// Copyright 2015-2017 Espressif Systems (Shanghai) PTE LTD
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at

//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "rom/ets_sys.h"
#include "rom/gpio.h"
#include "soc/dport_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/gpio_reg.h"
#include "soc/dport_reg.h"
#include "soc/emac_ex_reg.h"
#include "soc/emac_reg_v2.h"
#include "soc/soc.h"

#include "tcpip_adapter.h"
#include "sdkconfig.h"

#include "esp_task_wdt.h"
#include "esp_event.h"
#include "esp_system.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_eth.h"
#include "esp_intr_alloc.h"
#include "esp_pm.h"
#include "esp_spiram.h"

#include "driver/periph_ctrl.h"

#include "emac_common.h"
#include "emac_desc.h"

#include "freertos/xtensa_api.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"

#include "lwip/err.h"

#define EMAC_EVT_QNUM 200
#define EMAC_SIG_MAX 50

static struct emac_config_data emac_config;

static dma_extended_desc_t *emac_dma_rx_chain_buf;
static dma_extended_desc_t *emac_dma_tx_chain_buf;
static uint8_t *emac_dma_rx_buf[DMA_RX_BUF_NUM];
static uint8_t *emac_dma_tx_buf[DMA_TX_BUF_NUM];

static SemaphoreHandle_t emac_g_sem = NULL;
static portMUX_TYPE g_emac_mux = portMUX_INITIALIZER_UNLOCKED;
static xTaskHandle emac_task_hdl = NULL;
static xQueueHandle emac_xqueue = NULL;
static uint8_t emac_sig_cnt[EMAC_SIG_MAX] = {0};
static TimerHandle_t emac_timer = NULL;
static SemaphoreHandle_t emac_rx_xMutex = NULL;
static SemaphoreHandle_t emac_tx_xMutex = NULL;
static intr_handle_t eth_intr_handle = NULL;
static const char *TAG = "emac";
static bool pause_send = false;
#ifdef CONFIG_PM_ENABLE
static esp_pm_lock_handle_t s_pm_lock;
#endif

static esp_err_t emac_ioctl(emac_sig_t sig, emac_par_t par);
esp_err_t emac_post(emac_sig_t sig, emac_par_t par);

static void emac_macaddr_init(void)
{
    esp_read_mac(&(emac_config.macaddr[0]), ESP_MAC_ETH);
}

void esp_eth_get_mac(uint8_t mac[6])
{
    memcpy(mac, &(emac_config.macaddr[0]), 6);
}

esp_err_t esp_eth_set_mac(const uint8_t mac[6])
{
    if (!(mac[0] & 0x01)) {
        memcpy(&(emac_config.macaddr[0]), mac, 6);
        return ESP_OK;
    } else {
        return ESP_ERR_INVALID_MAC;
    }
}

eth_speed_mode_t esp_eth_get_speed(void)
{
    return emac_config.emac_phy_get_speed_mode();
}

static void emac_setup_tx_desc(dma_extended_desc_t *tx_desc, uint32_t size)
{
    tx_desc->basic.desc1 = size & 0xfff;
    tx_desc->basic.desc0 = EMAC_DESC_TX_OWN | EMAC_DESC_INT_COMPL | EMAC_DESC_LAST_SEGMENT |
                           EMAC_DESC_FIRST_SEGMENT | EMAC_DESC_SECOND_ADDR_CHAIN;
}

static void emac_clean_tx_desc(dma_extended_desc_t *tx_desc)
{
    tx_desc->basic.desc1 = 0;
    tx_desc->basic.desc0 = 0;
}

static void emac_clean_rx_desc(dma_extended_desc_t *rx_desc, uint32_t buf_ptr)
{
    if (buf_ptr != 0) {
        rx_desc->basic.desc2 = buf_ptr;
    }
    rx_desc->basic.desc1 = EMAC_DESC_RX_SECOND_ADDR_CHAIN | DMA_RX_BUF_SIZE;
    rx_desc->basic.desc0 = EMAC_DESC_RX_OWN;
}

static void emac_set_tx_base_reg(void)
{
    REG_WRITE(EMAC_DMATXBASEADDR_REG, (uint32_t)(emac_config.dma_etx));
}

static void emac_set_rx_base_reg(void)
{
    REG_WRITE(EMAC_DMARXBASEADDR_REG, (uint32_t)(emac_config.dma_erx));
}

/*
* dirty_rx indicates the hardware has been fed with data packets and is the
* first node software needs to handle;
*
* cur_rx indicates the completion of software handling and is the last node
* hardware could use;
*
* cnt_rx is to count the numbers of packets handled by software, passed to
* protocol stack and not been freed.
*
* (1) Initializing the Linked List. Connect the numerable nodes to a circular
* linked list, appoint one of the nodes as the head node, mark* the dirty_rx
* and cur_rx into the node, and mount the node on the hardware base address.
* Initialize cnt_rx into 0.
*
* (2) When hardware receives packets, nodes of linked lists will be fed with
* data packets from the base address by turns, marks the node
* of linked lists as “HARDWARE UNUSABLE” and reports interrupts.
*
* (3) When the software receives the interrupts, it will handle the linked
* lists by turns from dirty_rx, send data packets to protocol
* stack. dirty_rx will deviate backwards by turns and cnt_rx will by turns ++.
*
* (4) After the protocol stack handles all the data and calls the free function,
* it will deviate backwards by turns from cur_rx, mark the * node of linked
* lists as “HARDWARE USABLE” and cnt_rx will by turns --.
*
* (5) Cycle from Step 2 to Step 4 without break and build up circular linked
* list handling.
*/
static void emac_reset_dma_chain(void)
{
    emac_config.cnt_tx = 0;
    emac_config.cur_tx = 0;
    emac_config.dirty_tx = 0;

    emac_config.cnt_rx = 0;
    emac_config.cur_rx = 0;
    emac_config.dirty_rx = 0;
}

static void emac_init_dma_chain(void)
{
    int i;
    uint32_t dma_phy;
    dma_extended_desc_t *p = NULL;

