLink_t *pxLink;
|
||||
|
||||
if( pv != NULL )
|
||||
{
|
||||
/* The memory being freed will have an BlockLink_t structure immediately
|
||||
before it. */
|
||||
puc -= (uxHeapStructSize - BLOCK_TAIL_LEN - BLOCK_HEAD_LEN) ;
|
||||
|
||||
/* This casting is to keep the compiler from issuing warnings. */
|
||||
pxLink = ( void * ) puc;
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
{
|
||||
taskENTER_CRITICAL(&xMallocMutex);
|
||||
mem_check_block(pxLink);
|
||||
mem_free_block(pxLink);
|
||||
taskEXIT_CRITICAL(&xMallocMutex);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Check the block is actually allocated. */
|
||||
configASSERT( ( pxLink->xAllocated ) != 0 );
|
||||
configASSERT( pxLink->pxNextFreeBlock == NULL );
|
||||
|
||||
if( pxLink->xAllocated != 0 )
|
||||
{
|
||||
if( pxLink->pxNextFreeBlock == NULL )
|
||||
{
|
||||
/* The block is being returned to the heap - it is no longer
|
||||
allocated. */
|
||||
pxLink->xAllocated = 0;
|
||||
|
||||
taskENTER_CRITICAL(&xMallocMutex);
|
||||
{
|
||||
/* Add this block to the list of free blocks. */
|
||||
xFreeBytesRemaining[ pxLink->xTag ] += pxLink->xBlockSize;
|
||||
traceFREE( pv, pxLink->xBlockSize );
|
||||
prvInsertBlockIntoFreeList( ( ( BlockLink_t * ) pxLink ) );
|
||||
}
|
||||
taskEXIT_CRITICAL(&xMallocMutex);
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
size_t xPortGetFreeHeapSizeTagged( BaseType_t tag )
|
||||
{
|
||||
return xFreeBytesRemaining[ tag ];
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
size_t xPortGetMinimumEverFreeHeapSizeTagged( BaseType_t tag )
|
||||
{
|
||||
return xMinimumEverFreeBytesRemaining[ tag ];
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
static void prvInsertBlockIntoFreeList( BlockLink_t *pxBlockToInsert )
|
||||
{
|
||||
BlockLink_t *pxIterator;
|
||||
uint8_t *puc;
|
||||
|
||||
/* Iterate through the list until a block is found that has a higher address
|
||||
than the block being inserted. */
|
||||
for( pxIterator = &xStart; pxIterator->pxNextFreeBlock < pxBlockToInsert; pxIterator = pxIterator->pxNextFreeBlock )
|
||||
{
|
||||
/* Nothing to do here, just iterate to the right position. */
|
||||
}
|
||||
|
||||
/* Do the block being inserted, and the block it is being inserted after
|
||||
make a contiguous block of memory, and are the tags the same? */
|
||||
puc = ( uint8_t * ) pxIterator;
|
||||
if( ( puc + pxIterator->xBlockSize ) == ( uint8_t * ) pxBlockToInsert && pxBlockToInsert->xTag==pxIterator->xTag)
|
||||
{
|
||||
pxIterator->xBlockSize += pxBlockToInsert->xBlockSize;
|
||||
pxBlockToInsert = pxIterator;
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
|
||||
/* Do the block being inserted, and the block it is being inserted before
|
||||
make a contiguous block of memory, and are the tags the same */
|
||||
puc = ( uint8_t * ) pxBlockToInsert;
|
||||
if( ( puc + pxBlockToInsert->xBlockSize ) == ( uint8_t * ) pxIterator->pxNextFreeBlock && pxBlockToInsert->xTag==pxIterator->pxNextFreeBlock->xTag )
|
||||
{
|
||||
if( pxIterator->pxNextFreeBlock != pxEnd )
|
||||
{
|
||||
/* Form one big block from the two blocks. */
|
||||
pxBlockToInsert->xBlockSize += pxIterator->pxNextFreeBlock->xBlockSize;
|
||||
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock->pxNextFreeBlock;
|
||||
}
|
||||
else
|
||||
{
|
||||
pxBlockToInsert->pxNextFreeBlock = pxEnd;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
pxBlockToInsert->pxNextFreeBlock = pxIterator->pxNextFreeBlock;
|
||||
}
|
||||
|
||||
/* If the block being inserted plugged a gap, so was merged with the block
|
||||
before and the block after, then it's pxNextFreeBlock pointer will have
|
||||
already been set, and should not be set here as that would make it point
|
||||
to itself. */
|
||||
if( pxIterator != pxBlockToInsert )
|
||||
{
|
||||
pxIterator->pxNextFreeBlock = pxBlockToInsert;
|
||||
}
|
||||
else
|
||||
{
|
||||
mtCOVERAGE_TEST_MARKER();
|
||||
}
|
||||
}
|
||||
/*-----------------------------------------------------------*/
|
||||
|
||||
void vPortDefineHeapRegionsTagged( const HeapRegionTagged_t * const pxHeapRegions )
|
||||
{
|
||||
BlockLink_t *pxFirstFreeBlockInRegion = NULL, *pxPreviousFreeBlock;
|
||||
uint8_t *pucAlignedHeap;
|
||||
size_t xTotalRegionSize, xTotalHeapSize = 0;
|
||||
BaseType_t xDefinedRegions = 0, xRegIdx = 0;
|
||||
uint32_t ulAddress;
|
||||
const HeapRegionTagged_t *pxHeapRegion;
|
||||
|
||||
/* Can only call once! */
|
||||
configASSERT( pxEnd == NULL );
|
||||
|
||||
vPortCPUInitializeMutex(&xMallocMutex);
|
||||
|
||||
pxHeapRegion = &( pxHeapRegions[ xRegIdx ] );
|
||||
|
||||
while( pxHeapRegion->xSizeInBytes > 0 )
|
||||
{
|
||||
if ( pxHeapRegion->xTag == -1 ) {
|
||||
/* Move onto the next HeapRegionTagged_t structure. */
|
||||
xRegIdx++;
|
||||
pxHeapRegion = &( pxHeapRegions[ xRegIdx ] );
|
||||
continue;
|
||||
}
|
||||
|
||||
configASSERT(pxHeapRegion->xTag < HEAPREGIONS_MAX_TAGCOUNT);
|
||||
configASSERT(pxHeapRegion->xSizeInBytes < HEAPREGIONS_MAX_REGIONSIZE);
|
||||
xTotalRegionSize = pxHeapRegion->xSizeInBytes;
|
||||
|
||||
/* Ensure the heap region starts on a correctly aligned boundary. */
|
||||
ulAddress = ( uint32_t ) pxHeapRegion->pucStartAddress;
|
||||
if( ( ulAddress & portBYTE_ALIGNMENT_MASK ) != 0 )
|
||||
{
|
||||
ulAddress += ( portBYTE_ALIGNMENT - 1 );
|
||||
ulAddress &= ~portBYTE_ALIGNMENT_MASK;
|
||||
|
||||
/* Adjust the size for the bytes lost to alignment. */
|
||||
xTotalRegionSize -= ulAddress - ( uint32_t ) pxHeapRegion->pucStartAddress;
|
||||
}
|
||||
|
||||
pucAlignedHeap = ( uint8_t * ) ulAddress;
|
||||
|
||||
/* Set xStart if it has not already been set. */
|
||||
if( xDefinedRegions == 0 )
|
||||
{
|
||||
/* xStart is used to hold a pointer to the first item in the list of
|
||||
free blocks. The void cast is used to prevent compiler warnings. */
|
||||
xStart.pxNextFreeBlock = ( BlockLink_t * ) (pucAlignedHeap + BLOCK_HEAD_LEN);
|
||||
xStart.xBlockSize = ( size_t ) 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Should only get here if one region has already been added to the
|
||||
heap. */
|
||||
configASSERT( pxEnd != NULL );
|
||||
|
||||
/* Check blocks are passed in with increasing start addresses. */
|
||||
configASSERT( ulAddress > ( uint32_t ) pxEnd );
|
||||
}
|
||||
|
||||
/* Remember the location of the end marker in the previous region, if
|
||||
any. */
|
||||
pxPreviousFreeBlock = pxEnd;
|
||||
|
||||
/* pxEnd is used to mark the end of the list of free blocks and is
|
||||
inserted at the end of the region space. */
|
||||
ulAddress = ( ( uint32_t ) pucAlignedHeap ) + xTotalRegionSize;
|
||||
ulAddress -= uxHeapStructSize;
|
||||
ulAddress &= ~portBYTE_ALIGNMENT_MASK;
|
||||
pxEnd = ( BlockLink_t * ) (ulAddress + BLOCK_HEAD_LEN);
|
||||
pxEnd->xBlockSize = 0;
|
||||
pxEnd->pxNextFreeBlock = NULL;
|
||||
pxEnd->xTag = -1;
|
||||
|
||||
/* To start with there is a single free block in this region that is
|
||||
sized to take up the entire heap region minus the space taken by the
|
||||
free block structure. */
|
||||
pxFirstFreeBlockInRegion = ( BlockLink_t * ) (pucAlignedHeap + BLOCK_HEAD_LEN);
|
||||
pxFirstFreeBlockInRegion->xBlockSize = ulAddress - ( uint32_t ) pxFirstFreeBlockInRegion + BLOCK_HEAD_LEN;
|
||||
pxFirstFreeBlockInRegion->pxNextFreeBlock = pxEnd;
|
||||
pxFirstFreeBlockInRegion->xTag=pxHeapRegion->xTag;
|
||||
|
||||
/* If this is not the first region that makes up the entire heap space
|
||||
then link the previous region to this region. */
|
||||
if( pxPreviousFreeBlock != NULL )
|
||||
{
|
||||
pxPreviousFreeBlock->pxNextFreeBlock = pxFirstFreeBlockInRegion;
|
||||
}
|
||||
|
||||
xTotalHeapSize += pxFirstFreeBlockInRegion->xBlockSize;
|
||||
xMinimumEverFreeBytesRemaining[ pxHeapRegion->xTag ] += pxFirstFreeBlockInRegion->xBlockSize;
|
||||
xFreeBytesRemaining[ pxHeapRegion->xTag ] += pxFirstFreeBlockInRegion->xBlockSize;
|
||||
|
||||
/* Move onto the next HeapRegionTagged_t structure. */
|
||||
xDefinedRegions++;
|
||||
xRegIdx++;
|
||||
pxHeapRegion = &( pxHeapRegions[ xRegIdx ] );
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
{
|
||||
mem_init_dog(pxFirstFreeBlockInRegion);
|
||||
mem_init_dog(pxEnd);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* Check something was actually defined before it is accessed. */
|
||||
configASSERT( xTotalHeapSize );
|
||||
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
{
|
||||
mem_debug_init(uxHeapStructSize, &xStart, pxEnd, &xMallocMutex);
|
||||
mem_check_all(0);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
@ -1,191 +0,0 @@
|
||||
#include "heap_regions_debug.h"
|
||||
#include "FreeRTOS.h"
|
||||
#include "task.h"
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <string.h>
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
|
||||
static os_block_t g_malloc_list, *g_free_list=NULL, *g_end;
|
||||
static size_t g_heap_struct_size;
|
||||
static mem_dbg_ctl_t g_mem_dbg;
|
||||
char g_mem_print = 0;
|
||||
static portMUX_TYPE *g_malloc_mutex = NULL;
|
||||
#define MEM_DEBUG(...)
