feat(mmu): support mmu and flash mmap driver on p4

This commit is contained in:
Armando 2023-08-14 13:58:35 +08:00
parent d97b3fec67
commit 8c8affc812
17 changed files with 327 additions and 226 deletions

View File

@ -317,9 +317,9 @@ esp_err_t esp_mmu_map_reserve_block_with_caps(size_t size, mmu_mem_caps_t caps,
uint32_t vaddr = 0;
if (caps & MMU_MEM_CAP_EXEC) {
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION);
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_INSTRUCTION, target);
} else {
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA);
vaddr = mmu_ll_laddr_to_vaddr(laddr, MMU_VADDR_DATA, target);
}
*out_ptr = (void *)vaddr;
@ -336,7 +336,6 @@ IRAM_ATTR esp_err_t esp_mmu_paddr_find_caps(const esp_paddr_t paddr, mmu_mem_cap
return ESP_ERR_INVALID_ARG;
}
for (int i = 0; i < s_mmu_ctx.num_regions; i++) {
region = &s_mmu_ctx.mem_regions[i];
@ -378,6 +377,38 @@ static void IRAM_ATTR NOINLINE_ATTR s_do_cache_invalidate(uint32_t vaddr_start,
#endif // CONFIG_IDF_TARGET_ESP32
}
#if MMU_LL_MMU_PER_TARGET
FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
{
uint32_t actual_mapped_len = 0;
uint32_t mmu_id = 0;
if (target == MMU_TARGET_FLASH0) {
mmu_id = MMU_LL_FLASH_MMU_ID;
} else {
mmu_id = MMU_LL_PSRAM_MMU_ID;
}
mmu_hal_map_region(mmu_id, target, vaddr_start, paddr_start, size, &actual_mapped_len);
return actual_mapped_len;
}
#else
FORCE_INLINE_ATTR uint32_t s_mapping_operation(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
{
uint32_t actual_mapped_len = 0;
mmu_hal_map_region(0, target, vaddr_start, paddr_start, size, &actual_mapped_len);
#if (SOC_MMU_PERIPH_NUM == 2)
#if !CONFIG_FREERTOS_UNICORE
mmu_hal_map_region(1, target, vaddr_start, paddr_start, size, &actual_mapped_len);
#endif // #if !CONFIG_FREERTOS_UNICORE
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
return actual_mapped_len;
}
#endif
static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t vaddr_start, esp_paddr_t paddr_start, uint32_t size)
{
/**
@ -387,16 +418,7 @@ static void IRAM_ATTR NOINLINE_ATTR s_do_mapping(mmu_target_t target, uint32_t v
*/
spi_flash_disable_interrupts_caches_and_other_cpu();
uint32_t actual_mapped_len = 0;
mmu_hal_map_region(0, target, vaddr_start, paddr_start, size, &actual_mapped_len);
#if (SOC_MMU_PERIPH_NUM == 2)
#if !CONFIG_FREERTOS_UNICORE
#ifndef CONFIG_IDF_TARGET_ESP32P4 // for spi flash mmap, we always use flash mmu
//TODO: IDF-7509
mmu_hal_map_region(1, target, vaddr_start, paddr_start, size, &actual_mapped_len);
#endif
#endif // #if !CONFIG_FREERTOS_UNICORE
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
uint32_t actual_mapped_len = s_mapping_operation(target, vaddr_start, paddr_start, size);
cache_bus_mask_t bus_mask = cache_ll_l1_get_bus(0, vaddr_start, size);
cache_ll_l1_enable_bus(0, bus_mask);
@ -532,22 +554,16 @@ esp_err_t esp_mmu_map(esp_paddr_t paddr_start, size_t size, mmu_target_t target,
new_block->laddr_end = new_block->laddr_start + aligned_size;
new_block->size = aligned_size;
new_block->caps = caps;
#if CONFIG_IDF_TARGET_ESP32P4
//TODO: IDF-7509
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_FLASH);
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_FLASH);
#else
if (caps & MMU_MEM_CAP_EXEC) {
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION);
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION);
} else {
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA);
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA);
}
#endif
new_block->paddr_start = paddr_start;
new_block->paddr_end = paddr_start + aligned_size;
new_block->target = target;
if (caps & MMU_MEM_CAP_EXEC) {
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_INSTRUCTION, target);
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_INSTRUCTION, target);
} else {
new_block->vaddr_start = mmu_ll_laddr_to_vaddr(new_block->laddr_start, MMU_VADDR_DATA, target);
new_block->vaddr_end = mmu_ll_laddr_to_vaddr(new_block->laddr_end, MMU_VADDR_DATA, target);
}
//do mapping
s_do_mapping(target, new_block->vaddr_start, paddr_start, aligned_size);
@ -567,6 +583,32 @@ err:
}
#if MMU_LL_MMU_PER_TARGET
FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
{
uint32_t mmu_id = 0;
mmu_target_t target = mmu_ll_vaddr_to_target(vaddr_start);
if (target == MMU_TARGET_FLASH0) {
mmu_id = MMU_LL_FLASH_MMU_ID;
} else {
mmu_id = MMU_LL_PSRAM_MMU_ID;
}
mmu_hal_unmap_region(mmu_id, vaddr_start, size);
}
#else
FORCE_INLINE_ATTR void s_unmapping_operation(uint32_t vaddr_start, uint32_t size)
{
mmu_hal_unmap_region(0, vaddr_start, size);
#if (SOC_MMU_PERIPH_NUM == 2)
#if !CONFIG_FREERTOS_UNICORE
mmu_hal_unmap_region(1, vaddr_start, size);
#endif // #if !CONFIG_FREERTOS_UNICORE
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
}
#endif
static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_t size)
{
/**
@ -576,15 +618,7 @@ static void IRAM_ATTR NOINLINE_ATTR s_do_unmapping(uint32_t vaddr_start, uint32_
*/
spi_flash_disable_interrupts_caches_and_other_cpu();
mmu_hal_unmap_region(0, vaddr_start, size);
#if (SOC_MMU_PERIPH_NUM == 2)
#if !CONFIG_FREERTOS_UNICORE
#ifndef CONFIG_IDF_TARGET_ESP32P4 // for flash mmap, we always use flash mmu
//TODO: IDF-7509
mmu_hal_unmap_region(1, vaddr_start, size);
#endif
#endif // #if !CONFIG_FREERTOS_UNICORE
#endif // #if (SOC_MMU_PERIPH_NUM == 2)
s_unmapping_operation(vaddr_start, size);
//enable Cache, after this function, internal RAM access is no longer mandatory
spi_flash_enable_interrupts_caches_and_other_cpu();