    //init tx chain
    emac_config.dma_etx = emac_dma_tx_chain_buf;
    emac_config.cnt_tx = 0;
    emac_config.cur_tx = 0;
    emac_config.dirty_tx = 0;

    dma_phy = (uint32_t)(emac_config.dma_etx);
    p = emac_config.dma_etx;

    for (i = 0; i < (DMA_TX_BUF_NUM - 1); i++) {
        dma_phy += sizeof(dma_extended_desc_t);
        emac_clean_tx_desc(p);
        p->basic.desc2 = (uint32_t)(emac_dma_tx_buf[i]);
        p->basic.desc3 = dma_phy;
        p++;
    }
    emac_clean_tx_desc(p);
    p->basic.desc2 = (uint32_t)(emac_dma_tx_buf[i]);
    p->basic.desc3 = (uint32_t)(emac_config.dma_etx);

    //init rx chain
    emac_config.dma_erx = emac_dma_rx_chain_buf;
    emac_config.cnt_rx = 0;
    emac_config.cur_rx = 0;
    emac_config.dirty_rx = 0;

    dma_phy = (uint32_t)(emac_config.dma_erx);
    p = emac_config.dma_erx;

    for (i = 0; i < (DMA_RX_BUF_NUM - 1); i++) {
        dma_phy += sizeof(dma_extended_desc_t);
        emac_clean_rx_desc(p, (uint32_t)(emac_dma_rx_buf[i]));
        p->basic.desc3 = dma_phy;
        p++;
    }

    emac_clean_rx_desc(p, (uint32_t)(emac_dma_rx_buf[i]));
    p->basic.desc3 = (uint32_t)(emac_config.dma_erx);
}

void esp_eth_smi_write(uint32_t reg_num, uint16_t value)
{
    uint32_t phy_num = emac_config.phy_addr;

    while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
    }

    REG_WRITE(EMAC_MIIDATA_REG, value);
    REG_WRITE(EMAC_GMIIADDR_REG, 0x3 | ((reg_num & 0x1f) << 6) | ((phy_num & 0x1f) << 11) | ((0x3) << 2));

    while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
    }
}

uint16_t esp_eth_smi_read(uint32_t reg_num)
{
    uint32_t phy_num = emac_config.phy_addr;
    uint16_t value = 0;

    while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
    }

    REG_WRITE(EMAC_GMIIADDR_REG, 0x1 | ((reg_num & 0x1f) << 6) | ((phy_num & 0x1f) << 11) | (0x3 << 2));
    while (REG_GET_BIT(EMAC_GMIIADDR_REG, EMAC_MIIBUSY) == 1) {
    }
    value = (REG_READ(EMAC_MIIDATA_REG) & 0xffff);

    return value;
}

esp_err_t esp_eth_smi_wait_value(uint32_t reg_num, uint16_t value, uint16_t value_mask, int timeout_ms)
{
    unsigned start = xTaskGetTickCount();
    unsigned timeout_ticks = (timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS;
    uint16_t current_value = 0;

    while (timeout_ticks == 0 || (xTaskGetTickCount() - start < timeout_ticks)) {
        current_value = esp_eth_smi_read(reg_num);
        if ((current_value & value_mask) == (value & value_mask)) {
            return ESP_OK;
        }
        vTaskDelay(1);
    }
    ESP_LOGE(TAG, "Timed out waiting for PHY register 0x%x to have value 0x%04x(mask 0x%04x). Current value 0x%04x",
             reg_num, value, value_mask, current_value);
    return ESP_ERR_TIMEOUT;
}

esp_err_t emac_reset(void)
{
    REG_SET_BIT(EMAC_DMABUSMODE_REG, EMAC_SW_RST);
    if (emac_config.reset_timeout_ms) {
        int start = xTaskGetTickCount();
        uint32_t timeout_ticks = (emac_config.reset_timeout_ms + portTICK_PERIOD_MS - 1) / portTICK_PERIOD_MS;
        while (timeout_ticks == 0 || (xTaskGetTickCount() - start < timeout_ticks)) {
            if (REG_GET_BIT(EMAC_DMABUSMODE_REG, EMAC_SW_RST) != EMAC_SW_RST) {
                goto reset_ok;
            }
            vTaskDelay(1);
        }
        ESP_LOGE(TAG, "Reset EMAC Timeout");
        return ESP_ERR_TIMEOUT;
    }
    /* infinite wait loop */
    else {
        while (REG_GET_BIT(EMAC_DMABUSMODE_REG, EMAC_SW_RST) == EMAC_SW_RST) {
            //nothing to do ,if stop here,maybe emac have not clk input.
            ESP_LOGI(TAG, "emac resetting ....");
        }
    }
reset_ok:
    ESP_LOGI(TAG, "emac reset done");
    return ESP_OK;
}