|
||||
|
||||
void mem_debug_init(size_t size, void *start, void *end, portMUX_TYPE *mutex)
|
||||
{
|
||||
MEM_DEBUG("size=%d start=%p end=%p mutex=%p%x\n", size, start, end, mutex);
|
||||
memset(&g_mem_dbg, 0, sizeof(g_mem_dbg));
|
||||
memset(&g_malloc_list, 0, sizeof(g_malloc_list));
|
||||
g_malloc_mutex = mutex;
|
||||
g_heap_struct_size = size;
|
||||
g_free_list = start;
|
||||
g_end = end;
|
||||
}
|
||||
|
||||
void mem_debug_push(char type, void *addr)
|
||||
{
|
||||
os_block_t *b = (os_block_t*)addr;
|
||||
debug_block_t *debug_b = DEBUG_BLOCK(b);
|
||||
|
||||
MEM_DEBUG("push type=%d addr=%p\n", type, addr);
|
||||
if (g_mem_print){
|
||||
if (type == DEBUG_TYPE_MALLOC){
|
||||
ets_printf("task=%s t=%s s=%u a=%p\n", debug_b->head.task?debug_b->head.task:"", type==DEBUG_TYPE_MALLOC?"m":"f", b->size, addr);
|
||||
} else {
|
||||
ets_printf("task=%s t=%s s=%u a=%p\n", debug_b->head.task?debug_b->head.task:"", type==DEBUG_TYPE_MALLOC?"m":"f", b->size, addr);
|
||||
}
|
||||
} else {
|
||||
mem_dbg_info_t *info = &g_mem_dbg.info[g_mem_dbg.cnt%DEBUG_MAX_INFO_NUM];
|
||||
|
||||
info->addr = addr;
|
||||
info->type = type;
|
||||
info->time = g_mem_dbg.cnt;
|
||||
g_mem_dbg.cnt++;
|
||||
}
|
||||
}
|
||||
|
||||
void mem_debug_malloc_show(void)
|
||||
{
|
||||
os_block_t *b = g_malloc_list.next;
|
||||
debug_block_t *d;
|
||||
|
||||
taskENTER_CRITICAL(g_malloc_mutex);
|
||||
while (b){
|
||||
d = DEBUG_BLOCK(b);
|
||||
d->head.task[3] = '\0';
|
||||
ets_printf("t=%s s=%u a=%p\n", d->head.task?d->head.task:"", b->size, b);
|
||||
b = b->next;
|
||||
}
|
||||
taskEXIT_CRITICAL(g_malloc_mutex);
|
||||
}
|
||||
|
||||
void mem_debug_show(void)
|
||||
{
|
||||
uint32_t i;
|
||||
|
||||
if (!g_mem_print) return;
|
||||
|
||||
for (i=0; i<DEBUG_MAX_INFO_NUM; i++){
|
||||
ets_printf("%u %s %p\n", g_mem_dbg.info[i].time, g_mem_dbg.info[i].type == DEBUG_TYPE_FREE?"f":"m", g_mem_dbg.info[i].addr);
|
||||
}
|
||||
}
|
||||
|
||||
void mem_check_block(void* data)
|
||||
{
|
||||
debug_block_t *b = DEBUG_BLOCK(data);
|
||||
|
||||
MEM_DEBUG("check block data=%p\n", data);
|
||||
if (data && (HEAD_DOG(b) == DEBUG_DOG_VALUE)){
|
||||
if (TAIL_DOG(b) != DEBUG_DOG_VALUE){
|
||||
ets_printf("f task=%s a=%p h=%08x t=%08x\n", b->head.task?b->head.task:"", b, HEAD_DOG(b), TAIL_DOG(b));
|
||||
DOG_ASSERT();
|
||||
}
|
||||
} else {
|
||||
ets_printf("f task=%s a=%p h=%08x\n", b->head.task?b->head.task:"", b, HEAD_DOG(b));\
|
||||
DOG_ASSERT();
|
||||
}
|
||||
}
|
||||
|
||||
void mem_init_dog(void *data)
|
||||
{
|
||||
debug_block_t *b = DEBUG_BLOCK(data);
|
||||
xTaskHandle task;
|
||||
|
||||
MEM_DEBUG("init dog, data=%p debug_block=%p block_size=%x\n", data, b, b->os_block.size);
|
||||
if (!data) return;
|
||||
#if (INCLUDE_pcTaskGetTaskName == 1)
|
||||
task = xTaskGetCurrentTaskHandle();
|
||||
if (task){
|
||||
strncpy(b->head.task, pcTaskGetTaskName(task), 3);
|
||||
b->head.task[3] = '\0';
|
||||
}
|
||||
#else
|
||||
b->head.task = '\0';
|
||||
#endif
|
||||
HEAD_DOG(b) = DEBUG_DOG_VALUE;
|
||||
TAIL_DOG(b) = DEBUG_DOG_VALUE;
|
||||
}
|
||||
|
||||
void mem_check_all(void* pv)
|
||||
{
|
||||
os_block_t *b;
|
||||
|
||||
if (pv){
|
||||
char *puc = (char*)(pv);
|
||||
os_block_t *b;
|
||||
puc -= (g_heap_struct_size - BLOCK_TAIL_LEN - BLOCK_HEAD_LEN);
|
||||
b = (os_block_t*)puc;
|
||||
mem_check_block(b);
|
||||
}
|
||||
|
||||
taskENTER_CRITICAL(g_malloc_mutex);
|
||||
b = g_free_list->next;
|
||||
while(b && b != g_end){
|
||||
mem_check_block(b);
|
||||
ets_printf("check b=%p size=%d ok\n", b, b->size);
|
||||
b = b->next;
|
||||
}
|
||||
taskEXIT_CRITICAL(g_malloc_mutex);
|
||||
}
|
||||
|
||||
void mem_malloc_show(void)
|
||||
{
|
||||
os_block_t *b = g_malloc_list.next;
|
||||
debug_block_t *debug_b;
|
||||
|
||||
while (b){
|
||||
debug_b = DEBUG_BLOCK(b);
|
||||
ets_printf("%s %p %p %u\n", debug_b->head.task, debug_b, b, b->size);
|
||||
b = b->next;
|
||||
}
|
||||
}
|
||||
|
||||
void mem_malloc_block(void *data)
|
||||
{
|
||||
os_block_t *b = (os_block_t*)data;
|
||||
|
||||
MEM_DEBUG("mem malloc block data=%p, size=%u\n", data, b->size);
|
||||
mem_debug_push(DEBUG_TYPE_MALLOC, data);
|
||||
|
||||
if (b){
|
||||
b->next = g_malloc_list.next;
|
||||
g_malloc_list.next = b;
|
||||
}
|
||||
}
|
||||
|
||||
void mem_free_block(void *data)
|
||||
{
|
||||
os_block_t *del = (os_block_t*)data;
|
||||
os_block_t *b = g_malloc_list.next;
|
||||
os_block_t *pre = &g_malloc_list;
|
||||
debug_block_t *debug_b;
|
||||
|
||||
MEM_DEBUG("mem free block data=%p, size=%d\n", data, del->size);
|
||||
mem_debug_push(DEBUG_TYPE_FREE, data);
|
||||
|
||||
if (!del) {
|
||||
return;
|
||||
}
|
||||
|
||||
while (b){
|
||||
if ( (del == b) ){
|
||||
pre->next = b->next;
|
||||
b->next = NULL;
|
||||
return;
|
||||
}
|
||||
pre = b;
|
||||
b = b->next;
|
||||
}
|
||||
|
||||
debug_b = DEBUG_BLOCK(del);
|
||||
ets_printf("%s %p %p %u already free\n", debug_b->head.task, debug_b, del, del->size);
|
||||
mem_malloc_show();
|
||||
abort();
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -15,9 +15,7 @@
|
||||
#define _HEAP_REGIONS_H
|
||||
|
||||
#include "freertos/FreeRTOS.h"
|
||||
|
||||
/* The maximum amount of tags in use */
|
||||
#define HEAPREGIONS_MAX_TAGCOUNT 16
|
||||
#include <mumm_malloc.h>
|
||||
|
||||
/**
|
||||
* @brief Structure to define a memory region
|
||||
@ -28,6 +26,7 @@ typedef struct HeapRegionTagged
|
||||
size_t xSizeInBytes; ///< Size of the region
|
||||
BaseType_t xTag; ///< Tag for the region
|
||||
uint32_t xExecAddr; ///< If non-zero, indicates the region also has an alias in IRAM.
|
||||
mumm_heap_handle heap;
|
||||
} HeapRegionTagged_t;
|
||||
|
||||
/**
|
||||
@ -93,4 +92,4 @@ size_t xPortGetMinimumEverFreeHeapSizeTagged( BaseType_t tag );
|
||||
size_t xPortGetFreeHeapSizeTagged( BaseType_t tag );
|
||||
|
||||
|
||||
#endif
|
||||
#endif
|
||||
|
@ -1,79 +0,0 @@
|
||||
#ifndef _HEAP_REGION_DEBUG_H
|
||||
#define _HEAP_REGION_DEBUG_H
|
||||
|
||||
#include "FreeRTOS.h"
|
||||
|
||||
#if (configENABLE_MEMORY_DEBUG == 1)
|
||||
|
||||
#define DEBUG_DOG_VALUE 0x1a2b3c4d
|
||||
#define DEBUG_MAX_INFO_NUM 20
|
||||
#define DEBUG_TYPE_MALLOC 1
|
||||
#define DEBUG_TYPE_FREE 2
|
||||
|
||||
typedef struct {
|
||||
unsigned int dog;
|
||||
char task[4];
|
||||
unsigned int pc;
|
||||
}block_head_t;
|
||||
|
||||
typedef struct {
|
||||
unsigned int dog;
|
||||
}block_tail_t;
|
||||
|
||||
/* Please keep this definition same as BlockLink_t */
|
||||
typedef struct _os_block_t {
|
||||
struct _os_block_t *next; /*<< The next free block in the list. */
|
||||
int size: 24; /*<< The size of the free block. */
|
||||
int xtag: 7; /*<< Tag of this region */
|
||||
int xAllocated: 1; /*<< 1 if allocated */
|
||||
}os_block_t;
|
||||
|
||||
typedef struct {
|
||||
block_head_t head;
|
||||
os_block_t os_block;
|
||||
}debug_block_t;
|
||||
|
||||
typedef struct _mem_dbg_info{
|
||||
void *addr;
|
||||
char *task;
|
||||
uint32_t pc;
|
||||
uint32_t time;
|
||||
uint8_t type;
|
||||
}mem_dbg_info_t;
|
||||
|
||||
typedef struct _mem_dbg_ctl{
|
||||
mem_dbg_info_t info[DEBUG_MAX_INFO_NUM];
|
||||
uint32_t cnt;
|
||||
}mem_dbg_ctl_t;
|
||||
|
||||
#define BLOCK_HEAD_LEN sizeof(block_head_t)
|
||||
#define BLOCK_TAIL_LEN sizeof(block_tail_t)
|
||||
#define OS_BLOCK(_b) ((os_block_t*)((debug_block_t*)((char*)(_b) + BLOCK_HEAD_LEN)))
|
||||
#define DEBUG_BLOCK(_b) ((debug_block_t*)((char*)(_b) - BLOCK_HEAD_LEN))
|
||||
#define HEAD_DOG(_b) ((_b)->head.dog)
|
||||
#define TAIL_DOG(_b) (*(unsigned int*)((char*)(_b) + (((_b)->os_block.size ) - BLOCK_TAIL_LEN)))
|
||||
|
||||
#define DOG_ASSERT()\
|
||||
{\
|
||||
mem_debug_show();\
|
||||
abort();\
|
||||
}
|
||||
|
||||
extern void mem_check_block(void * data);
|
||||
extern void mem_init_dog(void *data);
|
||||
extern void mem_debug_init(size_t size, void *start, void *end, portMUX_TYPE *mutex);
|
||||
extern void mem_malloc_block(void *data);
|
||||
extern void mem_free_block(void *data);
|
||||
extern void mem_check_all(void* pv);
|
||||
|
||||
#else
|
||||
|
||||
#define mem_check_block(...)
|
||||
#define mem_init_dog(...)
|
||||
|
||||
#define BLOCK_HEAD_LEN 0
|
||||
#define BLOCK_TAIL_LEN 0
|
||||
|
||||
#endif
|
||||
|
||||
#endif
|
3
components/heap/component.mk
Normal file
3
components/heap/component.mk
Normal file
@ -0,0 +1,3 @@
|
||||
#
|
||||
# Component Makefile
|
||||
#
|
16
components/heap/dbglog/dbglog.h
Normal file
16
components/heap/dbglog/dbglog.h
Normal file
@ -0,0 +1,16 @@
|
||||
/* mumm_malloc-compatible DBGLOG API, which maps to esp_log
|
||||
primitives */
|
||||
#pragma once
|
||||
|
||||
#include "esp_log.h"
|
||||
|
||||
static const char *TAG = "mumm_malloc";
|
||||
|
||||
#define DBGLOG_TRACE(format, ...) ESP_EARLY_LOGV(TAG, format, ## __VA_ARGS__)
|
||||
#define DBGLOG_DEBUG(format, ...) ESP_EARLY_LOGD(TAG, format, ## __VA_ARGS__)
|
||||
#define DBGLOG_CRITICAL(format, ...) ESP_EARLY_LOGW(TAG, format, ## __VA_ARGS__)
|
||||
#define DBGLOG_ERROR(format, ...) ESP_EARLY_LOGE(TAG, format, ## __VA_ARGS__)
|
||||
#define DBGLOG_WARNING(format, ...) ESP_EARLY_LOGW(TAG, format, ## __VA_ARGS__)
|
||||
|
||||
/* DBGLOG_FORCE in mumm_malloc always prints, but in this case we use ESP_LOGI */
|
||||
#define DBGLOG_FORCE(force, format, ...) do { if(force) { ESP_LOGI(TAG, format, ## __VA_ARGS__); } } while(0)
|
@ -11,25 +11,26 @@
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <rom/ets_sys.h>
|
||||
|
||||
#include <freertos/heap_regions.h>
|
||||
|
||||
#include "esp_heap_alloc_caps.h"
|
||||
#include "spiram.h"
|
||||
#include "esp_log.h"
|
||||
#include <stdbool.h>
|
||||
#include <assert.h>
|
||||
#include "esp_heap_alloc_caps.h"
|
||||
#include "esp_log.h"
|
||||
#include "multi_heap.h"
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/heap_regions.h> /* TODO remove this */
|
||||
|
||||
/* The maximum amount of tags in use */
|
||||
#define HEAPREGIONS_MAX_TAGCOUNT 16
|
||||
|
||||
static const char* TAG = "heap_alloc_caps";
|
||||
|
||||
/*
|
||||
This file, combined with a region allocator that supports tags, solves the problem that the ESP32 has RAM that's
|
||||
slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
|
||||
some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible
|
||||
memory allocation possible, this code makes it possible to request memory that has certain capabilities. The
|
||||
code will then use its knowledge of how the memory is configured along with a priority scheme to allocate that
|
||||
memory in the most sane way possible. This should optimize the amount of RAM accessible to the code without
|
||||
hardwiring addresses.