View File

@ -18,17 +18,17 @@ const mmu_mem_region_t g_mmu_mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM] = {
[0] = {
.start = SOC_MMU_FLASH_LINEAR_ADDRESS_LOW,
.end = SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH,
.size = SOC_MMU_FLASH_LINEAR_ADDRESS_SIZE,
.size = BUS_SIZE(SOC_MMU_FLASH_LINEAR),
.bus_id = CACHE_BUS_IBUS0 | CACHE_BUS_DBUS0,
.targets = MMU_TARGET_FLASH0,
.caps = MMU_MEM_CAP_FLASH | MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
.caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
},
[1] = {
.start = SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW,
.end = SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH,
.size = SOC_MMU_PSRAM_LINEAR_ADDRESS_SIZE,
.size = BUS_SIZE(SOC_MMU_PSRAM_LINEAR),
.bus_id = CACHE_BUS_IBUS1 | CACHE_BUS_DBUS1,
.targets = MMU_TARGET_PSRAM0,
.caps = MMU_MEM_CAP_PSRAM | MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
.caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_WRITE | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
},
};

View File

@ -55,7 +55,6 @@ typedef struct test_block_info_ {
} test_block_info_t;
static LIST_HEAD(test_block_list_head_, test_block_info_) test_block_head;
static DRAM_ATTR uint8_t sector_buf[TEST_BLOCK_SIZE];
static void s_fill_random_data(uint8_t *buffer, size_t size, int random_seed)
@ -66,7 +65,7 @@ static void s_fill_random_data(uint8_t *buffer, size_t size, int random_seed)
}
}
static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int random_seed)
static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int random_seed, uint8_t *flash_ref_buf)
{
srand(random_seed);
uint8_t *test_ptr = mblock_ptr;
@ -77,7 +76,7 @@ static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int ran
printf("i: %d\n", i);
printf("test_data: %d\n", test_data);
printf("test_ptr[%d]: %d\n", i, test_ptr[i]);
printf("sector_buf[%d]: %d\n", i, sector_buf[i]);
printf("flash_ref_buf[%d]: %d\n", i, flash_ref_buf[i]);
ESP_EARLY_LOGE(TAG, "FAIL!!!!!!");
return false;
}
@ -87,6 +86,9 @@ static bool s_test_mmap_data_by_random(uint8_t *mblock_ptr, size_t size, int ran
TEST_CASE("test all readable vaddr can map to flash", "[mmu]")
{
uint8_t *sector_buf = heap_caps_calloc(1, TEST_BLOCK_SIZE, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
TEST_ASSERT(sector_buf);
//Get the partition used for SPI1 erase operation
const esp_partition_t *part = s_get_partition();
ESP_LOGI(TAG, "found partition '%s' at offset 0x%"PRIx32" with size 0x%"PRIx32, part->label, part->address, part->size);
@ -113,7 +115,7 @@ TEST_CASE("test all readable vaddr can map to flash", "[mmu]")
ret = esp_mmu_map(part->address, TEST_BLOCK_SIZE, MMU_TARGET_FLASH0, MMU_MEM_CAP_READ, 0, &ptr);
if (ret == ESP_OK) {
ESP_LOGI(TAG, "ptr is %p", ptr);
bool success = s_test_mmap_data_by_random((uint8_t *)ptr, sizeof(sector_buf), test_seed);
bool success = s_test_mmap_data_by_random((uint8_t *)ptr, sizeof(sector_buf), test_seed, sector_buf);
TEST_ASSERT(success);
} else if (ret == ESP_ERR_NOT_FOUND) {
free(block_info);
@ -138,6 +140,8 @@ TEST_CASE("test all readable vaddr can map to flash", "[mmu]")
block_to_free = LIST_NEXT(block_to_free, entries);
free(temp);
}
free(sector_buf);
}

View File

@ -5,3 +5,4 @@ CONFIG_PARTITION_TABLE_CUSTOM_FILENAME="partitions.csv"
CONFIG_PARTITION_TABLE_FILENAME="partitions.csv"
CONFIG_COMPILER_DUMP_RTL_FILES=y
CONFIG_HAL_ASSERTION_SILENT=y