static void emac_set_user_config_data(eth_config_t *config)
{
    emac_config.phy_addr = config->phy_addr;
    emac_config.mac_mode = config->mac_mode;
    emac_config.clock_mode = config->clock_mode;
    emac_config.phy_init = config->phy_init;
    emac_config.emac_tcpip_input = config->tcpip_input;
    emac_config.emac_gpio_config = config->gpio_config;
    emac_config.emac_phy_check_link = config->phy_check_link;
    emac_config.emac_phy_check_init = config->phy_check_init;
    emac_config.emac_phy_get_speed_mode = config->phy_get_speed_mode;
    emac_config.emac_phy_get_duplex_mode = config->phy_get_duplex_mode;
    emac_config.reset_timeout_ms = config->reset_timeout_ms;
#if DMA_RX_BUF_NUM > 9
    emac_config.emac_flow_ctrl_enable = config->flow_ctrl_enable;
#else
    if (config->flow_ctrl_enable == true) {
        ESP_LOGE(TAG, "Can only configure flow_ctrl_enable==true if DMA_RX_BUF_NUM in menuconfig is >9. Disabling flow control.");
    }
    emac_config.emac_flow_ctrl_enable = false;
#endif
    emac_config.emac_phy_get_partner_pause_enable = config->phy_get_partner_pause_enable;
    emac_config.emac_phy_power_enable = config->phy_power_enable;
}

static void emac_enable_intr()
{
    REG_WRITE(EMAC_DMAIN_EN_REG, EMAC_INTR_ENABLE_BIT);
}

static void emac_disable_intr()
{
    REG_WRITE(EMAC_DMAIN_EN_REG, 0);
}

static esp_err_t emac_verify_args(void)
{
    esp_err_t ret = ESP_OK;

    if (emac_config.phy_addr > PHY31) {
        ESP_LOGE(TAG, "phy addr err");
        ret = ESP_FAIL;
    }

    if (emac_config.mac_mode != ETH_MODE_RMII) {
        ESP_LOGE(TAG, "mac mode err, currently only support for RMII");
        ret = ESP_FAIL;
    }

    if (emac_config.clock_mode > ETH_CLOCK_GPIO17_OUT) {
        ESP_LOGE(TAG, "emac clock mode err");
        ret = ESP_FAIL;
    }

    if (emac_config.phy_init == NULL) {
        ESP_LOGE(TAG, "phy_init func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_tcpip_input == NULL) {
        ESP_LOGE(TAG, "tcpip_input func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_gpio_config == NULL) {
        ESP_LOGE(TAG, "gpio config func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_phy_check_link == NULL) {
        ESP_LOGE(TAG, "phy check link func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_phy_check_init == NULL) {
        ESP_LOGE(TAG, "phy check init func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_phy_get_speed_mode == NULL) {
        ESP_LOGE(TAG, "phy get speed mode func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_phy_get_duplex_mode == NULL) {
        ESP_LOGE(TAG, "phy get duplex mode func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_flow_ctrl_enable && !emac_config.emac_phy_get_partner_pause_enable) {
        ESP_LOGE(TAG, "phy get partner pause enable func is null");
        ret = ESP_FAIL;
    }

    if (emac_config.emac_phy_power_enable == NULL) {
        ESP_LOGE(TAG, "phy power enable func is null");
        ret = ESP_FAIL;
    }

    return ret;
}

static void emac_process_tx(void)
{
    uint32_t cur_tx_desc = emac_read_tx_cur_reg();

    if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
        return;
    }

    xSemaphoreTakeRecursive(emac_tx_xMutex, portMAX_DELAY);

    while (((uint32_t) & (emac_config.dma_etx[emac_config.dirty_tx])) != cur_tx_desc) {
        emac_clean_tx_desc(&(emac_config.dma_etx[emac_config.dirty_tx]));
        emac_config.dirty_tx = (emac_config.dirty_tx + 1) % DMA_TX_BUF_NUM;
        emac_config.cnt_tx--;

        if (emac_config.cnt_tx < 0) {
            ESP_LOGE(TAG, "emac tx chain err");
        }
        cur_tx_desc = emac_read_tx_cur_reg();
    }

    xSemaphoreGiveRecursive(emac_tx_xMutex);
}

void esp_eth_free_rx_buf(void *buf)
{
    xSemaphoreTakeRecursive(emac_rx_xMutex, portMAX_DELAY);

    emac_clean_rx_desc(&(emac_config.dma_erx[emac_config.cur_rx]), (uint32_t)buf);
    emac_config.cur_rx = (emac_config.cur_rx + 1) % DMA_RX_BUF_NUM;
    emac_config.cnt_rx--;
    if (emac_config.cnt_rx < 0) {
        ESP_LOGE(TAG, "emac rx buf err");
    }
    emac_poll_rx_cmd();

    xSemaphoreGiveRecursive(emac_rx_xMutex);

    if (emac_config.emac_flow_ctrl_partner_support) {
        portENTER_CRITICAL(&g_emac_mux);
        if (pause_send && emac_config.cnt_rx < FLOW_CONTROL_LOW_WATERMARK) {
            emac_send_pause_zero_frame_enable();
            pause_send = false;
        }
        portEXIT_CRITICAL(&g_emac_mux);
    }
}

static uint32_t IRAM_ATTR emac_get_rxbuf_count_in_intr(void)
{
    uint32_t cnt = 0;
    uint32_t cur_rx_desc = emac_read_rx_cur_reg();
    dma_extended_desc_t *cur_desc = (dma_extended_desc_t *)cur_rx_desc;

    while (cur_desc->basic.desc0 == EMAC_DESC_RX_OWN && cnt < DMA_RX_BUF_NUM) {
        cnt++;
        cur_desc = (dma_extended_desc_t *)cur_desc->basic.desc3;
    }
    return cnt;
}

