mirror of
https://github.com/espressif/esp-idf
synced 2025-03-10 09:39:10 -04:00
spi_flash: Remove 16KB free internal heap limit for esp_flash_read() into PSRAM
Allocation of the temporary internal buffer will now repeat until a small enough buffer can be allocated, and only fail if less than a 256 byte block of internal RAM is free. Adds unit test for the same, and generic test utility for creating memory pressure.
This commit is contained in:
parent
fb340940d3
commit
95f7b1985b
@ -497,11 +497,25 @@ esp_err_t IRAM_ATTR esp_flash_read(esp_flash_t *chip, void *buffer, uint32_t add
|
|||||||
bool direct_read = chip->host->supports_direct_read(chip->host, buffer);
|
bool direct_read = chip->host->supports_direct_read(chip->host, buffer);
|
||||||
uint8_t* temp_buffer = NULL;
|
uint8_t* temp_buffer = NULL;
|
||||||
|
|
||||||
|
//each time, we at most read this length
|
||||||
|
//after that, we release the lock to allow some other operations
|
||||||
|
size_t read_chunk_size = MIN(MAX_READ_CHUNK, length);
|
||||||
|
|
||||||
if (!direct_read) {
|
if (!direct_read) {
|
||||||
uint32_t length_to_allocate = MIN(MAX_READ_CHUNK, length);
|
/* Allocate temporary internal buffer to use for the actual read. If the preferred size
|
||||||
length_to_allocate = (length_to_allocate+3)&(~3);
|
doesn't fit in free internal memory, allocate the largest available free block.
|
||||||
temp_buffer = heap_caps_malloc(length_to_allocate, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
||||||
ESP_LOGV(TAG, "allocate temp buffer: %p (%d)", temp_buffer, length_to_allocate);
|
(May need to shrink read_chunk_size and retry due to race conditions with other tasks
|
||||||
|
also allocating from the heap.)
|
||||||
|
*/
|
||||||
|
unsigned retries = 5;
|
||||||
|
while(temp_buffer == NULL && retries--) {
|
||||||
|
read_chunk_size = MIN(read_chunk_size, heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT));
|
||||||
|
read_chunk_size = (read_chunk_size + 3) & ~3;
|
||||||
|
temp_buffer = heap_caps_malloc(read_chunk_size, MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
||||||
|
}
|
||||||
|
ESP_LOGV(TAG, "allocate temp buffer: %p (%d)", temp_buffer, read_chunk_size);
|
||||||
|
|
||||||
if (temp_buffer == NULL) {
|
if (temp_buffer == NULL) {
|
||||||
return ESP_ERR_NO_MEM;
|
return ESP_ERR_NO_MEM;
|
||||||
}
|
}
|
||||||
@ -516,9 +530,9 @@ esp_err_t IRAM_ATTR esp_flash_read(esp_flash_t *chip, void *buffer, uint32_t add
|
|||||||
}
|
}
|
||||||
//if required (dma buffer allocated), read to the buffer instead of the original buffer
|
//if required (dma buffer allocated), read to the buffer instead of the original buffer
|
||||||
uint8_t* buffer_to_read = (temp_buffer)? temp_buffer : buffer;
|
uint8_t* buffer_to_read = (temp_buffer)? temp_buffer : buffer;
|
||||||
//each time, we at most read this length
|
|
||||||
//after that, we release the lock to allow some other operations
|
// Length we will read this iteration is either the chunk size or the remaining length, whichever is smaller
|
||||||
uint32_t length_to_read = MIN(MAX_READ_CHUNK, length);
|
size_t length_to_read = MIN(read_chunk_size, length);
|
||||||
|
|
||||||
if (err == ESP_OK) {
|
if (err == ESP_OK) {
|
||||||
err = chip->chip_drv->read(chip, buffer_to_read, address, length_to_read);
|
err = chip->chip_drv->read(chip, buffer_to_read, address, length_to_read);
|
||||||
|
@ -698,11 +698,26 @@ static void test_write_large_buffer(esp_flash_t *chip, const uint8_t *source, si
|
|||||||
|
|
||||||
#ifdef CONFIG_SPIRAM_USE_MALLOC
|
#ifdef CONFIG_SPIRAM_USE_MALLOC
|
||||||
|
|
||||||
|
/* Utility: Read into a small internal RAM buffer using esp_flash_read() and compare what
|
||||||
|
we read with 'buffer' */
|
||||||
|
static void s_test_compare_flash_contents_small_reads(esp_flash_t *chip, const uint8_t *buffer, size_t offs, size_t len)
|
||||||
|
{
|
||||||
|
const size_t INTERNAL_BUF_SZ = 1024; // Should fit in internal RAM
|
||||||
|
uint8_t *ibuf = heap_caps_malloc(INTERNAL_BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
|
||||||
|
TEST_ASSERT_NOT_NULL(ibuf);
|
||||||
|
|
||||||
|
for (int i = 0; i < len; i += INTERNAL_BUF_SZ) {
|
||||||
|
size_t to_read = MIN(INTERNAL_BUF_SZ, len - i);
|
||||||
|
ESP_ERROR_CHECK( esp_flash_read(chip, ibuf, offs + i, to_read) );