View File

@ -38,11 +38,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_DATA) {
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;

View File

@ -36,11 +36,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_DATA) {
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
@ -371,7 +373,12 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
HAL_ASSERT(shift_code);
}
uint32_t laddr = entry_id << shift_code;
return mmu_ll_laddr_to_vaddr(laddr, type);
/**
* For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
* Here we just pass MMU_TARGET_FLASH0 to get vaddr
*/
return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
}
#ifdef __cplusplus

View File

@ -36,11 +36,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_DATA) {
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
@ -309,7 +311,11 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
(void)mmu_id;
uint32_t laddr = entry_id << 16;
return mmu_ll_laddr_to_vaddr(laddr, type);
/**
* For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
* Here we just pass MMU_TARGET_FLASH0 to get vaddr
*/
return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
}
#ifdef __cplusplus

View File

@ -36,11 +36,14 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
(void)vaddr_type;
//On ESP32C6, I/D share the same vaddr range
return SOC_MMU_IBUS_VADDR_BASE | laddr;
}
@ -391,7 +394,12 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
HAL_ASSERT(shift_code);
}
uint32_t laddr = entry_id << shift_code;
return mmu_ll_laddr_to_vaddr(laddr, type);
/**
* For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
* Here we just pass MMU_TARGET_FLASH0 to get vaddr
*/
return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
}
#ifdef __cplusplus

View File

@ -37,11 +37,14 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
(void)vaddr_type;
//On ESP32C6, I/D share the same vaddr range
return SOC_MMU_IBUS_VADDR_BASE | laddr;
}
@ -417,7 +420,12 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
HAL_ASSERT(shift_code);
}
uint32_t laddr = entry_id << shift_code;
return mmu_ll_laddr_to_vaddr(laddr, type);
/**
* For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
* Here we just pass MMU_TARGET_FLASH0 to get vaddr
*/
return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
}

View File

@ -63,10 +63,10 @@ static inline cache_bus_mask_t cache_ll_l1_get_bus(uint32_t cache_id, uint32_t v
cache_bus_mask_t mask = 0;
uint32_t vaddr_end = vaddr_start + len - 1;
if (vaddr_start >= IRAM0_CACHE_ADDRESS_LOW && vaddr_end < SINGLE_BANK_CACHE_ADDRESS_HIGH) {
if (vaddr_start >= DRAM_FLASH_ADDRESS_LOW && vaddr_end < DRAM_FLASH_ADDRESS_HIGH) {
mask |= CACHE_BUS_IBUS0;
mask |= CACHE_BUS_DBUS0;
} else if (vaddr_start >= DUAL_BANK_CACHE_ADDRESS_LOW && vaddr_end < DUAL_BANK_CACHE_ADDRESS_HIGH) {
} else if (vaddr_start >= DRAM_PSRAM_ADDRESS_LOW && vaddr_end < DRAM_PSRAM_ADDRESS_HIGH) {
mask |= CACHE_BUS_IBUS1;
mask |= CACHE_BUS_DBUS1;
} else {