|
||||
This file, combined with a region allocator that supports multiple heaps, solves the problem that the ESP32 has RAM
|
||||
that's slightly heterogeneous. Some RAM can be byte-accessed, some allows only 32-bit accesses, some can execute memory,
|
||||
some can be remapped by the MMU to only be accessed by a certain PID etc. In order to allow the most flexible memory
|
||||
allocation possible, this code makes it possible to request memory that has certain capabilities. The code will then use
|
||||
its knowledge of how the memory is configured along with a priority scheme to allocate that memory in the most sane way
|
||||
possible. This should optimize the amount of RAM accessible to the code without hardwiring addresses.
|
||||
*/
|
||||
|
||||
|
||||
@ -71,6 +72,16 @@ static const tag_desc_t tag_desc[]={
|
||||
{ "", { MALLOC_CAP_INVALID, MALLOC_CAP_INVALID, MALLOC_CAP_INVALID }, false} //End
|
||||
};
|
||||
|
||||
typedef struct
|
||||
{
|
||||
uint8_t *pucStartAddress; ///< Start address of the region
|
||||
size_t xSizeInBytes; ///< Size of the region
|
||||
size_t xTag; ///< Tag for the region
|
||||
uint32_t xExecAddr; ///< If non-zero, indicates the region also has an alias in IRAM.
|
||||
multi_heap_handle heap;
|
||||
portMUX_TYPE heap_mux;
|
||||
} heap_t;
|
||||
|
||||
/*
|
||||
Region descriptors. These describe all regions of memory available, and tag them according to the
|
||||
capabilities the hardware has. This array is not marked constant; the initialization code may want to
|
||||
@ -90,63 +101,74 @@ be sorted from low to high start address.
|
||||
|
||||
This array is *NOT* const because it gets modified depending on what pools are/aren't available.
|
||||
*/
|
||||
static HeapRegionTagged_t regions[]={
|
||||
{ (uint8_t *)0x3F800000, 0x20000, 15, 0}, //SPI SRAM, if available
|
||||
{ (uint8_t *)0x3FFAE000, 0x2000, 0, 0}, //pool 16 <- used for rom code
|
||||
{ (uint8_t *)0x3FFB0000, 0x8000, 0, 0}, //pool 15 <- if BT is enabled, used as BT HW shared memory
|
||||
{ (uint8_t *)0x3FFB8000, 0x8000, 0, 0}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
|
||||
{ (uint8_t *)0x3FFC0000, 0x2000, 0, 0}, //pool 10-13, mmu page 0
|
||||
{ (uint8_t *)0x3FFC2000, 0x2000, 0, 0}, //pool 10-13, mmu page 1
|
||||
{ (uint8_t *)0x3FFC4000, 0x2000, 0, 0}, //pool 10-13, mmu page 2
|
||||
{ (uint8_t *)0x3FFC6000, 0x2000, 0, 0}, //pool 10-13, mmu page 3
|
||||
{ (uint8_t *)0x3FFC8000, 0x2000, 0, 0}, //pool 10-13, mmu page 4
|
||||
{ (uint8_t *)0x3FFCA000, 0x2000, 0, 0}, //pool 10-13, mmu page 5
|
||||
{ (uint8_t *)0x3FFCC000, 0x2000, 0, 0}, //pool 10-13, mmu page 6
|
||||
{ (uint8_t *)0x3FFCE000, 0x2000, 0, 0}, //pool 10-13, mmu page 7
|
||||
{ (uint8_t *)0x3FFD0000, 0x2000, 0, 0}, //pool 10-13, mmu page 8
|
||||
{ (uint8_t *)0x3FFD2000, 0x2000, 0, 0}, //pool 10-13, mmu page 9
|
||||
{ (uint8_t *)0x3FFD4000, 0x2000, 0, 0}, //pool 10-13, mmu page 10
|
||||
{ (uint8_t *)0x3FFD6000, 0x2000, 0, 0}, //pool 10-13, mmu page 11
|
||||
{ (uint8_t *)0x3FFD8000, 0x2000, 0, 0}, //pool 10-13, mmu page 12
|
||||
{ (uint8_t *)0x3FFDA000, 0x2000, 0, 0}, //pool 10-13, mmu page 13
|
||||
{ (uint8_t *)0x3FFDC000, 0x2000, 0, 0}, //pool 10-13, mmu page 14
|
||||
{ (uint8_t *)0x3FFDE000, 0x2000, 0, 0}, //pool 10-13, mmu page 15
|
||||
{ (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000}, //pool 9 blk 1
|
||||
{ (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000}, //pool 9 blk 0
|
||||
{ (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000}, //pool 8 <- can be remapped to ROM, used for MAC dump
|
||||
{ (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000}, //pool 7 <- can be used for MAC dump
|
||||
{ (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000}, //pool 6 blk 1 <- can be used as trace memory
|
||||
{ (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000}, //pool 6 blk 0 <- can be used as trace memory
|
||||
{ (uint8_t *)0x40070000, 0x8000, 2, 0}, //pool 0
|
||||
{ (uint8_t *)0x40078000, 0x8000, 2, 0}, //pool 1
|
||||
{ (uint8_t *)0x40080000, 0x2000, 2, 0}, //pool 2-5, mmu page 0
|
||||
{ (uint8_t *)0x40082000, 0x2000, 2, 0}, //pool 2-5, mmu page 1
|
||||
{ (uint8_t *)0x40084000, 0x2000, 2, 0}, //pool 2-5, mmu page 2
|
||||
{ (uint8_t *)0x40086000, 0x2000, 2, 0}, //pool 2-5, mmu page 3
|
||||
{ (uint8_t *)0x40088000, 0x2000, 2, 0}, //pool 2-5, mmu page 4
|
||||
{ (uint8_t *)0x4008A000, 0x2000, 2, 0}, //pool 2-5, mmu page 5
|
||||
{ (uint8_t *)0x4008C000, 0x2000, 2, 0}, //pool 2-5, mmu page 6
|
||||
{ (uint8_t *)0x4008E000, 0x2000, 2, 0}, //pool 2-5, mmu page 7
|
||||
{ (uint8_t *)0x40090000, 0x2000, 2, 0}, //pool 2-5, mmu page 8
|
||||
{ (uint8_t *)0x40092000, 0x2000, 2, 0}, //pool 2-5, mmu page 9
|
||||
{ (uint8_t *)0x40094000, 0x2000, 2, 0}, //pool 2-5, mmu page 10
|
||||
{ (uint8_t *)0x40096000, 0x2000, 2, 0}, //pool 2-5, mmu page 11
|
||||
{ (uint8_t *)0x40098000, 0x2000, 2, 0}, //pool 2-5, mmu page 12
|
||||
{ (uint8_t *)0x4009A000, 0x2000, 2, 0}, //pool 2-5, mmu page 13
|
||||
{ (uint8_t *)0x4009C000, 0x2000, 2, 0}, //pool 2-5, mmu page 14
|
||||
{ (uint8_t *)0x4009E000, 0x2000, 2, 0}, //pool 2-5, mmu page 15
|
||||
{ NULL, 0, 0, 0} //end
|
||||
static heap_t regions[]={
|
||||
{ (uint8_t *)0x3F800000, 0x20000, 15, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //SPI SRAM, if available
|
||||
{ (uint8_t *)0x3FFAE000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 16 <- used for rom code
|
||||
{ (uint8_t *)0x3FFB0000, 0x8000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 15 <- if BT is enabled, used as BT HW shared memory
|
||||
{ (uint8_t *)0x3FFB8000, 0x8000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 14 <- if BT is enabled, used data memory for BT ROM functions.
|
||||
{ (uint8_t *)0x3FFC0000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 0
|
||||
{ (uint8_t *)0x3FFC2000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 1
|
||||
{ (uint8_t *)0x3FFC4000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 2
|
||||
{ (uint8_t *)0x3FFC6000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 3
|
||||
{ (uint8_t *)0x3FFC8000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 4
|
||||
{ (uint8_t *)0x3FFCA000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 5
|
||||
{ (uint8_t *)0x3FFCC000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 6
|
||||
{ (uint8_t *)0x3FFCE000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 7
|
||||
{ (uint8_t *)0x3FFD0000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 8
|
||||
{ (uint8_t *)0x3FFD2000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 9
|
||||
{ (uint8_t *)0x3FFD4000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 10
|
||||
{ (uint8_t *)0x3FFD6000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 11
|
||||
{ (uint8_t *)0x3FFD8000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 12
|
||||
{ (uint8_t *)0x3FFDA000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 13
|
||||
{ (uint8_t *)0x3FFDC000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 14
|
||||
{ (uint8_t *)0x3FFDE000, 0x2000, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 10-13, mmu page 15
|
||||
{ (uint8_t *)0x3FFE0000, 0x4000, 1, 0x400BC000, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 9 blk 1
|
||||
{ (uint8_t *)0x3FFE4000, 0x4000, 1, 0x400B8000, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 9 blk 0
|
||||
{ (uint8_t *)0x3FFE8000, 0x8000, 1, 0x400B0000, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 8 <- can be remapped to ROM, used for MAC dump
|
||||
{ (uint8_t *)0x3FFF0000, 0x8000, 1, 0x400A8000, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 7 <- can be used for MAC dump
|
||||
{ (uint8_t *)0x3FFF8000, 0x4000, 1, 0x400A4000, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 6 blk 1 <- can be used as trace memory
|
||||
{ (uint8_t *)0x3FFFC000, 0x4000, 1, 0x400A0000, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 6 blk 0 <- can be used as trace memory
|
||||
{ (uint8_t *)0x40070000, 0x8000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 0
|
||||
{ (uint8_t *)0x40078000, 0x8000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 1
|
||||
{ (uint8_t *)0x40080000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 0
|
||||
{ (uint8_t *)0x40082000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 1
|
||||
{ (uint8_t *)0x40084000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 2
|
||||
{ (uint8_t *)0x40086000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 3
|
||||
{ (uint8_t *)0x40088000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 4
|
||||
{ (uint8_t *)0x4008A000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 5
|
||||
{ (uint8_t *)0x4008C000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 6
|
||||
{ (uint8_t *)0x4008E000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 7
|
||||
{ (uint8_t *)0x40090000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 8
|
||||
{ (uint8_t *)0x40092000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 9
|
||||
{ (uint8_t *)0x40094000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 10
|
||||
{ (uint8_t *)0x40096000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 11
|
||||
{ (uint8_t *)0x40098000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 12
|
||||
{ (uint8_t *)0x4009A000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 13
|
||||
{ (uint8_t *)0x4009C000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 14
|
||||
{ (uint8_t *)0x4009E000, 0x2000, 2, 0, 0, portMUX_INITIALIZER_UNLOCKED}, //pool 2-5, mmu page 15
|
||||
{ NULL, 0, 0, 0, 0, portMUX_INITIALIZER_UNLOCKED} //end
|
||||
};
|
||||
|
||||
/* For the startup code, the stacks live in memory tagged by this tag. Hence, we only enable allocating from this tag
|
||||
#define NUM_REGIONS (sizeof(regions)/sizeof(heap_t))
|
||||
|
||||
/* For the startup code, the stacks live in memory tagged by this tag. Hence, we only enable allocating from this tag
|
||||
once FreeRTOS has started up completely. */
|
||||
#define NONOS_STACK_TAG 1
|
||||
|
||||
static bool nonos_stack_in_use=true;
|
||||
static void register_heap_region(heap_t *region)
|
||||
{
|
||||
region->heap = multi_heap_register(region->pucStartAddress, region->xSizeInBytes, &(region->heap_mux));
|
||||
ESP_EARLY_LOGI(TAG, "new heap @ %p", region->heap);
|
||||
assert(region->heap);
|
||||
}
|
||||
|
||||
void heap_alloc_enable_nonos_stack_tag()
|
||||
{
|
||||
nonos_stack_in_use=false;
|
||||
for (int i = 0; regions[i].xSizeInBytes!=0; i++) {
|
||||
if (regions[i].xTag == NONOS_STACK_TAG) {
|
||||
register_heap_region(®ions[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//Modify regions array to disable the given range of memory.
|
||||
@ -259,13 +281,19 @@ void heap_alloc_caps_init() {
|
||||
|
||||
ESP_EARLY_LOGI(TAG, "Initializing. RAM available for dynamic allocation:");
|
||||
for (i=0; regions[i].xSizeInBytes!=0; i++) {
|
||||
if (regions[i].xTag != -1) {
|
||||
ESP_EARLY_LOGI(TAG, "At %08X len %08X (%d KiB): %s",
|
||||
(int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xSizeInBytes/1024, tag_desc[regions[i].xTag].name);
|
||||
if (regions[i].xTag == -1) {
|
||||
continue;
|
||||
}
|
||||
|
||||
ESP_EARLY_LOGI(TAG, "At %08X len %08X (%d KiB): %s",
|
||||
(int)regions[i].pucStartAddress, regions[i].xSizeInBytes, regions[i].xSizeInBytes/1024, tag_desc[regions[i].xTag].name);
|
||||
|
||||
if (regions[i].xTag == NONOS_STACK_TAG) {
|
||||
continue; /* Will be registered when OS scheduler starts */
|
||||
}
|
||||
|
||||
register_heap_region(®ions[i]);
|
||||
}
|
||||
//Initialize the malloc implementation.