|
||||||
|
TEST_ASSERT_EQUAL_HEX8_ARRAY(buffer + i, ibuf, to_read);
|
||||||
|
}
|
||||||
|
|
||||||
|
free(ibuf);
|
||||||
|
}
|
||||||
|
|
||||||
static void test_flash_read_large_psram_buffer(esp_flash_t *chip)
|
static void test_flash_read_large_psram_buffer(esp_flash_t *chip)
|
||||||
{
|
{
|
||||||
const size_t BUF_SZ = 256 * 1024; // Too large for internal RAM
|
const size_t BUF_SZ = 256 * 1024; // Too large for internal RAM
|
||||||
const size_t INTERNAL_BUF_SZ = 1024; // Should fit in internal RAM
|
|
||||||
_Static_assert(BUF_SZ % INTERNAL_BUF_SZ == 0, "should be a multiple");
|
|
||||||
const size_t TEST_OFFS = 0x1000; // Can be any offset, really
|
const size_t TEST_OFFS = 0x1000; // Can be any offset, really
|
||||||
|
|
||||||
uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
|
uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
|
||||||
@ -711,18 +726,41 @@ static void test_flash_read_large_psram_buffer(esp_flash_t *chip)
|
|||||||
ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
|
ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
|
||||||
|
|
||||||
// Read back the same into smaller internal memory buffer and check it all matches
|
// Read back the same into smaller internal memory buffer and check it all matches
|
||||||
uint8_t *ibuf = heap_caps_malloc(INTERNAL_BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_INTERNAL);
|
s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
|
||||||
TEST_ASSERT_NOT_NULL(ibuf);
|
|
||||||
|
|
||||||
for (int i = 0; i < BUF_SZ; i += INTERNAL_BUF_SZ) {
|
|
||||||
ESP_ERROR_CHECK( esp_flash_read(chip, ibuf, TEST_OFFS + i, INTERNAL_BUF_SZ) );
|
|
||||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(buf + i, ibuf, INTERNAL_BUF_SZ);
|
|
||||||
}
|
|
||||||
|
|
||||||
free(ibuf);
|
|
||||||
free(buf);
|
free(buf);
|
||||||
}
|
}
|
||||||
|
|
||||||
FLASH_TEST_CASE("esp_flash_read large PSRAM buffer", test_flash_read_large_psram_buffer);
|
FLASH_TEST_CASE("esp_flash_read large PSRAM buffer", test_flash_read_large_psram_buffer);
|
||||||
|
|
||||||
|
|
||||||
|
/* similar to above test, but perform it under memory pressure */
|
||||||
|
static void test_flash_read_large_psram_buffer_low_internal_mem(esp_flash_t *chip)
|
||||||
|
{
|
||||||
|
const size_t BUF_SZ = 256 * 1024; // Too large for internal RAM
|
||||||
|
const size_t REMAINING_INTERNAL = 1024; // Exhaust internal memory until maximum free block is less than this
|
||||||
|
const size_t TEST_OFFS = 0x8000;
|
||||||
|
|
||||||
|
/* Exhaust the available free internal memory */
|
||||||
|
test_utils_exhaust_memory_rec erec = test_utils_exhaust_memory(MALLOC_CAP_INTERNAL|MALLOC_CAP_8BIT, REMAINING_INTERNAL);
|
||||||
|
|
||||||
|
uint8_t *buf = heap_caps_malloc(BUF_SZ, MALLOC_CAP_8BIT|MALLOC_CAP_SPIRAM);
|
||||||
|
TEST_ASSERT_NOT_NULL(buf);
|
||||||
|
|
||||||
|
/* Calling esp_flash_read() here will need to allocate a small internal buffer,
|
||||||
|
so check it works. */
|
||||||
|
ESP_ERROR_CHECK( esp_flash_read(chip, buf, TEST_OFFS, BUF_SZ) );
|
||||||
|
|
||||||
|
test_utils_free_exhausted_memory(erec);
|
||||||
|
|
||||||
|
// Read back the same into smaller internal memory buffer and check it all matches
|
||||||
|
s_test_compare_flash_contents_small_reads(chip, buf, TEST_OFFS, BUF_SZ);
|
||||||
|
|
||||||
|
free(buf);
|
||||||
|
}
|
||||||
|
|
||||||
|
FLASH_TEST_CASE("esp_flash_read large PSRAM buffer low memory", test_flash_read_large_psram_buffer_low_internal_mem);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -257,3 +257,31 @@ esp_err_t test_utils_set_leak_level(size_t leak_level, esp_type_leak_t type, esp
|
|||||||
* return Leak level
|
* return Leak level
|
||||||
*/
|
*/
|
||||||
size_t test_utils_get_leak_level(esp_type_leak_t type, esp_comp_leak_t component);
|
size_t test_utils_get_leak_level(esp_type_leak_t type, esp_comp_leak_t component);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
typedef struct test_utils_exhaust_memory_record_s *test_utils_exhaust_memory_rec;
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Limit the largest free block of memory with a particular capability set to
|
||||||
|
* 'limit' bytes (meaning an allocation of 'limit' should succeed at least once,
|
||||||
|
* but any allocation of more bytes will fail.)