#if CONFIG_EMAC_L2_TO_L3_RX_BUF_MODE
static void emac_process_rx(void)
{
    if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
        return;
    }
    uint32_t cur_rx_desc = emac_read_rx_cur_reg();

    while (((uint32_t) & (emac_config.dma_erx[emac_config.dirty_rx])) != cur_rx_desc) {
        //copy data to lwip
        emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[emac_config.dirty_rx].basic.desc2),
                                     (((emac_config.dma_erx[emac_config.dirty_rx].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
                                      EMAC_DESC_FRAME_LENGTH), NULL);

        emac_clean_rx_desc(&(emac_config.dma_erx[emac_config.dirty_rx]), (emac_config.dma_erx[emac_config.dirty_rx].basic.desc2));
        emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;

        cur_rx_desc = emac_read_rx_cur_reg();
    }

    emac_enable_rx_intr();
}

static void emac_process_rx_unavail(void)
{
    if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
        return;
    }

    uint32_t dirty_cnt = 0;
    while (dirty_cnt < DMA_RX_BUF_NUM) {
        if (emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN) {
            break;
        }
        dirty_cnt++;
        //copy data to lwip
        emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[emac_config.dirty_rx].basic.desc2),
                                     (((emac_config.dma_erx[emac_config.dirty_rx].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
                                      EMAC_DESC_FRAME_LENGTH), NULL);

        emac_clean_rx_desc(&(emac_config.dma_erx[emac_config.dirty_rx]), (emac_config.dma_erx[emac_config.dirty_rx].basic.desc2));
        emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;
    }
    emac_enable_rx_intr();
    emac_enable_rx_unavail_intr();
    emac_poll_rx_cmd();
}

#else
static void emac_process_rx_unavail(void)
{
    if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
        return;
    }

    xSemaphoreTakeRecursive(emac_rx_xMutex, portMAX_DELAY);

    while (emac_config.cnt_rx < DMA_RX_BUF_NUM) {
        if (emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN) {
            break;
        }
        emac_config.cnt_rx++;
        if (emac_config.cnt_rx > DMA_RX_BUF_NUM) {
            ESP_LOGE(TAG, "emac rx buf full");
        }
        uint32_t tmp_dirty = emac_config.dirty_rx;
        emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;

        //copy data to lwip
        emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[tmp_dirty].basic.desc2),
                                     (((emac_config.dma_erx[tmp_dirty].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
                                      EMAC_DESC_FRAME_LENGTH), NULL);
    }
    emac_enable_rx_intr();
    emac_enable_rx_unavail_intr();
    xSemaphoreGiveRecursive(emac_rx_xMutex);
}

static void emac_process_rx(void)
{
    if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
        return;
    }

    uint32_t cur_rx_desc = emac_read_rx_cur_reg();

    xSemaphoreTakeRecursive(emac_rx_xMutex, portMAX_DELAY);

    if ((((uint32_t) & (emac_config.dma_erx[emac_config.dirty_rx])) != cur_rx_desc)) {
        while ((((uint32_t) & (emac_config.dma_erx[emac_config.dirty_rx])) != cur_rx_desc) &&
                emac_config.cnt_rx < DMA_RX_BUF_NUM) {
            emac_config.cnt_rx++;
            if (emac_config.cnt_rx > DMA_RX_BUF_NUM) {
                ESP_LOGE(TAG, "emac rx buf full");
            }
            uint32_t tmp_dirty = emac_config.dirty_rx;
            emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;

            //copy data to lwip
            emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[tmp_dirty].basic.desc2),
                                         (((emac_config.dma_erx[tmp_dirty].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
                                          EMAC_DESC_FRAME_LENGTH), NULL);

            cur_rx_desc = emac_read_rx_cur_reg();
        }
    } else {
        if (emac_config.cnt_rx < DMA_RX_BUF_NUM) {
            if (!(emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN)) {
                while (emac_config.cnt_rx < DMA_RX_BUF_NUM) {
                    if (emac_config.dma_erx[emac_config.dirty_rx].basic.desc0 & EMAC_DESC_RX_OWN) {
                        break;
                    }
                    emac_config.cnt_rx++;
                    if (emac_config.cnt_rx > DMA_RX_BUF_NUM) {
                        ESP_LOGE(TAG, "emac rx buf full");
                    }
                    uint32_t tmp_dirty = emac_config.dirty_rx;
                    emac_config.dirty_rx = (emac_config.dirty_rx + 1) % DMA_RX_BUF_NUM;

                    //copy data to lwip
                    emac_config.emac_tcpip_input((void *)(emac_config.dma_erx[tmp_dirty].basic.desc2),
                                                 (((emac_config.dma_erx[tmp_dirty].basic.desc0) >> EMAC_DESC_FRAME_LENGTH_S) &
                                                  EMAC_DESC_FRAME_LENGTH), NULL);
                }
            }
        }
    }
    emac_enable_rx_intr();
    xSemaphoreGiveRecursive(emac_rx_xMutex);
}
#endif

//TODO other events need to do something
static void IRAM_ATTR emac_process_intr(void *arg)
{
    uint32_t event;
    event = REG_READ(EMAC_DMASTATUS_REG);