View File

@ -20,6 +20,12 @@
extern "C" {
#endif
///< MMU is per target
#define MMU_LL_MMU_PER_TARGET 1
#define MMU_LL_FLASH_MMU_ID 0
#define MMU_LL_PSRAM_MMU_ID 1
/**
* Convert MMU virtual address to linear address
*
@ -29,7 +35,7 @@ extern "C" {
*/
static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
{
return vaddr & SOC_MMU_LINEAR_FLASH_ADDR_MASK;
return vaddr & SOC_MMU_LINEAR_ADDR_MASK;
}
/**
@ -37,20 +43,44 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
uint32_t raw_laddr = (laddr & ~SOC_MMU_MEM_PHYSICAL_LINEAR_CAP);
(void)vaddr_type;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_FLASH) {
if (target == MMU_TARGET_FLASH0) {
vaddr_base = SOC_MMU_FLASH_VADDR_BASE;
} else {
vaddr_base = SOC_MMU_PSRAM_VADDR_BASE;
}
return vaddr_base | raw_laddr;
return vaddr_base | laddr;
}
/**
* Convert MMU virtual address to its target
*
* @param vaddr virtual address
*
* @return target paddr memory target
*/
__attribute__((always_inline))
static inline mmu_target_t mmu_ll_vaddr_to_target(uint32_t vaddr)
{
mmu_target_t target = MMU_TARGET_FLASH0;
if (ADDRESS_IN_DRAM_FLASH(vaddr)) {
target = MMU_TARGET_FLASH0;
} else if (ADDRESS_IN_DRAM_PSRAM(vaddr)) {
target = MMU_TARGET_PSRAM0;
} else {
HAL_ASSERT(false);
}
return target;
}
__attribute__((always_inline)) static inline bool mmu_ll_cache_encryption_enabled(void)
@ -83,9 +113,7 @@ static inline mmu_page_size_t mmu_ll_get_page_size(uint32_t mmu_id)
__attribute__((always_inline))
static inline void mmu_ll_set_page_size(uint32_t mmu_id, uint32_t size)
{
(void)mmu_id;
(void)size;
return;
HAL_ASSERT(size == MMU_PAGE_64KB);
}
/**
@ -105,7 +133,7 @@ static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t
(void)mmu_id;
(void)type;
uint32_t vaddr_end = vaddr_start + len - 1;
return (ADDRESS_IN_IRAM0_CACHE(vaddr_start) && ADDRESS_IN_IRAM0_CACHE(vaddr_end)) || (ADDRESS_IN_DRAM0_CACHE(vaddr_start) && ADDRESS_IN_DRAM0_CACHE(vaddr_end));
return (ADDRESS_IN_DRAM_FLASH(vaddr_start) && ADDRESS_IN_DRAM_FLASH(vaddr_end)) || (ADDRESS_IN_DRAM_PSRAM(vaddr_start) && ADDRESS_IN_DRAM_PSRAM(vaddr_end));
}
/**
@ -120,10 +148,18 @@ static inline bool mmu_ll_check_valid_ext_vaddr_region(uint32_t mmu_id, uint32_t
*/
static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t paddr_start, uint32_t len)
{
(void)mmu_id;
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) &&
(len < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM)) &&
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * MMU_MAX_PADDR_PAGE_NUM));
int max_paddr_page_num = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
max_paddr_page_num = MMU_FLASH_MAX_PADDR_PAGE_NUM;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
max_paddr_page_num = MMU_PSRAM_MAX_PADDR_PAGE_NUM;
} else {
HAL_ASSERT(false);
}
return (paddr_start < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
(len < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num)) &&
((paddr_start + len - 1) < (mmu_ll_get_page_size(mmu_id) * max_paddr_page_num));
}
/**
@ -138,7 +174,6 @@ static inline bool mmu_ll_check_valid_paddr_region(uint32_t mmu_id, uint32_t pad
__attribute__((always_inline))
static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
{
(void)mmu_id;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
switch (page_size) {
@ -173,7 +208,6 @@ static inline uint32_t mmu_ll_get_entry_id(uint32_t mmu_id, uint32_t vaddr)
__attribute__((always_inline))
static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_target_t target)
{
(void)mmu_id;
(void)target;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
@ -206,30 +240,32 @@ static inline uint32_t mmu_ll_format_paddr(uint32_t mmu_id, uint32_t paddr, mmu_
*/
__attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mmu_id, uint32_t entry_id, uint32_t mmu_val, mmu_target_t target)
{
(void)mmu_id;
(void)target;
uint32_t index_reg, content_reg, sensitive, invalid_mask;
if (mmu_id == 0) { // flash mmu
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t sensitive = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
sensitive = MMU_SENSITIVE;
invalid_mask = MMU_INVALID_MASK;
} else { // psram mmu
sensitive = MMU_FLASH_SENSITIVE;
mmu_val |= MMU_FLASH_VALID;
mmu_val |= MMU_ACCESS_FLASH;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
sensitive = DMMU_SENSITIVE;
invalid_mask = DMMU_INVALID_MASK;
mmu_val |= MMU_PSRAM_ACCESS_SPIRAM;
sensitive = MMU_PSRAM_SENSITIVE;
mmu_val |= MMU_PSRAM_VALID;
mmu_val |= MMU_ACCESS_PSRAM;
} else {
HAL_ASSERT(false);
}
uint32_t mmu_raw_value;
if (mmu_ll_cache_encryption_enabled()) {
mmu_val |= sensitive;
}
/* Note: for ESP32-P4, invert invalid bit for compatible with upper-layer software */
mmu_raw_value = mmu_val ^ invalid_mask;
REG_WRITE(index_reg, entry_id);
REG_WRITE(content_reg, mmu_raw_value);
REG_WRITE(content_reg, mmu_val);
}
/**
@ -241,29 +277,24 @@ __attribute__((always_inline)) static inline void mmu_ll_write_entry(uint32_t mm
*/
__attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
uint32_t mmu_raw_value;
uint32_t ret;
uint32_t index_reg, content_reg, sensitive, invalid_mask;
if (mmu_id == 0) { // flash mmu
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t mmu_val = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
sensitive = MMU_SENSITIVE;
invalid_mask = MMU_INVALID_MASK;
} else { // psram mmu
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
sensitive = DMMU_SENSITIVE;
invalid_mask = DMMU_INVALID_MASK;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
mmu_raw_value = REG_READ(content_reg);
if (mmu_ll_cache_encryption_enabled()) {
mmu_raw_value &= ~sensitive;
}
/* Note: for ESP32-P4, invert invalid bit for compatible with upper-layer software */
ret = mmu_raw_value ^ invalid_mask;
return ret;
mmu_val = REG_READ(content_reg);
return mmu_val;
}
/**
@ -274,16 +305,24 @@ __attribute__((always_inline)) static inline uint32_t mmu_ll_read_entry(uint32_t
*/
__attribute__((always_inline)) static inline void mmu_ll_set_entry_invalid(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t index_reg, content_reg;
if (mmu_id == 0) { // flash mmu
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t invalid_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
} else { // psram mmu
invalid_mask = MMU_FLASH_INVALID;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
invalid_mask = MMU_PSRAM_INVALID;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
REG_WRITE(content_reg, MMU_INVALID);
REG_WRITE(content_reg, invalid_mask);
}
/**
@ -309,21 +348,32 @@ static inline void mmu_ll_unmap_all(uint32_t mmu_id)
*/
static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
{
uint32_t mmu_raw_value;
uint32_t index_reg, content_reg, invalid_mask;
if (mmu_id == 0) { // flash mmu
uint32_t mmu_raw_value = 0;
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t valid_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
invalid_mask = MMU_INVALID_MASK;
} else { // psram mmu
valid_mask = MMU_FLASH_VALID;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
invalid_mask = DMMU_INVALID_MASK;
valid_mask = MMU_PSRAM_VALID;
} else {
HAL_ASSERT(false);
}
REG_WRITE(index_reg, entry_id);
mmu_raw_value = REG_READ(content_reg);
/* Note: for ESP32-P4, the invalid-bit of MMU: 0 for invalid, 1 for valid */
return (mmu_raw_value & invalid_mask) ? true : false;
bool is_valid = false;
if (mmu_raw_value & valid_mask) {
is_valid = true;
}
return is_valid;
}
/**
@ -336,10 +386,18 @@ static inline bool mmu_ll_check_entry_valid(uint32_t mmu_id, uint32_t entry_id)
*/
static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t entry_id)
{
if (mmu_id == 0)
return MMU_TARGET_FLASH0;
else
return MMU_TARGET_PSRAM0;
(void)entry_id;
mmu_target_t target = MMU_TARGET_FLASH0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
target = MMU_TARGET_FLASH0;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
target = MMU_TARGET_PSRAM0;
} else {
HAL_ASSERT(false);
}
return target;
}
/**
@ -352,7 +410,6 @@ static inline mmu_target_t mmu_ll_get_entry_target(uint32_t mmu_id, uint32_t ent
*/
static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t entry_id)
{
(void)mmu_id;
HAL_ASSERT(entry_id < MMU_ENTRY_NUM);
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
@ -373,13 +430,14 @@ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t e
default:
HAL_ASSERT(shift_code);
}
if (mmu_id == 0) {
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
REG_WRITE(SPI_MEM_C_MMU_ITEM_INDEX_REG, entry_id);
return (REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) << shift_code;
} else {
return (REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_FLASH_VALID_VAL_MASK) << shift_code;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
REG_WRITE(SPI_MEM_S_MMU_ITEM_INDEX_REG, entry_id);
return (REG_READ(SPI_MEM_S_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) << shift_code;
return (REG_READ(SPI_MEM_S_MMU_ITEM_CONTENT_REG) & MMU_PSRAM_VALID_VAL_MASK) << shift_code;
} else {
HAL_ASSERT(false);
}
}
@ -396,13 +454,27 @@ static inline uint32_t mmu_ll_entry_id_to_paddr_base(uint32_t mmu_id, uint32_t e
*/
static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint32_t mmu_val, mmu_target_t target)
{
//TODO, should check PSRAM as well?
(void)mmu_id;
uint32_t index_reg = 0;
uint32_t content_reg = 0;
uint32_t valid_val_mask = 0;
if (mmu_id == MMU_LL_FLASH_MMU_ID) {
index_reg = SPI_MEM_C_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_C_MMU_ITEM_CONTENT_REG;
valid_val_mask = MMU_FLASH_VALID_VAL_MASK;
} else if (mmu_id == MMU_LL_PSRAM_MMU_ID) {
index_reg = SPI_MEM_S_MMU_ITEM_INDEX_REG;
content_reg = SPI_MEM_S_MMU_ITEM_CONTENT_REG;
valid_val_mask = MMU_PSRAM_VALID_VAL_MASK;
} else {
HAL_ASSERT(false);
}
for (int i = 0; i < MMU_ENTRY_NUM; i++) {
if (mmu_ll_check_entry_valid(mmu_id, i)) {
if (mmu_ll_get_entry_target(mmu_id, i) == target) {
REG_WRITE(SPI_MEM_C_MMU_ITEM_INDEX_REG, i);
if ((REG_READ(SPI_MEM_C_MMU_ITEM_CONTENT_REG) & MMU_VALID_VAL_MASK) == mmu_val) {
REG_WRITE(index_reg, i);
if ((REG_READ(content_reg) & valid_val_mask) == mmu_val) {
return i;
}
}
@ -421,7 +493,6 @@ static inline int mmu_ll_find_entry_id_based_on_map_value(uint32_t mmu_id, uint3
*/
static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t entry_id, mmu_vaddr_t type)
{
(void)mmu_id;
mmu_page_size_t page_size = mmu_ll_get_page_size(mmu_id);
uint32_t shift_code = 0;
@ -442,7 +513,7 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
HAL_ASSERT(shift_code);
}
uint32_t laddr = entry_id << shift_code;
return mmu_ll_laddr_to_vaddr(laddr, type);
return mmu_ll_laddr_to_vaddr(laddr, type, (mmu_id == MMU_LL_FLASH_MMU_ID) ? MMU_TARGET_FLASH0 : MMU_TARGET_PSRAM0);
}
#ifdef __cplusplus