|
||||
vPortDefineHeapRegionsTagged( regions );
|
||||
}
|
||||
|
||||
//First and last words of the D/IRAM region, for both the DRAM address as well as the IRAM alias.
|
||||
@ -306,6 +334,25 @@ void *pvPortMalloc( size_t xWantedSize )
|
||||
return pvPortMallocCaps( xWantedSize, MALLOC_CAP_8BIT );
|
||||
}
|
||||
|
||||
void vPortFreeTagged( void *pv )
|
||||
{
|
||||
intptr_t p = (intptr_t)pv;
|
||||
if (pv == NULL) {
|
||||
return;
|
||||
}
|
||||
for (size_t i = 0; regions[i].xSizeInBytes!=0; i++) {
|
||||
if (regions[i].xTag == -1) {
|
||||
continue;
|
||||
}
|
||||
intptr_t start = (intptr_t)regions[i].pucStartAddress;
|
||||
if(p >= start && p < start + regions[i].xSizeInBytes) {
|
||||
multi_free(regions[i].heap, pv);
|
||||
return;
|
||||
}
|
||||
}
|
||||
assert(false && "free() target pointer is outside heap areas");
|
||||
}
|
||||
|
||||
/*
|
||||
Standard free() implementation. Will pass memory on to the allocator unless it's an IRAM address where the
|
||||
actual meory is allocated in DRAM, it will convert to the DRAM address then.
|
||||
@ -323,6 +370,22 @@ void vPortFree( void *pv )
|
||||
return vPortFreeTagged(pv);
|
||||
}
|
||||
|
||||
void *pvPortMallocTagged( size_t xWantedSize, BaseType_t tag )
|
||||
{
|
||||
if (tag == -1) {
|
||||
return NULL;
|
||||
}
|
||||
for (size_t i = 0; i < NUM_REGIONS; i++) {
|
||||
if (regions[i].xTag == tag && regions[i].heap != NULL) {
|
||||
void * r = multi_malloc(regions[i].heap, xWantedSize);
|
||||
if (r != NULL) {
|
||||
return r;
|
||||
}
|
||||
}
|
||||
}
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/*
|
||||
Routine to allocate a bit of memory with certain capabilities. caps is a bitfield of MALLOC_CAP_* bits.
|
||||
*/
|
||||
@ -346,10 +409,6 @@ void *pvPortMallocCaps( size_t xWantedSize, uint32_t caps )
|
||||
for (prio=0; prio<NO_PRIOS; prio++) {
|
||||
//Iterate over tag descriptors for this priority
|
||||
for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
|
||||
if (nonos_stack_in_use && tag == NONOS_STACK_TAG) {
|
||||
//Non-os stack lives here and is still in use. Don't alloc here.
|
||||
continue;
|
||||
}
|
||||
if ((tag_desc[tag].prio[prio]&caps)!=0) {
|
||||
//Tag has at least one of the caps requested. If caps has other bits set that this prio
|
||||
//doesn't cover, see if they're available in other prios.
|
||||
@ -381,6 +440,29 @@ void *pvPortMallocCaps( size_t xWantedSize, uint32_t caps )
|
||||
}
|
||||
|
||||
|
||||
size_t xPortGetFreeHeapSizeTagged(BaseType_t tag)
|
||||
{
|
||||
size_t ret = 0;
|
||||
for (size_t i = 0; regions[i].xSizeInBytes!=0; i++) {
|
||||
if (regions[i].xTag == tag && regions[i].heap != NULL) {
|
||||
ret += multi_free_heap_size(regions[i].heap);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
size_t xPortGetMinimumEverFreeHeapSizeTagged(BaseType_t tag)
|
||||
{
|
||||
size_t ret = 0;
|
||||
for (size_t i = 0; regions[i].xSizeInBytes!=0; i++) {
|
||||
if (regions[i].xTag == tag && regions[i].heap != NULL) {
|
||||
ret += multi_minimum_free_heap_size(regions[i].heap);
|
||||
}
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
size_t xPortGetFreeHeapSizeCaps( uint32_t caps )
|
||||
{
|
||||
int prio;
|
||||
@ -402,6 +484,7 @@ size_t xPortGetMinimumEverFreeHeapSizeCaps( uint32_t caps )
|
||||
int prio;
|
||||
int tag;
|
||||
size_t ret=0;
|
||||
|
||||
for (prio=0; prio<NO_PRIOS; prio++) {
|
||||
//Iterate over tag descriptors for this priority
|
||||
for (tag=0; tag_desc[tag].prio[prio]!=MALLOC_CAP_INVALID; tag++) {
|
@ -18,6 +18,9 @@
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
/**
|
||||
* @brief Flags to indicate the capabilities of the various memory systems
|
||||
*/
|
168
components/heap/include/multi_heap.h
Normal file
168
components/heap/include/multi_heap.h
Normal file
@ -0,0 +1,168 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
/* multi_heap is a heap implementation for handling multiple
|
||||
heterogenous heaps in a single program.
|
||||
|
||||
Any contiguous block of memory can be registered as a heap.
|
||||
*/
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
/** @brief Opaque handle to a registered heap */
|
||||
typedef struct multi_heap_info *multi_heap_handle_t;
|
||||
|
||||
/** @brief malloc() a buffer in a given heap
|
||||
*
|
||||
* Semantics are the same as standard malloc(), only the returned buffer will be allocated in the specified heap.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @param size Size of desired buffer.
|
||||
*
|
||||
* @return Pointer to new memory, or NULL if allocation fails.
|
||||
*/
|
||||
void *multi_heap_malloc(multi_heap_handle_t heap, size_t size);
|
||||
|
||||
/** @brief free() a buffer in a given heap.
|
||||
*
|
||||
* Semantics are the same as standard free(), only the argument 'p' must be NULL or have been allocated in the specified heap.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @param p NULL, or a pointer previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
|
||||
*/
|
||||
void multi_heap_free(multi_heap_handle_t heap, void *p);
|
||||
|
||||
/** @brief realloc() a buffer in a given heap.
|
||||
*
|
||||
* Semantics are the same as standard realloc(), only the argument 'p' must be NULL or have been allocated in the specified heap.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @param p NULL, or a pointer previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
|
||||
* @param size Desired new size for buffer.
|
||||
*
|
||||
* @return New buffer of 'size' containing contents of 'p', or NULL if reallocation failed.
|
||||
*/
|
||||
void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size);
|
||||
|
||||
|
||||
/** @brief Return the size that a particular pointer was allocated with.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @param p Pointer, must have been previously returned from multi_heap_malloc() or multi_heap_realloc() for the same heap.
|
||||
*
|
||||
* @return Size of the memory allocated at this block. May be more than the original size argument, due
|
||||
* to padding and minimum block sizes.
|
||||
*/
|
||||
size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p);
|
||||
|
||||
|
||||
/** @brief Register a new heap for use
|
||||
*
|
||||
* This function initialises a heap at the specified address, and returns a handle for future heap operations.
|
||||
*
|
||||
* There is no equivalent function for deregistering a heap - if all blocks in the heap are free, you can immediately start using the memory for other purposes.
|
||||
*
|
||||
* @param start Start address of the memory to use for a new heap.
|
||||
* @param size Size (in bytes) of the new heap.
|
||||
*
|
||||
* @return Handle of a new heap ready for use, or NULL if the heap region was too small to be initialised.
|
||||
*/
|
||||
multi_heap_handle_t multi_heap_register(void *start, size_t size);
|
||||
|
||||
|
||||
/** @brief Associate a private lock pointer with a heap
|
||||
*
|
||||
* The lock argument is supplied to the MULTI_HEAP_LOCK() and MULTI_HEAP_UNLOCK() macros, defined in multi_heap_platform.h.
|
||||
*
|
||||
* When the heap is first registered, the associated lock is NULL.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @param lock Optional pointer to a locking structure to associate with this heap.
|
||||
*/
|
||||
void multi_heap_set_lock(multi_heap_handle_t heap, void* lock);
|
||||
|
||||
/** @brief Dump heap information to stdout
|
||||
*
|
||||
* For debugging purposes, this function dumps information about every block in the heap to stdout.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
*/
|
||||
void multi_heap_dump(multi_heap_handle_t handle);
|
||||
|
||||
/** @brief Check heap integrity
|
||||
*
|
||||
* Walks the heap and checks all heap data structures are valid. If any errors are detected, an error-specific message
|
||||
* can be optionally printed to stderr. Print behaviour can be overriden at compile time by defining
|
||||
* MULTI_CHECK_FAIL_PRINTF in multi_heap_platform.h.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @param print_errors If true, errors will be printed to stderr.
|
||||
* @return true if heap is valid, false otherwise.
|
||||
*/
|
||||
bool multi_heap_check(multi_heap_handle_t heap, bool print_errors);
|
||||
|
||||
/** @brief Return free heap size
|
||||
*
|
||||
* Returns the number of bytes available in the heap.
|
||||
*
|
||||
* Equivalent to the total_free_bytes member returned by multi_heap_get_heap_info().
|
||||
*
|
||||
* Note that the heap may be fragmented, so the actual maximum size for a single malloc() may be lower. To know this
|
||||
* size, see the largest_free_block member returned by multi_heap_get_heap_info().
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @return Number of free bytes.
|
||||
*/
|
||||
size_t multi_heap_free_size(multi_heap_handle_t heap);
|
||||
|
||||
/** @brief Return the lifetime minimum free heap size
|
||||
*
|
||||
* Equivalent to the minimum_free_bytes member returned by multi_get_heap_info().
|
||||
*
|
||||
* Returns the lifetime "low water mark" of possible values returned from multi_free_heap_size(), for the specified
|
||||
* heap.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @return Number of free bytes.
|
||||
*/
|
||||
size_t multi_heap_minimum_free_size(multi_heap_handle_t heap);
|
||||
|
||||
typedef struct {
|
||||
size_t total_free_bytes; ///< Total free bytes in the heap. Equivalent to multi_free_heap_size().
|
||||
size_t total_allocated_bytes; ///< Total bytes allocated to data in the heap.
|
||||
size_t largest_free_block; ///< Size of largest free block in the heap. This is the largest malloc-able size.
|
||||
size_t minimum_free_bytes; ///< Lifetime minimum free heap size. Equivalent to multi_minimum_free_heap_size().
|
||||
size_t allocated_blocks; ///< Number of (variable size) blocks allocated in the heap.
|
||||
size_t free_blocks; ///< Number of (variable size) free blocks in the heap.
|
||||
size_t total_blocks; ///< Total number of (variable size) blocks in the heap.
|
||||
} multi_heap_info_t;
|
||||
|
||||
/** @brief Return metadata about a given heap
|
||||
*
|
||||
* Fills a multi_heap_info_t structure with information about the specified heap.
|
||||
*
|
||||
* @param heap Handle to a registered heap.
|
||||
* @param info Pointer to a structure to fill with heap metadata.
|
||||
*/
|
||||
void multi_heap_get_info(multi_heap_handle_t heap, multi_heap_info_t *info);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
19
components/heap/include/mumm_malloc.h
Normal file
19
components/heap/include/mumm_malloc.h
Normal file
@ -0,0 +1,19 @@
|
||||
// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
|
||||
/* Simple wrapper means that mumm_malloc src/ directory doesn't need
|
||||
to be in the global search path.
|
||||
*/
|
||||
#include "../mumm_malloc/src/mumm_malloc.h"
|
117
components/heap/include/mumm_malloc_cfg.h
Normal file
117
components/heap/include/mumm_malloc_cfg.h
Normal file
@ -0,0 +1,117 @@
|
||||
/*
|
||||
* Configuration for mumm_malloc in IDF
|
||||
*
|
||||
* Unlike umm_malloc, this config doesn't include
|
||||
* much heap configuration - just compiler configuration
|
||||
*/
|
||||
|
||||
#ifndef _MUMM_MALLOC_CFG_H
|
||||
#define _MUMM_MALLOC_CFG_H
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
|
||||
/* A couple of macros to make packing structures less compiler dependent */
|
||||
|
||||
#define MUMM_H_ATTPACKPRE
|
||||
#define MUMM_H_ATTPACKSUF __attribute__((__packed__))
|
||||
|
||||
#define MUMM_INFO
|
||||
|
||||
#ifdef MUMM_INFO
|
||||
typedef struct MUMM_HEAP_INFO_t {
|
||||
unsigned short int totalEntries;
|
||||
unsigned short int usedEntries;
|
||||
unsigned short int freeEntries;
|
||||
|
||||
unsigned short int totalBlocks;
|
||||
unsigned short int usedBlocks;
|
||||
unsigned short int freeBlocks;
|
||||
|
||||
unsigned short int maxFreeContiguousBlocks;
|
||||
|
||||
unsigned short int blockSize;
|
||||
unsigned short int numBlocks; /* configured, not counted */
|
||||
}
|
||||
MUMM_HEAP_INFO;
|
||||
|
||||
void *mumm_info( mumm_heap_handle heap, void *ptr, int force, MUMM_HEAP_INFO* info );
|
||||
size_t mumm_free_heap_size( mumm_heap_handle heap );
|
||||
|
||||
#else
|
||||
#endif
|
||||
|
||||
#define MUMM_CRITICAL_ENTRY(PLOCK) taskENTER_CRITICAL((portMUX_TYPE *)(PLOCK))
|
||||
#define MUMM_CRITICAL_EXIT(PLOCK) taskEXIT_CRITICAL((portMUX_TYPE *)(PLOCK))
|
||||
|
||||
/*
|
||||
* -D MUMM_INTEGRITY_CHECK :
|
||||
*
|
||||
* Enables heap integrity check before any heap operation. It affects
|
||||
* performance, but does NOT consume extra memory.