    //clr intrs
    REG_WRITE(EMAC_DMASTATUS_REG, event);

    if (event & EMAC_RECV_INT) {
        emac_disable_rx_intr();
        if (emac_config.emac_flow_ctrl_partner_support) {
            if (emac_get_rxbuf_count_in_intr() < FLOW_CONTROL_HIGH_WATERMARK && !pause_send) {
                pause_send = true;
                emac_send_pause_frame_enable();
            }
        }
        emac_post(SIG_EMAC_RX_DONE, 0);
    }

    if (event & EMAC_RECV_BUF_UNAVAIL) {
        emac_disable_rx_unavail_intr();
        emac_post(SIG_EMAC_RX_UNAVAIL, 0);
    }

    if (event & EMAC_TRANS_INT) {
        emac_post(SIG_EMAC_TX_DONE, 0);
    }
}

static void emac_set_macaddr_reg(void)
{
    REG_SET_FIELD(EMAC_ADDR0HIGH_REG, EMAC_ADDRESS0_HI, (emac_config.macaddr[5] << 8) | (emac_config.macaddr[4]));
    REG_WRITE(EMAC_ADDR0LOW_REG, (emac_config.macaddr[3] << 24) | (emac_config.macaddr[2] << 16) |
              (emac_config.macaddr[1] << 8) | (emac_config.macaddr[0]));
}

static void emac_check_phy_init(void)
{
    emac_config.emac_phy_check_init();
    if (emac_config.emac_phy_get_duplex_mode() == ETH_MODE_FULLDUPLEX) {
        REG_SET_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACDUPLEX);
    } else {
        REG_CLR_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACDUPLEX);
    }
    if (emac_config.emac_phy_get_speed_mode() == ETH_SPEED_MODE_100M) {
        REG_SET_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACFESPEED);
    } else {
        REG_CLR_BIT(EMAC_GMACCONFIG_REG, EMAC_EMACFESPEED);
    }
#if CONFIG_EMAC_L2_TO_L3_RX_BUF_MODE
    emac_disable_flowctrl();
    emac_config.emac_flow_ctrl_partner_support = false;
#else
    if (emac_config.emac_flow_ctrl_enable) {
        if (emac_config.emac_phy_get_partner_pause_enable() &&
                emac_config.emac_phy_get_duplex_mode() == ETH_MODE_FULLDUPLEX) {
            emac_enable_flowctrl();
            emac_config.emac_flow_ctrl_partner_support = true;
        } else {
            emac_disable_flowctrl();
            emac_config.emac_flow_ctrl_partner_support = false;
        }
    } else {
        emac_disable_flowctrl();
        emac_config.emac_flow_ctrl_partner_support = false;
    }
#endif
    emac_mac_enable_txrx();
}
static void emac_process_link_updown(bool link_status)
{
    system_event_t evt;
    uint8_t i = 0;

    emac_config.phy_link_up = link_status;

    if (link_status) {
        emac_check_phy_init();
        ESP_LOGD(TAG, "eth link_up");
        emac_enable_dma_tx();
        emac_enable_dma_rx();
        for (i = 0; i < PHY_LINK_CHECK_NUM; i++) {
            emac_check_phy_init();
        }

        evt.event_id = SYSTEM_EVENT_ETH_CONNECTED;
    } else {
        ESP_LOGD(TAG, "eth link_down");
        emac_disable_dma_tx();
        emac_disable_dma_rx();
        evt.event_id = SYSTEM_EVENT_ETH_DISCONNECTED;
    }

    esp_event_send(&evt);
}

static void emac_hw_init(void)
{
    //init chain
    emac_init_dma_chain();

    //get hw features TODO

    //ipc TODO
}

esp_err_t esp_eth_tx(uint8_t *buf, uint16_t size)
{
    esp_err_t ret = ESP_OK;

    if (emac_config.emac_status != EMAC_RUNTIME_START) {
        ESP_LOGE(TAG, "tx netif is not ready, emac_status=%d", emac_config.emac_status);
        ret = ESP_ERR_INVALID_STATE;
        return ret;
    }

    xSemaphoreTakeRecursive(emac_tx_xMutex, portMAX_DELAY);
    if (emac_config.cnt_tx == DMA_TX_BUF_NUM - 1) {
        ESP_LOGD(TAG, "tx buf full");
        ret = ESP_ERR_NO_MEM;
        goto _exit;
    }

    memcpy((void *)(emac_config.dma_etx[emac_config.cur_tx].basic.desc2), buf, size);

    emac_setup_tx_desc(&(emac_config.dma_etx[emac_config.cur_tx]), size);

    emac_config.cnt_tx++;
    emac_config.cur_tx = (emac_config.cur_tx + 1) % DMA_TX_BUF_NUM;

    emac_poll_tx_cmd();

_exit:

    xSemaphoreGiveRecursive(emac_tx_xMutex);
    return ret;
}

static void emac_init_default_data(void)
{
    memset((void *)&emac_config, 0, sizeof(struct emac_config_data));
}

void emac_process_link_check(void)
{
    if (emac_config.emac_status != EMAC_RUNTIME_START) {
        return;
    }

    if (emac_config.emac_phy_check_link()) {
        if (!emac_config.phy_link_up) {
            emac_process_link_updown(true);
        }
    } else {
        if (emac_config.phy_link_up) {
            emac_process_link_updown(false);
        }
    }
}

void emac_link_check_func(void *pv_parameters)
{
    emac_post(SIG_EMAC_CHECK_LINK, 0);
}

static bool emac_link_check_timer_init(void)
{
    emac_timer = xTimerCreate("emac_timer",
                              (CONFIG_EMAC_CHECK_LINK_PERIOD_MS / portTICK_PERIOD_MS),
                              pdTRUE,
                              NULL,
                              emac_link_check_func);
    if (emac_timer == NULL) {
        return false;
    } else {
        return true;
    }
}

static bool emac_link_check_timer_start(void)
{
    if (xTimerStart(emac_timer, portMAX_DELAY) != pdPASS) {
        return false;
    } else {
        return true;
    }
}

static bool emac_link_check_timer_stop(void)
{
    if (xTimerStop(emac_timer, portMAX_DELAY) != pdPASS) {
        return false;
    } else {
        return true;
    }
}

static bool emac_link_check_timer_delete(void)
{
    xTimerDelete(emac_timer, portMAX_DELAY);
    emac_timer = NULL;
    return true;
}

static void emac_start(void *param)
{
    struct emac_post_cmd *post_cmd = (struct emac_post_cmd *)param;
    struct emac_open_cmd *cmd = (struct emac_open_cmd *)(post_cmd->cmd);