View File

@ -37,11 +37,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_DATA) {
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;

View File

@ -36,11 +36,13 @@ static inline uint32_t mmu_ll_vaddr_to_laddr(uint32_t vaddr)
*
* @param laddr linear address
* @param vaddr_type virtual address type, could be instruction type or data type. See `mmu_vaddr_t`
* @param target virtual address aimed physical memory target, not used
*
* @return virtual address
*/
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type)
static inline uint32_t mmu_ll_laddr_to_vaddr(uint32_t laddr, mmu_vaddr_t vaddr_type, mmu_target_t target)
{
(void)target;
uint32_t vaddr_base = 0;
if (vaddr_type == MMU_VADDR_DATA) {
vaddr_base = SOC_MMU_DBUS_VADDR_BASE;
@ -310,7 +312,11 @@ static inline uint32_t mmu_ll_entry_id_to_vaddr_base(uint32_t mmu_id, uint32_t e
(void)mmu_id;
uint32_t laddr = entry_id << 16;
return mmu_ll_laddr_to_vaddr(laddr, type);
/**
* For `mmu_ll_laddr_to_vaddr`, target is for compatibility on this chip.
* Here we just pass MMU_TARGET_FLASH0 to get vaddr
*/
return mmu_ll_laddr_to_vaddr(laddr, type, MMU_TARGET_FLASH0);
}
#ifdef __cplusplus