|
||||
*
|
||||
* If integrity violation is detected, the message is printed and user-provided
|
||||
* callback is called: `UMM_HEAP_CORRUPTION_CB()`
|
||||
*
|
||||
* Note that not all buffer overruns are detected: each buffer is aligned by
|
||||
* 4 bytes, so there might be some trailing "extra" bytes which are not checked
|
||||
* for corruption.
|
||||
*/
|
||||
|
||||
//#define MUMM_INTEGRITY_CHECK
|
||||
|
||||
#ifdef MUMM_INTEGRITY_CHECK
|
||||
int mumm_integrity_check( mumm_heap_handle heap );
|
||||
# define INTEGRITY_CHECK(HEAP) mumm_integrity_check(HEAP)
|
||||
extern void mumm_corruption(void);
|
||||
# define MUMM_HEAP_CORRUPTION_CB(heap) printf( "Heap Corruption in heap %p!\n", heap )
|
||||
#else
|
||||
# define INTEGRITY_CHECK(HEAP) 0
|
||||
#endif
|
||||
|
||||
/*
|
||||
* -D MUMM_POISON :
|
||||
*
|
||||
* Enables heap poisoning: add predefined value (poison) before and after each
|
||||
* allocation, and check before each heap operation that no poison is
|
||||
* corrupted.
|
||||
*
|
||||
* Other than the poison itself, we need to store exact user-requested length
|
||||
* for each buffer, so that overrun by just 1 byte will be always noticed.
|
||||
*
|
||||
* Customizations:
|
||||
*
|
||||
* UMM_POISON_SIZE_BEFORE:
|
||||
* Number of poison bytes before each block, e.g. 2
|
||||
* UMM_POISON_SIZE_AFTER:
|
||||
* Number of poison bytes after each block e.g. 2
|
||||
* UMM_POISONED_BLOCK_LEN_TYPE
|
||||
* Type of the exact buffer length, e.g. `short`
|
||||
*
|
||||
* NOTE: each allocated buffer is aligned by 4 bytes. But when poisoning is
|
||||
* enabled, actual pointer returned to user is shifted by
|
||||
* `(sizeof(UMM_POISONED_BLOCK_LEN_TYPE) + UMM_POISON_SIZE_BEFORE)`.
|
||||
* It's your responsibility to make resulting pointers aligned appropriately.
|
||||
*
|
||||
* If poison corruption is detected, the message is printed and user-provided
|
||||
* callback is called: `UMM_HEAP_CORRUPTION_CB()`
|
||||
*/
|
||||
|
||||
//#define MUMM_POISON_CHECK
|
||||
|
||||
#define UMM_POISON_SIZE_BEFORE 4
|
||||
#define UMM_POISON_SIZE_AFTER 4
|
||||
#define UMM_POISONED_BLOCK_LEN_TYPE short
|
||||
|
||||
#ifdef MUMM_POISON_CHECK
|
||||
void *mumm_poison_malloc( mumm_heap_handle heap, size_t size );
|
||||
void *mumm_poison_calloc( mumm_heap_handle heap, size_t num, size_t size );
|
||||
void *mumm_poison_realloc( mumm_heap_handle heap, void *ptr, size_t size );
|
||||
void mumm_poison_free( mumm_heap_handle heap, void *ptr );
|
||||
int mumm_poison_check( mumm_heap_handle heap );
|
||||
# define POISON_CHECK(HEAP) mumm_poison_check(HEAP)
|
||||
#else
|
||||
# define POISON_CHECK(HEAP) 0
|
||||
#endif
|
||||
|
||||
#endif /* _MUMM_MALLOC_CFG_H */
|
594
components/heap/multi_heap.c
Normal file
594
components/heap/multi_heap.c
Normal file
@ -0,0 +1,594 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#include <stdint.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdbool.h>
|
||||
#include <assert.h>
|
||||
#include <string.h>
|
||||
#include <stddef.h>
|
||||
#include <stdio.h>
|
||||
#include <multi_heap.h>
|
||||
|
||||
/* Note: Keep platform-specific parts in this header, this source
|
||||
file should depend on libc only */
|
||||
#include "multi_heap_platform.h"
|
||||
|
||||
#define ALIGN(X) ((X) & ~(sizeof(void *)-1))
|
||||
#define ALIGN_UP(X) ALIGN((X)+sizeof(void *)-1)
|
||||
|
||||
struct heap_block;
|
||||
|
||||
/* Block in the heap
|
||||
|
||||
Heap implementation uses two single linked lists, a block list (all blocks) and a free list (free blocks).
|
||||
|
||||
'header' holds a pointer to the next block (used or free) ORed with a free flag (the LSB of the pointer.) is_free() and get_next_block() utility functions allow typed access to these values.
|
||||
|
||||
'next_free' is valid if the block is free and is a pointer to the next block in the free list.
|
||||
*/
|
||||
typedef struct heap_block {
|
||||
intptr_t header; /* Encodes next block in heap (used or unused) and also free/used flag */
|
||||
union {
|
||||
uint8_t data[1]; /* First byte of data, valid if block is used. Actual size of data is 'block_data_size(block)' */
|
||||
struct heap_block *next_free; /* Pointer to next free block, valid if block is free */
|
||||
};
|
||||
} heap_block_t;
|
||||
|
||||
/* These masks apply to the 'header' field of heap_block_t */
|
||||
#define BLOCK_FREE_FLAG 0x1 /* If set, this block is free & next_free pointer is valid */
|
||||
#define NEXT_BLOCK_MASK (~3) /* AND header with this mask to get pointer to next block (free or used) */
|
||||
|
||||
/* Metadata header for the heap, stored at the beginning of heap space.
|
||||
|
||||
'first_block' is a "fake" first block, minimum length, used to provide a pointer to the first used & free block in
|
||||
the heap. This block is never allocated or merged into an adjacent block.
|
||||
|
||||
'last_block' is a pointer to a final free block of length 0, which is added at the end of the heap when it is
|
||||
registered. This block is also never allocated or merged into an adjacent block.
|
||||
*/
|
||||
typedef struct multi_heap_info {
|
||||
void *lock;
|
||||
size_t free_bytes;
|
||||
size_t minimum_free_bytes;
|
||||
heap_block_t *last_block;
|
||||
heap_block_t first_block; /* initial 'free block', never allocated */
|
||||
} heap_t;
|
||||
|
||||
/* Given a pointer to the 'data' field of a block (ie the previous malloc/realloc result), return a pointer to the
|
||||
containing block.
|
||||
*/
|
||||
static inline heap_block_t *get_block(const void *data_ptr)
|
||||
{
|
||||
return (heap_block_t *)((char *)data_ptr - offsetof(heap_block_t, data));
|
||||
}
|
||||
|
||||
/* Return the next sequential block in the heap.
|
||||
*/
|
||||
static inline heap_block_t *get_next_block(const heap_block_t *block)
|
||||
{
|
||||
intptr_t next = block->header & NEXT_BLOCK_MASK;
|
||||
if (next == 0) {
|
||||
return NULL; /* last_block */
|
||||
}
|
||||
assert(next > (intptr_t)block);
|
||||
return (heap_block_t *)next;
|
||||
}
|
||||
|
||||
/* Return true if this block is free. */
|
||||
static inline bool is_free(const heap_block_t *block)
|
||||
{
|
||||
return block->header & BLOCK_FREE_FLAG;
|
||||
}
|
||||
|
||||
/* Return true if this block is the last_block in the heap
|
||||
(the only block with no next pointer) */
|
||||
static inline bool is_last_block(const heap_block_t *block)
|
||||
{
|
||||
return (block->header & NEXT_BLOCK_MASK) == 0;
|
||||
}
|
||||
|
||||
/* Data size of the block (excludes this block's header) */
|
||||
static inline size_t block_data_size(const heap_block_t *block)
|
||||
{
|
||||
intptr_t next = (intptr_t)block->header & NEXT_BLOCK_MASK;
|
||||
intptr_t this = (intptr_t)block;
|
||||
if (next == 0) {
|
||||
return 0; /* this is the last block in the heap */
|
||||
}
|
||||
return next - this - sizeof(block->header);
|
||||
}
|
||||
|
||||
/* Check a block is valid for this heap. Used to verify parameters. */
|
||||
static void assert_valid_block(const heap_t *heap, const heap_block_t *block)
|
||||
{
|
||||
assert(block >= &heap->first_block && block <= heap->last_block); /* block should be in heap */
|
||||
if (heap < (const heap_t *)heap->last_block) {
|
||||
const heap_block_t *next = get_next_block(block);
|
||||
assert(next >= &heap->first_block && next <= heap->last_block);
|
||||
if (is_free(block)) {
|
||||
assert(block->next_free >= &heap->first_block && block->next_free <= heap->last_block);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Get the first free block before 'block' in the heap. 'block' can be a free block or in use.
|
||||
|
||||
Result is always the closest free block to 'block' in the heap, that is located before 'block'. There may be multiple
|
||||
allocated blocks between the result and 'block'.
|
||||
|
||||
If 'block' is free, the result's 'next_free' pointer will already point to 'block'.
|
||||
|
||||
Result will never be NULL, but it may be the header block heap->first_block.
|
||||
*/
|
||||
static heap_block_t *get_prev_free_block(heap_t *heap, const heap_block_t *block)
|
||||
{
|
||||
assert(block != &heap->first_block); /* can't look for a block before first_block */
|
||||
|
||||
for (heap_block_t *b = &heap->first_block; b != NULL && b < block; b = b->next_free) {
|
||||
assert(is_free(b));
|
||||
if (b->next_free == NULL || b->next_free >= block) {
|
||||
if (is_free(block)) {
|
||||
assert(b->next_free == block); /* if block is on freelist, 'b' should be the item before it. */
|
||||
}
|
||||
return b; /* b is the last free block before 'block' */
|
||||
}
|
||||
}
|
||||
abort(); /* There should always be a previous free block, even if it's heap->first_block */
|
||||
}
|
||||
|
||||
/* Merge some block 'a' into the following block 'b'.
|
||||
|
||||
If both blocks are free, resulting block is marked free.
|
||||
If only one block is free, resulting block is marked in use. No data is moved.
|
||||
|
||||
This operation may fail if block 'a' is the first block or 'b' is the last block,
|
||||
the caller should check block_data_size() to know if anything happened here or not.
|
||||
*/
|
||||
static heap_block_t *merge_adjacent(heap_t *heap, heap_block_t *a, heap_block_t *b)
|
||||
{
|
||||
assert(a < b);
|
||||
|
||||
/* Can't merge header blocks, just return the non-header block as-is */
|
||||
if (is_last_block(b)) {
|
||||
return a;
|
||||
}
|
||||
if (a == &heap->first_block) {
|
||||
return b;
|
||||
}
|
||||
|
||||
assert(get_next_block(a) == b);
|
||||
|
||||
bool free = is_free(a) && is_free(b); /* merging two free blocks creates a free block */
|
||||
if (!free && (is_free(a) || is_free(b))) {
|
||||
/* only one of these blocks is free, so resulting block will be a used block.
|
||||
means we need to take the free block out of the free list
|
||||
*/
|
||||
heap_block_t *free_block = is_free(a) ? a : b;
|
||||
heap_block_t *prev_free = get_prev_free_block(heap, free_block);
|
||||
assert(free_block->next_free > prev_free);
|
||||
prev_free->next_free = free_block->next_free;
|
||||
|
||||
heap->free_bytes -= block_data_size(free_block);
|
||||
}
|
||||
|
||||
a->header = b->header & NEXT_BLOCK_MASK;
|
||||
assert(a->header != 0);
|
||||
if (free) {
|
||||
a->header |= BLOCK_FREE_FLAG;
|
||||
assert(b->next_free == NULL || b->next_free > a);
|
||||
assert(b->next_free == NULL || b->next_free > b);
|
||||
a->next_free = b->next_free;
|
||||
|
||||
/* b's header can be put into the pool of free bytes */
|
||||
heap->free_bytes += sizeof(a->header);
|
||||
}
|
||||
|
||||
return a;
|
||||
}
|
||||
|
||||
/* Split a block so it can hold at least 'size' bytes of data, making any spare
|
||||
space into a new free block.