    ESP_LOGD(TAG, "emac start");
    cmd->err = EMAC_CMD_OK;

    if (emac_reset() != ESP_OK) {
        return;
    }
    emac_reset_dma_chain();
    emac_dma_init();

    emac_set_macaddr_reg();

    emac_set_tx_base_reg();
    emac_set_rx_base_reg();

    emac_mac_init();

    emac_enable_intr();

    emac_config.emac_status = EMAC_RUNTIME_START;

    system_event_t evt;
    evt.event_id = SYSTEM_EVENT_ETH_START;
    esp_event_send(&evt);

    //set a timer to check link up status
    if (emac_link_check_timer_init()) {
        if (!emac_link_check_timer_start()) {
            cmd->err = EMAC_CMD_FAIL;
            emac_link_check_timer_delete();
        }
    } else {
        cmd->err = EMAC_CMD_FAIL;
    }

    if (post_cmd->post_type == EMAC_POST_SYNC) {
        xSemaphoreGive(emac_g_sem);
    }

    ESP_LOGD(TAG, "emac start success");
}

esp_err_t esp_eth_enable(void)
{
    struct emac_post_cmd post_cmd;
    struct emac_open_cmd open_cmd;

    post_cmd.cmd = (void *)(&open_cmd);
    open_cmd.err = EMAC_CMD_OK;

    if (emac_config.emac_status == EMAC_RUNTIME_START) {
        open_cmd.err = EMAC_CMD_OK;
        return open_cmd.err;
    }

#ifdef CONFIG_PM_ENABLE
    esp_err_t err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "ethernet", &s_pm_lock);
    if (err != ESP_OK) {
        return err;
    }
    esp_pm_lock_acquire(s_pm_lock);
#endif //CONFIG_PM_ENABLE

    emac_enable_clk(true);
    /* init phy device */
    if (emac_config.phy_init() != ESP_OK) {
        ESP_LOGE(TAG, "Initialise PHY device Timeout");
        return ESP_FAIL;
    }

    if (emac_config.emac_status != EMAC_RUNTIME_NOT_INIT) {
        if (emac_ioctl(SIG_EMAC_START, (emac_par_t)(&post_cmd))) {
            open_cmd.err = EMAC_CMD_FAIL;
            goto cleanup;
        }
    } else {
        open_cmd.err = EMAC_CMD_FAIL;
        goto cleanup;
    }
    return EMAC_CMD_OK;

cleanup:
#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_release(s_pm_lock);
    esp_pm_lock_delete(s_pm_lock);
    s_pm_lock = NULL;
#endif //CONFIG_PM_ENABLE
    return open_cmd.err;
}

static void emac_stop(void *param)
{
    struct emac_post_cmd *post_cmd = (struct emac_post_cmd *)param;
    ESP_LOGD(TAG, "emac stop");

    emac_link_check_timer_stop();
    emac_link_check_timer_delete();

    emac_process_link_updown(false);

    emac_disable_intr();
    emac_enable_clk(false);

    emac_config.emac_status = EMAC_RUNTIME_STOP;
    system_event_t evt;
    evt.event_id = SYSTEM_EVENT_ETH_STOP;
    esp_event_send(&evt);

    if (post_cmd->post_type == EMAC_POST_SYNC) {
        xSemaphoreGive(emac_g_sem);
    }

    ESP_LOGD(TAG, "emac stop success");
}

esp_err_t esp_eth_disable(void)
{
    struct emac_post_cmd post_cmd;
    struct emac_close_cmd close_cmd;

    post_cmd.cmd = (void *)(&close_cmd);
    close_cmd.err = EMAC_CMD_OK;

    if (emac_config.emac_status == EMAC_RUNTIME_STOP) {
        close_cmd.err = EMAC_CMD_OK;
        return close_cmd.err;
    }

#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_release(s_pm_lock);
    esp_pm_lock_delete(s_pm_lock);
    s_pm_lock = NULL;
#endif // CONFIG_PM_ENABLE

    if (emac_config.emac_status == EMAC_RUNTIME_START) {
        if (emac_ioctl(SIG_EMAC_STOP, (emac_par_t)(&post_cmd)) != 0) {
            close_cmd.err = EMAC_CMD_FAIL;
        }
    } else {
        close_cmd.err = EMAC_CMD_FAIL;
    }
    return close_cmd.err;
}

static esp_err_t emac_ioctl(emac_sig_t sig, emac_par_t par)
{
    esp_err_t ret = ESP_OK;
    struct emac_post_cmd *post_cmd = (struct emac_post_cmd *)par;
    xTaskHandle task_hdl = xTaskGetCurrentTaskHandle();