|
||||||
|
*
|
||||||
|
* Returns a record pointer which needs to be passed back in to test_utils_free_exhausted_memory
|
||||||
|
* before the test completes, to avoid a major memory leak.
|
||||||
|
*
|
||||||
|
* @param caps Capabilities of memory to exhause
|
||||||
|
* @param limit The size to limit largest free block to
|
||||||
|
* @return Record pointer to pass to test_utils_free_exhausted_memory() once done
|
||||||
|
*/
|
||||||
|
test_utils_exhaust_memory_rec test_utils_exhaust_memory(uint32_t caps, size_t limit);
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Call to free memory which was taken up by test_utils_exhaust_memory() call
|
||||||
|
*
|
||||||
|
* @param rec Result previously returned from test_utils_exhaust_memory()
|
||||||
|
*/
|
||||||
|
void test_utils_free_exhausted_memory(test_utils_exhaust_memory_rec rec);
|
||||||
|
|
||||||
|
|
||||||
|
@ -141,3 +141,41 @@ size_t test_utils_get_leak_level(esp_type_leak_t type_of_leak, esp_comp_leak_t c
|
|||||||
}
|
}
|
||||||
return leak_level;
|
return leak_level;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
#define EXHAUST_MEMORY_ENTRIES 100
|
||||||
|
|
||||||
|
struct test_utils_exhaust_memory_record_s {
|
||||||
|
int *entries[EXHAUST_MEMORY_ENTRIES];
|
||||||
|
};
|
||||||
|
|
||||||
|
test_utils_exhaust_memory_rec test_utils_exhaust_memory(uint32_t caps, size_t limit)
|
||||||
|
{
|
||||||
|
int idx = 0;
|
||||||
|
test_utils_exhaust_memory_rec rec = calloc(1, sizeof(struct test_utils_exhaust_memory_record_s));
|
||||||
|
TEST_ASSERT_NOT_NULL_MESSAGE(rec, "test_utils_exhaust_memory: not enough free memory to allocate record structure!");
|
||||||
|
|
||||||
|
while (idx < EXHAUST_MEMORY_ENTRIES) {
|
||||||
|
size_t free_caps = heap_caps_get_largest_free_block(caps);
|
||||||
|
if (free_caps <= limit) {
|
||||||
|
return rec; // done!
|
||||||
|
}
|
||||||
|
rec->entries[idx] = heap_caps_malloc(free_caps - limit, caps);
|
||||||
|
TEST_ASSERT_NOT_NULL_MESSAGE(rec->entries[idx],
|
||||||
|
"test_utils_exhaust_memory: something went wrong while freeing up memory, is another task using heap?");
|
||||||
|
heap_caps_check_integrity_all(true);
|
||||||
|
idx++;
|
||||||
|
}
|
||||||
|
|
||||||
|
TEST_FAIL_MESSAGE("test_utils_exhaust_memory: The heap with the requested caps is too fragmented, increase EXHAUST_MEMORY_ENTRIES or defrag the heap!");
|
||||||
|
abort();
|
||||||
|
}
|
||||||
|
|
||||||
|
void test_utils_free_exhausted_memory(test_utils_exhaust_memory_rec rec)
|
||||||
|
{
|
||||||
|
for (int i = 0; i < EXHAUST_MEMORY_ENTRIES; i++) {
|
||||||
|
free(rec->entries[i]);
|
||||||
|
}
|
||||||
|
free(rec);
|
||||||
|
}
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user