|
||||
|
||||
'block' should be marked in-use when this function is called (implementation detail, this function
|
||||
doesn't set the next_free pointer).
|
||||
|
||||
'prev_free_block' is the free block before 'block', if already known. Can be NULL if not yet known.
|
||||
(This is a performance optimisation to avoid walking the freelist twice when possible.)
|
||||
*/
|
||||
static void split_if_necessary(heap_t *heap, heap_block_t *block, size_t size, heap_block_t *prev_free_block)
|
||||
{
|
||||
assert(!is_free(block)); /* split_if_necessary doesn't expect a free block */
|
||||
assert(size <= block_data_size(block)); /* can't grow a block this way! */
|
||||
size = ALIGN_UP(size);
|
||||
|
||||
/* can't split the head or tail block */
|
||||
assert(block != &heap->first_block);
|
||||
assert(!is_last_block(block));
|
||||
|
||||
if (block_data_size(block) < size + sizeof(heap_block_t)) {
|
||||
/* Can't split 'block' if we're not going to get a usable free block afterwards */
|
||||
return;
|
||||
}
|
||||
|
||||
/* Block is larger than it needs to be, insert a new free block after it */
|
||||
heap_block_t *new_block = (heap_block_t *)(block->data + size);
|
||||
new_block->header = block->header | BLOCK_FREE_FLAG;
|
||||
block->header = (intptr_t)new_block;
|
||||
|
||||
if (prev_free_block == NULL) {
|
||||
prev_free_block = get_prev_free_block(heap, block);
|
||||
}
|
||||
assert(prev_free_block->next_free > new_block); /* prev_free_block should point to a free block after new_block */
|
||||
new_block->next_free = prev_free_block->next_free;
|
||||
prev_free_block->next_free = new_block;
|
||||
heap->free_bytes += block_data_size(new_block);
|
||||
}
|
||||
|
||||
size_t multi_heap_get_allocated_size(multi_heap_handle_t heap, void *p)
|
||||
{
|
||||
heap_block_t *pb = get_block(p);
|
||||
|
||||
assert_valid_block(heap, pb);
|
||||
assert(!is_free(pb));
|
||||
return block_data_size(pb);
|
||||
}
|
||||
|
||||
multi_heap_handle_t multi_heap_register(void *start, size_t size)
|
||||
{
|
||||
heap_t *heap = (heap_t *)ALIGN_UP((intptr_t)start);
|
||||
uintptr_t end = ALIGN((uintptr_t)start + size);
|
||||
if (end - (uintptr_t)start < sizeof(heap_t) + 2*sizeof(heap_block_t)) {
|
||||
return NULL; /* 'size' is too small to fit a heap here */
|
||||
}
|
||||
heap->lock = NULL;
|
||||
heap->last_block = (heap_block_t *)(end - sizeof(heap_block_t));
|
||||
|
||||
/* first 'real' (allocatable) free block goes after the heap structure */
|
||||
heap_block_t *first_free_block = (heap_block_t *)((intptr_t)start + sizeof(heap_t));
|
||||
first_free_block->header = (intptr_t)heap->last_block | BLOCK_FREE_FLAG;
|
||||
first_free_block->next_free = heap->last_block;
|
||||
|
||||
/* last block is 'free' but has a NULL next pointer */
|
||||
heap->last_block->header = BLOCK_FREE_FLAG;
|
||||
heap->last_block->next_free = NULL;
|
||||
|
||||
/* first block also 'free' but has legitimate length,
|
||||
malloc will never allocate into this block. */
|
||||
heap->first_block.header = (intptr_t)first_free_block | BLOCK_FREE_FLAG;
|
||||
heap->first_block.next_free = first_free_block;
|
||||
|
||||
/* free bytes is:
|
||||
- total bytes in heap
|
||||
- minus heap_t header at top (includes heap->first_block)
|
||||
- minus header of first_free_block
|
||||
- minus whole block at heap->last_block
|
||||
*/
|
||||
heap->free_bytes = ALIGN(size) - sizeof(heap_t) - sizeof(first_free_block->header) - sizeof(heap_block_t);
|
||||
heap->minimum_free_bytes = heap->free_bytes;
|
||||
|
||||
return heap;
|
||||
}
|
||||
|
||||
void multi_heap_set_lock(multi_heap_handle_t heap, void *lock)
|
||||
{
|
||||
heap->lock = lock;
|
||||
}
|
||||
|
||||
void *multi_heap_malloc(multi_heap_handle_t heap, size_t size)
|
||||
{
|
||||
heap_block_t *best_block = NULL;
|
||||
heap_block_t *prev_free = NULL;
|
||||
heap_block_t *prev = NULL;
|
||||
size_t best_size = SIZE_MAX;
|
||||
size = ALIGN_UP(size);
|
||||
|
||||
if (size == 0 || heap == NULL || heap->free_bytes < size) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
MULTI_HEAP_LOCK(heap->lock);
|
||||
|
||||
/* Find best free block to perform the allocation in */
|
||||
prev = &heap->first_block;
|
||||
for (heap_block_t *b = heap->first_block.next_free; b != NULL; b = b->next_free) {
|
||||
assert(is_free(b));
|
||||
size_t bs = block_data_size(b);
|
||||
if (bs >= size && bs < best_size) {
|
||||
best_block = b;
|
||||
best_size = bs;
|
||||
prev_free = prev;
|
||||
if (bs == size) {
|
||||
break; /* we've found a perfect sized block */
|
||||
}
|
||||
}
|
||||
prev = b;
|
||||
}
|
||||
|
||||
if (best_block == NULL) {
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
return NULL; /* No room in heap */
|
||||
}
|
||||
|
||||
prev_free->next_free = best_block->next_free;
|
||||
best_block->header &= ~BLOCK_FREE_FLAG;
|
||||
|
||||
heap->free_bytes -= block_data_size(best_block);
|
||||
|
||||
split_if_necessary(heap, best_block, size, prev_free);
|
||||
|
||||
if (heap->free_bytes < heap->minimum_free_bytes) {
|
||||
heap->minimum_free_bytes = heap->free_bytes;
|
||||
}
|
||||
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
|
||||
return best_block->data;
|
||||
}
|
||||
|
||||
void multi_heap_free(multi_heap_handle_t heap, void *p)
|
||||
{
|
||||
heap_block_t *pb = get_block(p);
|
||||
|
||||
if (heap == NULL || p == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
MULTI_HEAP_LOCK(heap->lock);
|
||||
|
||||
assert_valid_block(heap, pb);
|
||||
assert(!is_free(pb));
|
||||
assert(!is_last_block(pb));
|
||||
assert(pb != &heap->first_block);
|
||||
|
||||
heap_block_t *next = get_next_block(pb);
|
||||
|
||||
/* Update freelist pointers */
|
||||
heap_block_t *prev_free = get_prev_free_block(heap, pb);
|
||||
assert(prev_free->next_free == NULL || prev_free->next_free > pb);
|
||||
pb->next_free = prev_free->next_free;
|
||||
prev_free->next_free = pb;
|
||||
|
||||
/* Mark this block as free */
|
||||
pb->header |= BLOCK_FREE_FLAG;
|
||||
|
||||
heap->free_bytes += block_data_size(pb);
|
||||
|
||||
/* Try and merge previous free block into this one */
|
||||
if (get_next_block(prev_free) == pb) {
|
||||
pb = merge_adjacent(heap, prev_free, pb);
|
||||
}
|
||||
|
||||
/* If next block is free, try to merge the two */
|
||||
if (is_free(next)) {
|
||||
pb = merge_adjacent(heap, pb, next);
|
||||
}
|
||||
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
}
|
||||
|
||||
|
||||
void *multi_heap_realloc(multi_heap_handle_t heap, void *p, size_t size)
|
||||
{
|
||||
heap_block_t *pb = get_block(p);
|
||||
void *result;
|
||||
size = ALIGN_UP(size);
|
||||
|
||||
assert(heap != NULL);
|
||||
|
||||
if (p == NULL) {
|
||||
return multi_heap_malloc(heap, size);
|
||||
}
|
||||
|
||||
assert_valid_block(heap, pb);
|
||||
assert(!is_free(pb) && "realloc arg should be allocated");
|
||||
|
||||
if (size == 0) {
|
||||
multi_heap_free(heap, p);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
if (heap == NULL) {
|
||||
return NULL;
|
||||
}
|
||||
|
||||
MULTI_HEAP_LOCK(heap->lock);
|
||||
result = NULL;
|
||||
|
||||
if (size <= block_data_size(pb)) {
|
||||
// Shrinking....
|
||||
split_if_necessary(heap, pb, size, NULL);
|
||||
result = pb->data;
|
||||
}
|
||||
else if (heap->free_bytes < size - block_data_size(pb)) {
|
||||
// Growing, but there's not enough total free space in the heap
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
// New size is larger than existing block
|
||||
if (result == NULL) {
|
||||
// See if we can grow into one or both adjacent blocks
|
||||
heap_block_t *orig_pb = pb;
|
||||
size_t orig_size = block_data_size(orig_pb);
|
||||
heap_block_t *next = get_next_block(pb);
|
||||
heap_block_t *prev = get_prev_free_block(heap, pb);
|
||||
|
||||
// Can only grow into the previous free block if it's adjacent
|
||||
size_t prev_grow_size = (get_next_block(prev) == pb) ? block_data_size(prev) : 0;
|
||||
|
||||
// Can grow into next block? (we may also need to grow into 'prev' to get to our desired size)
|
||||
if (is_free(next) && (block_data_size(pb) + block_data_size(next) + prev_grow_size >= size)) {
|
||||
pb = merge_adjacent(heap, pb, next);
|
||||
}
|
||||
|
||||
// Can grow into previous block?