    if (emac_task_hdl != task_hdl) {
        post_cmd->post_type = EMAC_POST_SYNC;
        if (emac_post(sig, par) != ESP_OK) {
            ret = ESP_FAIL;
            return ret;
        };

        if (xSemaphoreTake(emac_g_sem, portMAX_DELAY) == pdTRUE) {
            return ret;
        }
    } else {
        post_cmd->post_type = EMAC_POST_ASYNC;
        switch (sig) {
        case SIG_EMAC_RX_DONE:
            emac_process_rx();
            break;
        case SIG_EMAC_TX_DONE:
            emac_process_tx();
            break;
        case SIG_EMAC_START:
            emac_start((void *)par);
            break;
        case SIG_EMAC_STOP:
            emac_stop((void *)par);
            break;
        default:
            ESP_LOGE(TAG, "unexpect sig %d", sig);
            break;
        }
    }

    return ret;
}

void emac_task(void *pv)
{
    emac_event_t e;

    for (;;) {
        if (xQueueReceive(emac_xqueue, &e, portMAX_DELAY) == pdTRUE) {
            portENTER_CRITICAL(&g_emac_mux);
            emac_sig_cnt[e.sig]--;
            portEXIT_CRITICAL(&g_emac_mux);
            switch (e.sig) {
            case SIG_EMAC_RX_DONE:
                emac_process_rx();
                break;
            case SIG_EMAC_RX_UNAVAIL:
                emac_process_rx_unavail();
                break;
            case SIG_EMAC_TX_DONE:
                emac_process_tx();
                break;
            case SIG_EMAC_START:
                emac_start((void *)e.par);
                break;
            case SIG_EMAC_STOP:
                emac_stop((void *)e.par);
                break;
            case SIG_EMAC_CHECK_LINK:
                emac_process_link_check();
                break;
            default:
                ESP_LOGE(TAG, "unexpect sig %d", e.sig);
                break;
            }
        }
    }
}

esp_err_t IRAM_ATTR emac_post(emac_sig_t sig, emac_par_t par)
{
    if (sig <= SIG_EMAC_RX_DONE) {
        if (emac_sig_cnt[sig]) {
            return ESP_OK;
        } else {
            emac_sig_cnt[sig]++;
            emac_event_t evt;
            signed portBASE_TYPE ret;
            evt.sig = sig;
            evt.par = par;
            portBASE_TYPE tmp;

            ret = xQueueSendFromISR(emac_xqueue, &evt, &tmp);

            if (tmp != pdFALSE) {
                portYIELD_FROM_ISR();
            }

            if (ret != pdPASS) {
                return ESP_FAIL;
            }
        }
    } else {
        portENTER_CRITICAL(&g_emac_mux);
        emac_sig_cnt[sig]++;
        portEXIT_CRITICAL(&g_emac_mux);
        emac_event_t evt;
        evt.sig = sig;
        evt.par = par;

        if (xQueueSend(emac_xqueue, &evt, 10 / portTICK_PERIOD_MS) != pdTRUE) {
            return ESP_FAIL;
        }
    }

    return ESP_OK;
}

esp_err_t esp_eth_init(eth_config_t *config)
{
    esp_event_set_default_eth_handlers();
    return esp_eth_init_internal(config);
}

esp_err_t esp_eth_init_internal(eth_config_t *config)
{
    int i = 0;
    esp_err_t ret = ESP_OK;
    if (emac_config.emac_status != EMAC_RUNTIME_NOT_INIT) {
        goto _initialised;
    }

    /* dynamically alloc memory for ethernet dma */
    emac_dma_rx_chain_buf = (dma_extended_desc_t *)heap_caps_malloc(sizeof(dma_extended_desc_t) * DMA_RX_BUF_NUM, MALLOC_CAP_DMA);
    emac_dma_tx_chain_buf = (dma_extended_desc_t *)heap_caps_malloc(sizeof(dma_extended_desc_t) * DMA_TX_BUF_NUM, MALLOC_CAP_DMA);
    for (i = 0; i < DMA_RX_BUF_NUM; i++) {
        emac_dma_rx_buf[i] = (uint8_t *)heap_caps_malloc(DMA_RX_BUF_SIZE, MALLOC_CAP_DMA);
    }
    for (i = 0; i < DMA_TX_BUF_NUM; i++) {
        emac_dma_tx_buf[i] = (uint8_t *)heap_caps_malloc(DMA_TX_BUF_SIZE, MALLOC_CAP_DMA);
    }

    emac_init_default_data();

    if (config) {
        emac_set_user_config_data(config);
    }

    ret = emac_verify_args();

    if (ret != ESP_OK) {
        goto _verify_err;
    }

    emac_config.emac_phy_power_enable(true);

    //before set emac reg must enable clk
    periph_module_enable(PERIPH_EMAC_MODULE);

    if (emac_config.clock_mode != ETH_CLOCK_GPIO0_IN) {
#if CONFIG_SPIRAM_SUPPORT
        if (esp_spiram_is_initialized()) {
            ESP_LOGE(TAG, "GPIO16 and GPIO17 has been occupied by PSRAM, Only ETH_CLOCK_GPIO_IN is supported!");
            ret = ESP_FAIL;
            goto _verify_err;
        } else {
            ESP_LOGW(TAG, "GPIO16/17 is used for clock of EMAC, Please Make Sure you're not using PSRAM.");
        }
#endif
        // 50 MHz = 40MHz * (6 + 4) / (2 * (2 + 2) = 400MHz / 8
        rtc_clk_apll_enable(1, 0, 0, 6, 2);
        REG_SET_FIELD(EMAC_EX_CLKOUT_CONF_REG, EMAC_EX_CLK_OUT_H_DIV_NUM, 0);
        REG_SET_FIELD(EMAC_EX_CLKOUT_CONF_REG, EMAC_EX_CLK_OUT_DIV_NUM, 0);