View File

@ -7,7 +7,6 @@
#pragma once
#include "esp_bit_defs.h"
#include "sdkconfig.h" //To remove, TODO: IDF-7509
#ifdef __cplusplus
extern "C" {
@ -19,10 +18,6 @@ typedef enum {
MMU_MEM_CAP_WRITE = BIT(2),
MMU_MEM_CAP_32BIT = BIT(3),
MMU_MEM_CAP_8BIT = BIT(4),
#if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7509
MMU_MEM_CAP_FLASH = BIT(5),
MMU_MEM_CAP_PSRAM = BIT(5),
#endif
} mmu_mem_caps_t;
/**
@ -41,10 +36,6 @@ typedef enum {
typedef enum {
MMU_VADDR_DATA = BIT(0),
MMU_VADDR_INSTRUCTION = BIT(1),
#if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7509
MMU_VADDR_FLASH = BIT(2),
MMU_VADDR_PSRAM = BIT(3),
#endif
} mmu_vaddr_t;
/**

View File

@ -16,12 +16,11 @@
void mmu_hal_init(void)
{
//TODO: IDF-7509
#if CONFIG_ESP_ROM_RAM_APP_NEEDS_MMU_INIT || CONFIG_IDF_TARGET_ESP32P4
#if CONFIG_ESP_ROM_RAM_APP_NEEDS_MMU_INIT
ROM_Boot_Cache_Init();
#endif
//TODO: IDF-7509
//TODO: IDF-7516
#if CONFIG_IDF_TARGET_ESP32P4
Cache_Invalidate_All(CACHE_MAP_L2_CACHE);
#endif
@ -32,10 +31,15 @@ void mmu_hal_init(void)
void mmu_hal_unmap_all(void)
{
#if MMU_LL_MMU_PER_TARGET
mmu_ll_unmap_all(MMU_LL_FLASH_MMU_ID);
mmu_ll_unmap_all(MMU_LL_PSRAM_MMU_ID);
#else
mmu_ll_unmap_all(0);
#if !CONFIG_FREERTOS_UNICORE
mmu_ll_unmap_all(1);
#endif
#endif
}
uint32_t mmu_hal_pages_to_bytes(uint32_t mmu_id, uint32_t page_num)
@ -90,11 +94,6 @@ void mmu_hal_map_region(uint32_t mmu_id, mmu_target_t mem_type, uint32_t vaddr,
uint32_t entry_id = 0;
uint32_t mmu_val; //This is the physical address in the format that MMU supported
//TODO: IDF-7509
#if CONFIG_IDF_TARGET_ESP32P4
uint32_t vaddr_orig = vaddr;
#endif
*out_len = mmu_hal_pages_to_bytes(mmu_id, page_num);
mmu_val = mmu_ll_format_paddr(mmu_id, paddr, mem_type);
@ -105,22 +104,11 @@ void mmu_hal_map_region(uint32_t mmu_id, mmu_target_t mem_type, uint32_t vaddr,
mmu_val++;
page_num--;
}
//TODO: IDF-7509
#if CONFIG_IDF_TARGET_ESP32P4
Cache_Invalidate_Addr(CACHE_MAP_L1_DCACHE | CACHE_MAP_L2_CACHE, vaddr_orig, len);
#endif
}
void mmu_hal_unmap_region(uint32_t mmu_id, uint32_t vaddr, uint32_t len)
{
uint32_t page_size_in_bytes = mmu_hal_pages_to_bytes(mmu_id, 1);
//TODO: IDF-7509
#if CONFIG_IDF_TARGET_ESP32P4
uint32_t vaddr_orig = vaddr;
#endif
HAL_ASSERT(vaddr % page_size_in_bytes == 0);
HAL_ASSERT(mmu_hal_check_valid_ext_vaddr_region(mmu_id, vaddr, len, MMU_VADDR_DATA | MMU_VADDR_INSTRUCTION));
@ -132,11 +120,6 @@ void mmu_hal_unmap_region(uint32_t mmu_id, uint32_t vaddr, uint32_t len)
vaddr += page_size_in_bytes;
page_num--;
}
//TODO: IDF-7509
#if CONFIG_IDF_TARGET_ESP32P4
Cache_Invalidate_Addr(CACHE_MAP_L1_DCACHE | CACHE_MAP_L2_CACHE, vaddr_orig, len);
#endif
}
bool mmu_hal_vaddr_to_paddr(uint32_t mmu_id, uint32_t vaddr, uint32_t *out_paddr, mmu_target_t *out_target)