|
||||
// (do this even if we're already big enough from growing into 'next', as it reduces fragmentation)
|
||||
if (prev_grow_size > 0 && (block_data_size(pb) + prev_grow_size >= size)) {
|
||||
pb = merge_adjacent(heap, prev, pb);
|
||||
assert(block_data_size(pb) >= size);
|
||||
}
|
||||
|
||||
if (block_data_size(pb) >= size) {
|
||||
memmove(pb->data, orig_pb->data, orig_size);
|
||||
split_if_necessary(heap, pb, size, NULL);
|
||||
result = pb->data;
|
||||
}
|
||||
}
|
||||
|
||||
if (result == NULL) {
|
||||
// Need to allocate elsewhere and copy data over
|
||||
result = multi_heap_malloc(heap, size);
|
||||
if (result != NULL) {
|
||||
memcpy(result, pb->data, block_data_size(pb));
|
||||
multi_heap_free(heap, pb->data);
|
||||
}
|
||||
}
|
||||
|
||||
if (heap->free_bytes < heap->minimum_free_bytes) {
|
||||
heap->minimum_free_bytes = heap->free_bytes;
|
||||
}
|
||||
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
return result;
|
||||
}
|
||||
|
||||
#define FAIL_PRINT(MSG, ...) do { \
|
||||
if (print_errors) { \
|
||||
MULTI_HEAP_STDERR_PRINTF(MSG, __VA_ARGS__); \
|
||||
} \
|
||||
valid = false; \
|
||||
} \
|
||||
while(0)
|
||||
|
||||
bool multi_heap_check(multi_heap_handle_t heap, bool print_errors)
|
||||
{
|
||||
bool valid = true;
|
||||
size_t total_free_bytes = 0;
|
||||
assert(heap != NULL);
|
||||
|
||||
MULTI_HEAP_LOCK(heap->lock);
|
||||
|
||||
heap_block_t *prev = NULL;
|
||||
heap_block_t *prev_free = NULL;
|
||||
heap_block_t *expected_free = NULL;
|
||||
|
||||
/* note: not using get_next_block() in loop, so that assertions aren't checked here */
|
||||
for(heap_block_t *b = &heap->first_block; b != NULL; b = (heap_block_t *)(b->header & NEXT_BLOCK_MASK)) {
|
||||
if (b == prev) {
|
||||
FAIL_PRINT("CORRUPT HEAP: Block %p points to itself\n", b);
|
||||
goto done;
|
||||
}
|
||||
if (b < prev) {
|
||||
FAIL_PRINT("CORRUPT HEAP: Block %p is before prev block %p\n", b, prev);
|
||||
goto done;
|
||||
}
|
||||
if (b > heap->last_block || b < &heap->first_block) {
|
||||
FAIL_PRINT("CORRUPT HEAP: Block %p is outside heap (last valid block %p)\n", b, prev);
|
||||
goto done;
|
||||
}
|
||||
prev = b;
|
||||
|
||||
if (is_free(b)) {
|
||||
if (expected_free != NULL && expected_free != b) {
|
||||
FAIL_PRINT("CORRUPT HEAP: Prev free block %p pointed to next free %p but this free block is %p\n",
|
||||
prev_free, expected_free, b);
|
||||
}
|
||||
prev_free = b;
|
||||
expected_free = b->next_free;
|
||||
if (b != &heap->first_block) {
|
||||
total_free_bytes += block_data_size(b);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (prev != heap->last_block) {
|
||||
FAIL_PRINT("CORRUPT HEAP: Ended at %p not %p\n", prev, heap->last_block);
|
||||
}
|
||||
if (!is_free(heap->last_block)) {
|
||||
FAIL_PRINT("CORRUPT HEAP: Expected prev block %p to be free\n", heap->last_block);
|
||||
}
|
||||
|
||||
if (heap->free_bytes != total_free_bytes) {
|
||||
FAIL_PRINT("CORRUPT HEAP: Expected %u free bytes counted %u\n", (unsigned)heap->free_bytes, (unsigned)total_free_bytes);
|
||||
}
|
||||
|
||||
done:
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
|
||||
return valid;
|
||||
}
|
||||
|
||||
void multi_heap_dump(multi_heap_handle_t heap)
|
||||
{
|
||||
assert(heap != NULL);
|
||||
|
||||
MULTI_HEAP_LOCK(heap->lock);
|
||||
printf("Heap start %p end %p\nFirst free block %p\n", &heap->first_block, heap->last_block, heap->first_block.next_free);
|
||||
for(heap_block_t *b = &heap->first_block; b != NULL; b = get_next_block(b)) {
|
||||
printf("Block %p data size 0x%08zx bytes next block %p", b, block_data_size(b), get_next_block(b));
|
||||
if (is_free(b)) {
|
||||
printf(" FREE. Next free %p\n", b->next_free);
|
||||
} else {
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
}
|
||||
|
||||
size_t multi_heap_free_heap_size(multi_heap_handle_t heap)
|
||||
{
|
||||
if (heap == NULL) {
|
||||
return 0;
|
||||
}
|
||||
return heap->free_bytes;
|
||||
}
|
||||
|
||||
size_t multi_heap_minimum_free_heap_size(multi_heap_handle_t heap)
|
||||
{
|
||||
if (heap == NULL) {
|
||||
return 0;
|
||||
}
|
||||
return heap->minimum_free_bytes;
|
||||
}
|
||||
|
||||
void multi_heap_get_heap_info(multi_heap_handle_t heap, multi_heap_info_t *info)
|
||||
{
|
||||
memset(info, 0, sizeof(multi_heap_info_t));
|
||||
|
||||
if (heap == NULL) {
|
||||
return;
|
||||
}
|
||||
|
||||
MULTI_HEAP_LOCK(heap->lock);
|
||||
for(heap_block_t *b = get_next_block(&heap->first_block); !is_last_block(b); b = get_next_block(b)) {
|
||||
info->total_blocks++;
|
||||
if (is_free(b)) {
|
||||
size_t s = block_data_size(b);
|
||||
info->total_free_bytes += s;
|
||||
if (s > info->largest_free_block) {
|
||||
info->largest_free_block = s;
|
||||
}
|
||||
info->free_blocks++;
|
||||
} else {
|
||||
info->total_allocated_bytes += block_data_size(b);
|
||||
info->allocated_blocks++;
|
||||
}
|
||||
}
|
||||
|
||||
info->minimum_free_bytes = heap->minimum_free_bytes;
|
||||
assert(info->total_free_bytes == heap->free_bytes);
|
||||
|
||||
MULTI_HEAP_UNLOCK(heap->lock);
|
||||
|
||||
}
|
50
components/heap/multi_heap_platform.h
Normal file
50
components/heap/multi_heap_platform.h
Normal file
@ -0,0 +1,50 @@
|
||||
// Copyright 2015-2016 Espressif Systems (Shanghai) PTE LTD
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
#pragma once
|
||||
|
||||
#ifdef ESP_PLATFORM
|
||||
|
||||
#include <freertos/FreeRTOS.h>
|
||||
#include <freertos/task.h>
|
||||
#include <rom/ets_sys.h>
|
||||
|
||||
/* Because malloc/free can happen inside an ISR context,
|
||||
we need to use portmux spinlocks here not RTOS mutexes */
|
||||
#define MULTI_HEAP_LOCK(PLOCK) do { \
|
||||
if((PLOCK) != NULL) { \
|
||||
taskENTER_CRITICAL((portMUX_TYPE *)(PLOCK)); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
|
||||
#define MULTI_HEAP_UNLOCK(PLOCK) do { \
|
||||
if ((PLOCK) != NULL) { \
|
||||
taskEXIT_CRITICAL((portMUX_TYPE *)(PLOCK)); \
|
||||
} \
|
||||
} while(0)
|
||||
|
||||
/* Not safe to use std i/o while in a portmux critical section,
|
||||
can deadlock, so we use the ROM equivalent functions. */
|
||||
|
||||
#define MULTI_HEAP_PRINTF ets_printf
|
||||
#define MULTI_HEAP_STDERR_PRINTF(MSG, ...) ets_printf(MSG, __VA_ARGS__)
|
||||
|
||||
#else
|
||||
|
||||
#define MULTI_HEAP_PRINTF printf
|
||||
#define MULTI_HEAP_STDERR_PRINTF(MSG, ...) fprintf(stderr, MSG, __VA_ARGS__)
|
||||
#define MULTI_HEAP_LOCK(PLOCK)
|
||||
#define MULTI_HEAP_UNLOCK(PLOCK)
|
||||
|
||||
#endif
|
48
components/heap/test_multi_heap_host/Makefile
Normal file
48
components/heap/test_multi_heap_host/Makefile
Normal file
@ -0,0 +1,48 @@
|
||||
TEST_PROGRAM=test_multi_heap
|
||||
all: $(TEST_PROGRAM)
|
||||
|
||||
SOURCE_FILES = $(abspath \
|
||||
../multi_heap.c \
|
||||
test_multi_heap.cpp \
|
||||
main.cpp \
|
||||
)
|
||||
|
||||
INCLUDE_FLAGS = -I../include -I../../../tools/catch
|
||||
|
||||
GCOV ?= gcov
|
||||
|
||||
CPPFLAGS += $(INCLUDE_FLAGS) -D CONFIG_LOG_DEFAULT_LEVEL -m32
|
||||
CFLAGS += -fprofile-arcs -ftest-coverage
|
||||
CXXFLAGS += -std=c++11 -Wall -Werror -fprofile-arcs -ftest-coverage
|
||||
LDFLAGS += -lstdc++ -fprofile-arcs -ftest-coverage -m32
|
||||
|
||||
OBJ_FILES = $(filter %.o, $(SOURCE_FILES:.cpp=.o) $(SOURCE_FILES:.c=.o))
|
||||
|
||||
COVERAGE_FILES = $(OBJ_FILES:.o=.gc*)
|
||||
|
||||
$(TEST_PROGRAM): $(OBJ_FILES)
|
||||
g++ $(LDFLAGS) -o $(TEST_PROGRAM) $(OBJ_FILES)
|
||||
|
||||
$(OUTPUT_DIR):
|
||||
mkdir -p $(OUTPUT_DIR)
|
||||
|
||||
test: $(TEST_PROGRAM)
|
||||
./$(TEST_PROGRAM)
|
||||
|
||||
$(COVERAGE_FILES): $(TEST_PROGRAM) test
|
||||
|
||||
coverage.info: $(COVERAGE_FILES)
|
||||
find ../ -name "*.gcno" -exec $(GCOV) -r -pb {} +
|
||||
lcov --capture --directory $(abspath ../) --no-external --output-file coverage.info --gcov-tool $(GCOV)
|
||||
|
||||
coverage_report: coverage.info
|
||||
genhtml coverage.info --output-directory coverage_report
|
||||
@echo "Coverage report is in coverage_report/index.html"
|
||||
|
||||
clean:
|
||||
rm -f $(OBJ_FILES) $(TEST_PROGRAM)
|
||||
rm -f $(COVERAGE_FILES) *.gcov
|
||||
rm -rf coverage_report/
|
||||
rm -f coverage.info
|
||||
|
||||
.PHONY: clean all test
|
2
components/heap/test_multi_heap_host/main.cpp
Normal file
2
components/heap/test_multi_heap_host/main.cpp
Normal file
@ -0,0 +1,2 @@
|
||||
#define CATCH_CONFIG_MAIN
|
||||
#include "catch.hpp"
|
347
components/heap/test_multi_heap_host/test_multi_heap.cpp
Normal file
347
components/heap/test_multi_heap_host/test_multi_heap.cpp
Normal file
@ -0,0 +1,347 @@
|
||||
#include "catch.hpp"
|
||||
#include "multi_heap.h"
|
||||
|
||||
#include <string.h>
|
||||
|
||||
/* Insurance against accidentally using libc heap functions in tests */
|
||||
#undef free
|
||||
#define free #error
|
||||
#undef malloc
|
||||
#define malloc #error
|
||||
#undef calloc
|
||||
#define calloc #error
|
||||
#undef realloc
|
||||
#define realloc #error
|
||||
|
||||
TEST_CASE("multi_heap simple allocations", "[multi_heap]")
|
||||
{
|
||||
uint8_t small_heap[128];
|
||||
|
||||
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
||||
|
||||
size_t test_alloc_size = (multi_heap_free_size(heap) + 4) / 2;
|
||||
|
||||
printf("New heap:\n");
|
||||
multi_heap_dump(heap);
|
||||
printf("*********************\n");
|
||||
|
||||
void *buf = multi_heap_malloc(heap, test_alloc_size);
|
||||
|
||||
printf("First malloc:\n");
|
||||
multi_heap_dump(heap);
|
||||
printf("*********************\n");
|
||||
|
||||
printf("small_heap %p buf %p\n", small_heap, buf);
|
||||
REQUIRE( buf != NULL );
|
||||
REQUIRE((intptr_t)buf >= (intptr_t)small_heap);
|
||||
REQUIRE( (intptr_t)buf < (intptr_t)(small_heap + sizeof(small_heap)));
|
||||
|
||||
REQUIRE( multi_heap_get_allocated_size(heap, buf) >= test_alloc_size );
|
||||
REQUIRE( multi_heap_get_allocated_size(heap, buf) < test_alloc_size + 16);
|
||||
|
||||
memset(buf, 0xEE, test_alloc_size);
|
||||
|
||||
REQUIRE( multi_heap_malloc(heap, test_alloc_size) == NULL );
|
||||
|
||||
multi_heap_free(heap, buf);
|
||||
|
||||
printf("Empty?\n");
|
||||
multi_heap_dump(heap);
|
||||
printf("*********************\n");
|
||||
|
||||
/* Now there should be space for another allocation */
|
||||
buf = multi_heap_malloc(heap, test_alloc_size);
|
||||
REQUIRE( buf != NULL );
|
||||
multi_heap_free(heap, buf);
|
||||
|
||||
REQUIRE( multi_heap_free_size(heap) > multi_heap_minimum_free_size(heap) );
|
||||
}
|
||||
|
||||
|
||||
TEST_CASE("multi_heap fragmentation", "[multi_heap]")
|
||||
{
|
||||
uint8_t small_heap[200];
|
||||
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
||||
|
||||
/* allocate enough that we can't fit 6 alloc_size blocks in the heap (due to
|
||||
per-allocation block overhead. This calculation works for 32-bit pointers,
|
||||
probably needs tweaking for 64-bit. */
|
||||
size_t alloc_size = ((multi_heap_free_size(heap)) / 6) & ~(sizeof(void *) - 1);