        if (emac_config.clock_mode == ETH_CLOCK_GPIO0_OUT) {
            PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
            REG_WRITE(PIN_CTRL, 6);
            ESP_LOGD(TAG, "EMAC 50MHz clock output on GPIO0");
        } else if (emac_config.clock_mode == ETH_CLOCK_GPIO16_OUT) {
            PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO16_U, FUNC_GPIO16_EMAC_CLK_OUT);
            ESP_LOGD(TAG, "EMAC 50MHz clock output on GPIO16");
        } else if (emac_config.clock_mode == ETH_CLOCK_GPIO17_OUT) {
            PIN_FUNC_SELECT(PERIPHS_IO_MUX_GPIO17_U, FUNC_GPIO17_EMAC_CLK_OUT_180);
            ESP_LOGD(TAG, "EMAC 50MHz inverted clock output on GPIO17");
        }
    }

    emac_enable_clk(true);
    REG_SET_FIELD(EMAC_EX_PHYINF_CONF_REG, EMAC_EX_PHY_INTF_SEL, EMAC_EX_PHY_INTF_RMII);
    emac_dma_init();

    if (emac_config.clock_mode == ETH_CLOCK_GPIO0_IN) {
        // external clock on GPIO0
        REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_EXT_OSC_EN);
        REG_CLR_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_INT_OSC_EN);
        REG_SET_BIT(EMAC_EX_OSCCLK_CONF_REG, EMAC_EX_OSC_CLK_SEL);
        ESP_LOGD(TAG, "External clock input 50MHz on GPIO0");
        if (emac_config.mac_mode == ETH_MODE_MII) {
            REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_MII_CLK_RX_EN);
            REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_MII_CLK_TX_EN);
        }
    } else {
        // internal clock by APLL
        REG_CLR_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_EXT_OSC_EN);
        REG_SET_BIT(EMAC_EX_CLK_CTRL_REG, EMAC_EX_INT_OSC_EN);
        REG_CLR_BIT(EMAC_EX_OSCCLK_CONF_REG, EMAC_EX_OSC_CLK_SEL);
    }

    emac_config.emac_gpio_config();

    emac_hw_init();
    emac_macaddr_init();

    //watchdog  TODO

    //init task for emac
    emac_g_sem = xSemaphoreCreateBinary();
    emac_rx_xMutex = xSemaphoreCreateRecursiveMutex();
    emac_tx_xMutex = xSemaphoreCreateRecursiveMutex();
    emac_xqueue = xQueueCreate(EMAC_EVT_QNUM, sizeof(emac_event_t));
    xTaskCreate(emac_task,
                "emacT",
                EMAC_TASK_STACK_SIZE,
                NULL,
                EMAC_TASK_PRIORITY,
                &emac_task_hdl);

    esp_intr_alloc(ETS_ETH_MAC_INTR_SOURCE, 0, emac_process_intr, NULL, &eth_intr_handle);

    emac_config.emac_status = EMAC_RUNTIME_INIT;

    return ESP_OK;

_verify_err:
    free(emac_dma_rx_chain_buf);
    free(emac_dma_tx_chain_buf);
    emac_dma_rx_chain_buf = NULL;
    emac_dma_tx_chain_buf = NULL;
    for (i = 0; i < DMA_RX_BUF_NUM; i++) {
        free(emac_dma_rx_buf[i]);
        emac_dma_rx_buf[i] = NULL;
    }
    for (i = 0; i < DMA_TX_BUF_NUM; i++) {
        free(emac_dma_tx_buf[i]);
        emac_dma_tx_buf[i] = NULL;
    }
_initialised:
    return ret;
}

esp_err_t esp_eth_deinit(void)
{
    esp_err_t ret = ESP_OK;
    int i = 0;

    if (emac_config.emac_status == EMAC_RUNTIME_NOT_INIT) {
        goto _exit;
    }
    if (emac_config.emac_status == EMAC_RUNTIME_START) {
        esp_eth_disable();
    }
    if (!emac_task_hdl) {
        ret = ESP_ERR_INVALID_STATE;
        goto _exit;
    }

    vTaskDelete(emac_task_hdl);
    emac_task_hdl = NULL;

    vQueueDelete(emac_xqueue);
    vSemaphoreDelete(emac_tx_xMutex);
    vSemaphoreDelete(emac_rx_xMutex);
    vSemaphoreDelete(emac_g_sem);
    emac_reset_dma_chain();
    emac_config.emac_phy_power_enable(false);
    periph_module_disable(PERIPH_EMAC_MODULE);
    emac_config.emac_status = EMAC_RUNTIME_NOT_INIT;

    /* free memory that dynamically allocted */
    free(emac_dma_rx_chain_buf);
    free(emac_dma_tx_chain_buf);
    emac_dma_rx_chain_buf = NULL;
    emac_dma_tx_chain_buf = NULL;
    for (i = 0; i < DMA_RX_BUF_NUM; i++) {
        free(emac_dma_rx_buf[i]);
        emac_dma_rx_buf[i] = NULL;
    }
    for (i = 0; i < DMA_TX_BUF_NUM; i++) {
        free(emac_dma_tx_buf[i]);
        emac_dma_tx_buf[i] = NULL;
    }
    esp_intr_free(eth_intr_handle);
_exit:
    return ret;
}