View File

@ -29,21 +29,16 @@ extern "C" {
#define DRAM_FLASH_ADDRESS_LOW DRAM0_CACHE_ADDRESS_LOW
#define DRAM_FLASH_ADDRESS_HIGH 0x44000000
#define SINGLE_BANK_CACHE_ADDRESS_LOW 0x40000000
#define SINGLE_BANK_CACHE_ADDRESS_HIGH 0x44000000
#define DUAL_BANK_CACHE_ADDRESS_LOW 0x48000000
#define DUAL_BANK_CACHE_ADDRESS_HIGH 0x4C000000
#define DRAM_PSRAM_ADDRESS_LOW 0x48000000
#define DRAM_PSRAM_ADDRESS_HIGH 0x4C000000
#define BUS_SIZE(bus_name) (bus_name##_ADDRESS_HIGH - bus_name##_ADDRESS_LOW)
#define ADDRESS_IN_BUS(bus_name, vaddr) ((vaddr) >= bus_name##_ADDRESS_LOW && (vaddr) < bus_name##_ADDRESS_HIGH)
#define ADDRESS_IN_IRAM0(vaddr) ADDRESS_IN_BUS(IRAM0, vaddr)
#define ADDRESS_IN_IRAM0_CACHE(vaddr) ADDRESS_IN_BUS(IRAM0_CACHE, vaddr)
#define ADDRESS_IN_DRAM0(vaddr) ADDRESS_IN_BUS(DRAM0, vaddr)
#define ADDRESS_IN_DRAM0_CACHE(vaddr) ADDRESS_IN_BUS(DRAM0_CACHE, vaddr)
#define BUS_IRAM0_CACHE_SIZE BUS_SIZE(IRAM0_CACHE)
#define BUS_DRAM0_CACHE_SIZE BUS_SIZE(DRAM0_CACHE)
#define ADDRESS_IN_DRAM_FLASH(vaddr) ADDRESS_IN_BUS(DRAM_FLASH, vaddr)
#define ADDRESS_IN_DRAM_PSRAM(vaddr) ADDRESS_IN_BUS(DRAM_PSRAM, vaddr)
//TODO, remove these cache function dependencies
#define CACHE_IROM_MMU_START 0
@ -62,91 +57,79 @@ extern "C" {
#define MMU_BUS_START(i) 0
#define MMU_BUS_SIZE(i) (0x400 * 4)
#define MMU_MSPI_ACCESS_FLASH 0
#define MMU_MSPI_ACCESS_SPIRAM BIT(10)
#define MMU_MSPI_VALID BIT(12)
#define MMU_MSPI_INVALID 0
#define MMU_MSPI_SENSITIVE BIT(13)
#define MMU_PSRAM_ACCESS_SPIRAM BIT(10)
#define MMU_FLASH_VALID BIT(12)
#define MMU_FLASH_INVALID 0
#define MMU_PSRAM_VALID BIT(11)
#define MMU_PSRAM_INVALID 0
#define MMU_ACCESS_FLASH 0
#define MMU_ACCESS_PSRAM BIT(10)
#define MMU_FLASH_SENSITIVE BIT(13)
#define MMU_PSRAM_SENSITIVE BIT(12)
#define MMU_ACCESS_FLASH MMU_MSPI_ACCESS_FLASH
#define MMU_ACCESS_SPIRAM MMU_MSPI_ACCESS_SPIRAM
#define MMU_VALID MMU_MSPI_VALID
#define MMU_SENSITIVE MMU_MSPI_SENSITIVE
#define DMMU_SENSITIVE MMU_PSRAM_SENSITIVE
#define MMU_INVALID_MASK MMU_MSPI_VALID
#define MMU_INVALID MMU_MSPI_INVALID
#define DMMU_INVALID_MASK MMU_PSRAM_VALID
#define DMMU_INVALID 0
#define CACHE_MAX_SYNC_NUM 0x400000
#define CACHE_MAX_LOCK_NUM 0x8000
/**
* MMU entry valid bit mask for mapping value. For an entry:
* valid bit + value bits
* valid bit is BIT(9), so value bits are 0x1ff
* MMU entry valid bit mask for mapping value.
* - For a Flash MMU entry:
* physical page number is BIT(0)~BIT(10), so value bits are 0x7ff
* - For a PSRAM MMU entry:
* physical page number is BIT(0)~BIT(9), so value bits are 0x3ff
*/
#define MMU_VALID_VAL_MASK 0x3ff
#define MMU_FLASH_VALID_VAL_MASK 0x7ff
#define MMU_PSRAM_VALID_VAL_MASK 0x3ff
/**
* Max MMU available paddr page num.
* `MMU_MAX_PADDR_PAGE_NUM * SOC_MMU_PAGE_SIZE` means the max paddr address supported by the MMU. e.g.:
* 256 * 64KB, means MMU can support 16MB paddr at most
* 32768 * 64KB, means MMU can support 2GB paddr at most
*/
#define MMU_MAX_PADDR_PAGE_NUM 1024
#define MMU_FLASH_MAX_PADDR_PAGE_NUM 32768
#define MMU_PSRAM_MAX_PADDR_PAGE_NUM 16384
//MMU entry num
#define MMU_ENTRY_NUM 1024
/**
* This is the mask used for mapping. e.g.:
* 0x4200_0000 & MMU_VADDR_MASK
* 0x4000_0000 & MMU_VADDR_MASK
*/
#define MMU_VADDR_MASK ((SOC_MMU_PAGE_SIZE) * MMU_ENTRY_NUM - 1)
#define SOC_MMU_FLASH_VADDR_BASE 0x40000000
#define SOC_MMU_PSRAM_VADDR_BASE 0x48000000
#define SOC_MMU_FLASH_VADDR_START 0x40000000
#define SOC_MMU_FLASH_VADDR_END 0x44000000
#define SOC_MMU_PSRAM_VADDR_START 0x48000000
#define SOC_MMU_PSRAM_VADDR_END 0x4C000000
/*------------------------------------------------------------------------------
* MMU Linear Address
*----------------------------------------------------------------------------*/
/**
* - 64KB MMU page size: the last 0xFFFF, which is the offset
* - 1024 MMU entries, needs 0x3F to hold it.
* - 1024 MMU entries for flash, 1024 MMU entries for psram, needs 0xFFF to hold it.
*
* Therefore, 0x3F,FFFF
*/
#define SOC_MMU_MEM_PHYSICAL_LINEAR_CAP (SOC_MMU_FLASH_VADDR_BASE ^ SOC_MMU_PSRAM_VADDR_BASE)
#define SOC_MMU_LINEAR_FLASH_ADDR_MASK (0xBFFFFFF)
#define SOC_MMU_LINEAR_PARSM_ADDR_MASK (0xBFFFFFF | SOC_MMU_MEM_PHYSICAL_LINEAR_CAP)
#define SOC_MMU_LINEAR_ADDR_MASK 0xFFFFFFF
/**
* - If high linear address isn't 0, this means MMU can recognize these addresses
* - If high linear address is 0, this means MMU linear address range is equal or smaller than vaddr range.
* Under this condition, we use the max linear space.
*/
#define SOC_MMU_FLASH_LINEAR_ADDRESS_LOW (SOC_MMU_FLASH_VADDR_START & SOC_MMU_LINEAR_FLASH_ADDR_MASK)
#define SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH (SOC_MMU_LINEAR_FLASH_ADDR_MASK + 1)
#define SOC_MMU_FLASH_LINEAR_ADDRESS_SIZE (SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH - SOC_MMU_FLASH_LINEAR_ADDRESS_LOW)
#define SOC_MMU_FLASH_LINEAR_ADDRESS_LOW (DRAM_FLASH_ADDRESS_LOW & SOC_MMU_LINEAR_ADDR_MASK)
#if ((DRAM_FLASH_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK) > 0)
#define SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH (DRAM_FLASH_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK)
#else
#define SOC_MMU_FLASH_LINEAR_ADDRESS_HIGH (SOC_MMU_LINEAR_ADDR_MASK + 1)
#endif
#define SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW (SOC_MMU_PSRAM_VADDR_START & SOC_MMU_LINEAR_PARSM_ADDR_MASK)
#define SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH (SOC_MMU_LINEAR_PARSM_ADDR_MASK + 1)
#define SOC_MMU_PSRAM_LINEAR_ADDRESS_SIZE (SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH - SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW)
/**
* I/D share the MMU linear address range
*/
_Static_assert((SOC_MMU_FLASH_LINEAR_ADDRESS_LOW & ~SOC_MMU_MEM_PHYSICAL_LINEAR_CAP) == (SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW & ~SOC_MMU_MEM_PHYSICAL_LINEAR_CAP), \
"IRAM0 and DRAM0 raw linear address should be same");
#define SOC_MMU_PSRAM_LINEAR_ADDRESS_LOW (DRAM_PSRAM_ADDRESS_LOW & SOC_MMU_LINEAR_ADDR_MASK)
#if ((DRAM_PSRAM_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK) > 0)
#define SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH (DRAM_PSRAM_ADDRESS_HIGH & SOC_MMU_LINEAR_ADDR_MASK)
#else
#define SOC_MMU_PSRAM_LINEAR_ADDRESS_HIGH (SOC_MMU_LINEAR_ADDR_MASK + 1)
#endif
#ifdef __cplusplus