|
||||
|
||||
printf("alloc_size %zu\n", alloc_size);
|
||||
|
||||
void *p[4];
|
||||
for (int i = 0; i < 4; i++) {
|
||||
multi_heap_dump(heap);
|
||||
REQUIRE( multi_heap_check(heap, true) );
|
||||
p[i] = multi_heap_malloc(heap, alloc_size);
|
||||
printf("%d = %p ****->\n", i, p[i]);
|
||||
multi_heap_dump(heap);
|
||||
REQUIRE( p[i] != NULL );
|
||||
}
|
||||
|
||||
printf("allocated %p %p %p %p\n", p[0], p[1], p[2], p[3]);
|
||||
|
||||
REQUIRE( multi_heap_malloc(heap, alloc_size * 3) == NULL ); /* no room to allocate 3*alloc_size now */
|
||||
|
||||
printf("4 allocations:\n");
|
||||
multi_heap_dump(heap);
|
||||
printf("****************\n");
|
||||
|
||||
multi_heap_free(heap, p[0]);
|
||||
multi_heap_free(heap, p[1]);
|
||||
multi_heap_free(heap, p[3]);
|
||||
|
||||
printf("1 allocations:\n");
|
||||
multi_heap_dump(heap);
|
||||
printf("****************\n");
|
||||
|
||||
void *big = multi_heap_malloc(heap, alloc_size * 3);
|
||||
REQUIRE( p[3] == big ); /* big should go where p[3] was freed from */
|
||||
multi_heap_free(heap, big);
|
||||
|
||||
multi_heap_free(heap, p[2]);
|
||||
|
||||
printf("0 allocations:\n");
|
||||
multi_heap_dump(heap);
|
||||
printf("****************\n");
|
||||
|
||||
big = multi_heap_malloc(heap, alloc_size * 2);
|
||||
REQUIRE( p[0] == big ); /* big should now go where p[0] was freed from */
|
||||
multi_heap_free(heap, big);
|
||||
}
|
||||
|
||||
TEST_CASE("multi_heap many random allocations", "[multi_heap]")
|
||||
{
|
||||
uint8_t big_heap[1024];
|
||||
const int NUM_POINTERS = 64;
|
||||
|
||||
void *p[NUM_POINTERS] = { 0 };
|
||||
size_t s[NUM_POINTERS] = { 0 };
|
||||
multi_heap_handle_t heap = multi_heap_register(big_heap, sizeof(big_heap));
|
||||
|
||||
const size_t initial_free = multi_heap_free_size(heap);
|
||||
|
||||
const int ITERATIONS = 100000;
|
||||
|
||||
for (int i = 0; i < ITERATIONS; i++) {
|
||||
/* check all pointers allocated so far are valid inside big_heap */
|
||||
for (int j = 0; j < NUM_POINTERS; j++) {
|
||||
if (p[j] != NULL) {
|
||||
}
|
||||
}
|
||||
|
||||
uint8_t n = rand() % NUM_POINTERS;
|
||||
|
||||
if (rand() % 4 == 0) {
|
||||
/* 1 in 4 iterations, try to realloc the buffer instead
|
||||
of using malloc/free
|
||||
*/
|
||||
size_t new_size = rand() % 1024;
|
||||
void *new_p = multi_heap_realloc(heap, p[n], new_size);
|
||||
if (new_size == 0 || new_p != NULL) {
|
||||
p[n] = new_p;
|
||||
if (new_size > 0) {
|
||||
REQUIRE( p[n] >= big_heap );
|
||||
REQUIRE( p[n] < big_heap + sizeof(big_heap) );
|
||||
}
|
||||
s[n] = new_size;
|
||||
memset(p[n], n, s[n]);
|
||||
}
|
||||
REQUIRE( multi_heap_check(heap, true) );
|
||||
continue;
|
||||
}
|
||||
|
||||
if (p[n] != NULL) {
|
||||
if (s[n] > 0) {
|
||||
/* Verify pre-existing contents of p[n] */
|
||||
uint8_t compare[s[n]];
|
||||
memset(compare, n, s[n]);
|
||||
REQUIRE( memcmp(compare, p[n], s[n]) == 0 );
|
||||
}
|
||||
//printf("free %zu bytes %p\n", s[n], p[n]);
|
||||
multi_heap_free(heap, p[n]);
|
||||
if (!multi_heap_check(heap, true)) {
|
||||
printf("FAILED iteration %d after freeing %p\n", i, p[n]);
|
||||
multi_heap_dump(heap);
|
||||
REQUIRE(0);
|
||||
}
|
||||
}
|
||||
|
||||
s[n] = rand() % 1024;
|
||||
p[n] = multi_heap_malloc(heap, s[n]);
|
||||
if (p[n] != NULL) {
|
||||
REQUIRE( p[n] >= big_heap );
|
||||
REQUIRE( p[n] < big_heap + sizeof(big_heap) );
|
||||
}
|
||||
if (!multi_heap_check(heap, true)) {
|
||||
printf("FAILED iteration %d after mallocing %p (%zu bytes)\n", i, p[n], s[n]);
|
||||
multi_heap_dump(heap);
|
||||
REQUIRE(0);
|
||||
}
|
||||
|
||||
if (p[n] != NULL) {
|
||||
memset(p[n], n, s[n]);
|
||||
}
|
||||
}
|
||||
|
||||
for (int i = 0; i < NUM_POINTERS; i++) {
|
||||
multi_heap_free(heap, p[i]);
|
||||
if (!multi_heap_check(heap, true)) {
|
||||
printf("FAILED during cleanup after freeing %p\n", p[i]);
|
||||
multi_heap_dump(heap);
|
||||
REQUIRE(0);
|
||||
}
|
||||
}
|
||||
|
||||
REQUIRE( initial_free == multi_heap_free_size(heap) );
|
||||
}
|
||||
|
||||
TEST_CASE("multi_heap_get_info() function", "[multi_heap]")
|
||||
{
|
||||
uint8_t heapdata[256];
|
||||
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
|
||||
multi_heap_info_t before, after, freed;
|
||||
|
||||
multi_heap_get_info(heap, &before);
|
||||
printf("before: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
|
||||
before.total_free_bytes,
|
||||
before.total_allocated_bytes,
|
||||
before.largest_free_block,
|
||||
before.minimum_free_bytes,
|
||||
before.allocated_blocks,
|
||||
before.free_blocks,
|
||||
before.total_blocks);
|
||||
|
||||
REQUIRE( 0 == before.allocated_blocks );
|
||||
REQUIRE( 0 == before.total_allocated_bytes );
|
||||
REQUIRE( before.total_free_bytes == before.minimum_free_bytes );
|
||||
|
||||
void *x = multi_heap_malloc(heap, 32);
|
||||
multi_heap_get_info(heap, &after);
|
||||
printf("after: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
|
||||
after.total_free_bytes,
|
||||
after.total_allocated_bytes,
|
||||
after.largest_free_block,
|
||||
after.minimum_free_bytes,
|
||||
after.allocated_blocks,
|
||||
after.free_blocks,
|
||||
after.total_blocks);
|
||||
|
||||
REQUIRE( 1 == after.allocated_blocks );
|
||||
REQUIRE( 32 == after.total_allocated_bytes );
|
||||
REQUIRE( after.minimum_free_bytes < before.minimum_free_bytes);
|
||||
REQUIRE( after.minimum_free_bytes > 0 );
|
||||
|
||||
multi_heap_free(heap, x);
|
||||
multi_heap_get_info(heap, &freed);
|
||||
printf("freed: total_free_bytes %zu\ntotal_allocated_bytes %zu\nlargest_free_block %zu\nminimum_free_bytes %zu\nallocated_blocks %zu\nfree_blocks %zu\ntotal_blocks %zu\n",
|
||||
freed.total_free_bytes,
|
||||
freed.total_allocated_bytes,
|
||||
freed.largest_free_block,
|
||||
freed.minimum_free_bytes,
|
||||
freed.allocated_blocks,
|
||||
freed.free_blocks,
|
||||
freed.total_blocks);
|
||||
|
||||
REQUIRE( 0 == freed.allocated_blocks );
|
||||
REQUIRE( 0 == freed.total_allocated_bytes );
|
||||
REQUIRE( before.total_free_bytes == freed.total_free_bytes );
|
||||
REQUIRE( after.minimum_free_bytes == freed.minimum_free_bytes );
|
||||
}
|
||||
|
||||
TEST_CASE("multi_heap minimum-size allocations", "[multi_heap]")
|
||||
{
|
||||
uint8_t heapdata[16384];
|
||||
void *p[sizeof(heapdata) / sizeof(void *)];
|
||||
const size_t NUM_P = sizeof(p) / sizeof(void *);
|
||||
multi_heap_handle_t heap = multi_heap_register(heapdata, sizeof(heapdata));
|
||||
|
||||
size_t before_free = multi_heap_free_size(heap);
|
||||
|
||||
size_t i;
|
||||
for (i = 0; i < NUM_P; i++) {
|
||||
p[i] = multi_heap_malloc(heap, 1);
|
||||
if (p[i] == NULL) {
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
REQUIRE( i < NUM_P); // Should have run out of heap before we ran out of pointers
|
||||
printf("Allocated %zu minimum size chunks\n", i);
|
||||
|
||||
REQUIRE( 0 == multi_heap_free_size(heap) );
|
||||
multi_heap_check(heap, true);
|
||||
|
||||
/* Free in random order */
|
||||
bool has_allocations = true;
|
||||
while (has_allocations) {
|
||||
i = rand() % NUM_P;
|
||||
multi_heap_free(heap, p[i]);
|
||||
p[i] = NULL;
|
||||
multi_heap_check(heap, true);
|
||||
|
||||
has_allocations = false;
|
||||
for (i = 0; i < NUM_P && !has_allocations; i++) {
|
||||
has_allocations = (p[i] != NULL);
|
||||
}
|
||||
}
|
||||
|
||||
/* all freed! */
|
||||
REQUIRE( before_free == multi_heap_free_size(heap) );
|
||||
}
|
||||
|
||||
TEST_CASE("multi_heap_realloc()", "[multi_heap]")
|
||||
{
|
||||
const uint32_t PATTERN = 0xABABDADA;
|
||||
uint8_t small_heap[256];
|
||||
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
||||
|
||||
uint32_t *a = (uint32_t *)multi_heap_malloc(heap, 64);
|
||||
uint32_t *b = (uint32_t *)multi_heap_malloc(heap, 32);
|
||||
REQUIRE( a != NULL );
|
||||
REQUIRE( b != NULL );
|
||||
REQUIRE( b > a); /* 'b' takes the block after 'a' */
|
||||
|
||||
*a = PATTERN;
|
||||
|
||||
uint32_t *c = (uint32_t *)multi_heap_realloc(heap, a, 72);
|
||||
REQUIRE( multi_heap_check(heap, true));
|
||||
REQUIRE( c != NULL );
|
||||
REQUIRE( c > b ); /* 'a' moves, 'c' takes the block after 'b' */
|
||||
REQUIRE( *c == PATTERN );
|
||||
|
||||
uint32_t *d = (uint32_t *)multi_heap_realloc(heap, c, 36);
|
||||
REQUIRE( multi_heap_check(heap, true) );
|
||||
REQUIRE( c == d ); /* 'c' block should be shrunk in-place */
|
||||
REQUIRE( *d == PATTERN);
|
||||
|
||||
uint32_t *e = (uint32_t *)multi_heap_malloc(heap, 64);
|
||||
REQUIRE( multi_heap_check(heap, true));
|
||||
REQUIRE( a == e ); /* 'e' takes the block formerly occupied by 'a' */
|
||||
|
||||
multi_heap_free(heap, d);
|
||||
uint32_t *f = (uint32_t *)multi_heap_realloc(heap, b, 64);
|
||||
REQUIRE( multi_heap_check(heap, true) );
|
||||
REQUIRE( f == b ); /* 'b' should be extended in-place, over space formerly occupied by 'd' */
|
||||
|
||||
uint32_t *g = (uint32_t *)multi_heap_realloc(heap, e, 128); /* not enough contiguous space left in the heap */
|
||||
REQUIRE( g == NULL );
|
||||
|
||||
multi_heap_free(heap, f);
|
||||
/* try again */
|
||||
g = (uint32_t *)multi_heap_realloc(heap, e, 128);
|
||||
REQUIRE( multi_heap_check(heap, true) );
|
||||
REQUIRE( e == g ); /* 'g' extends 'e' in place, into the space formerly held by 'f' */
|
||||
}
|
||||
|
||||
TEST_CASE("corrupt heap block", "[multi_heap]")
|
||||
{
|
||||
uint8_t small_heap[256];
|
||||
multi_heap_handle_t heap = multi_heap_register(small_heap, sizeof(small_heap));
|
||||
|
||||
void *a = multi_heap_malloc(heap, 32);
|
||||
REQUIRE( multi_heap_check(heap, true) );
|
||||
memset(a, 0xEE, 64);
|
||||
REQUIRE( !multi_heap_check(heap, true) );
|
||||
}
|
@ -86,12 +86,14 @@ static struct syscall_stub_table s_stub_table = {
|
||||
#endif
|
||||
};
|
||||
|
||||
void *pvPortMalloc(size_t);
|
||||
|
||||
void esp_setup_syscall_table()
|
||||
{
|
||||
syscall_table_ptr_pro = &s_stub_table;
|
||||
syscall_table_ptr_app = &s_stub_table;
|
||||
_GLOBAL_REENT = &s_reent;
|
||||
environ = malloc(sizeof(char*));
|
||||
environ = pvPortMalloc(sizeof(char*));
|
||||
environ[0] = NULL;
|
||||
}
|
||||
|
||||
|
@ -269,6 +269,18 @@
|
||||
#define TICKS_PER_US_ROM 26 // CPU is 80MHz
|
||||
//}}
|
||||
|
||||
/* Overall memory map */
|
||||
#define SOC_IROM_LOW 0x400D0000
|
||||
#define SOC_IROM_HIGH 0x40400000
|
||||
#define SOC_IRAM_LOW 0x40080000
|
||||
#define SOC_IRAM_HIGH 0x400A0000
|
||||
#define SOC_DROM_LOW 0x3F400000
|
||||
#define SOC_DROM_HIGH 0x3F800000
|
||||
#define SOC_RTC_IRAM_LOW 0x400C0000
|
||||
#define SOC_RTC_IRAM_HIGH 0x400C2000
|
||||
#define SOC_RTC_DATA_LOW 0x50000000
|
||||
#define SOC_RTC_DATA_HIGH 0x50002000
|
||||
|
||||
//Interrupt hardware source table
|
||||
//This table is decided by hardware, don't touch this.
|
||||
#define ETS_WIFI_MAC_INTR_SOURCE 0/**< interrupt of WiFi MAC, level*/
|
||||
|
Loading…
x
Reference in New Issue
Block a user