View File

@ -28,7 +28,7 @@
#if CONFIG_IDF_TARGET_ESP32
#include "esp_private/esp_cache_esp32_private.h"
#elif CONFIG_IDF_TARGET_ESP32P4
//TODO: IDF-7509
//TODO: IDF-7516
#include "esp32p4/rom/cache.h"
#endif
@ -82,12 +82,7 @@ esp_err_t spi_flash_mmap(size_t src_addr, size_t size, spi_flash_mmap_memory_t m
} else {
caps = MMU_MEM_CAP_READ | MMU_MEM_CAP_8BIT;
}
#if CONFIG_IDF_TARGET_ESP32P4
//TODO: IDF-7509
ret = esp_mmu_map(src_addr, size, MMU_TARGET_FLASH0, MMU_MEM_CAP_FLASH | caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
#else
ret = esp_mmu_map(src_addr, size, MMU_TARGET_FLASH0, caps, ESP_MMU_MMAP_FLAG_PADDR_SHARED, &ptr);
#endif
if (ret == ESP_OK) {
vaddr_list[0] = (uint32_t)ptr;
block->list_num = 1;
@ -380,7 +375,7 @@ IRAM_ATTR bool spi_flash_check_and_flush_cache(size_t start_addr, size_t length)
#else // CONFIG_IDF_TARGET_ESP32
if (vaddr != NULL) {
#if CONFIG_IDF_TARGET_ESP32P4
//TODO: IDF-7509
//TODO: IDF-7516
Cache_Invalidate_Addr(CACHE_MAP_L1_DCACHE | CACHE_MAP_L2_CACHE, (uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);
#else
cache_hal_invalidate_addr((uint32_t)vaddr, SPI_FLASH_MMU_PAGE_SIZE);