/* * SPDX-FileCopyrightText: 2017-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include "sys/param.h" #include "esp_timer_impl.h" #include "esp_timer.h" #include "esp_err.h" #include "esp_system.h" #include "esp_task.h" #include "esp_attr.h" #include "esp_intr_alloc.h" #include "esp_log.h" #include "esp_private/esp_clk.h" #include "esp_private/periph_ctrl.h" #include "soc/soc.h" #include "soc/timer_group_reg.h" #include "soc/rtc.h" #include "hal/timer_ll.h" #include "freertos/FreeRTOS.h" /** * @file esp_timer_lac.c * @brief Implementation of chip-specific part of esp_timer * * This implementation uses TG0 LAC timer of the ESP32. This timer is * a 64-bit up-counting timer, with a programmable compare value (called 'alarm' * hereafter). When the timer reaches compare value, interrupt is raised. * The timer can be configured to produce an edge or a level interrupt. */ /* Selects which Timer Group peripheral to use */ #define LACT_MODULE 0 #if LACT_MODULE == 0 #define INTR_SOURCE_LACT ETS_TG0_LACT_LEVEL_INTR_SOURCE #define PERIPH_LACT PERIPH_TIMG0_MODULE #elif LACT_MODULE == 1 #define INTR_SOURCE_LACT ETS_TG1_LACT_LEVEL_INTR_SOURCE #define PERIPH_LACT PERIPH_TIMG1_MODULE #else #error "Incorrect the number of LACT module (only 0 or 1)" #endif /* Desired number of timer ticks per microsecond. * This value should be small enough so that all possible APB frequencies * could be divided by it without remainder. * On the other hand, the smaller this value is, the longer we need to wait * after setting UPDATE_REG before the timer value can be read. * If TICKS_PER_US == 1, then we need to wait up to 1 microsecond, which * makes esp_timer_impl_get_time function take too much time. * The value TICKS_PER_US == 2 allows for most of the APB frequencies, and * allows reading the counter quickly enough. */ #define TICKS_PER_US 2 /* Shorter register names, used in this file */ #define CONFIG_REG (TIMG_LACTCONFIG_REG(LACT_MODULE)) #define RTC_STEP_REG (TIMG_LACTRTC_REG(LACT_MODULE)) #define ALARM_LO_REG (TIMG_LACTALARMLO_REG(LACT_MODULE)) #define ALARM_HI_REG (TIMG_LACTALARMHI_REG(LACT_MODULE)) #define COUNT_LO_REG (TIMG_LACTLO_REG(LACT_MODULE)) #define COUNT_HI_REG (TIMG_LACTHI_REG(LACT_MODULE)) #define UPDATE_REG (TIMG_LACTUPDATE_REG(LACT_MODULE)) #define LOAD_REG (TIMG_LACTLOAD_REG(LACT_MODULE)) #define LOAD_LO_REG (TIMG_LACTLOADLO_REG(LACT_MODULE)) #define LOAD_HI_REG (TIMG_LACTLOADHI_REG(LACT_MODULE)) #define INT_ENA_REG (TIMG_INT_ENA_TIMERS_REG(LACT_MODULE)) #define INT_ST_REG (TIMG_INT_ST_TIMERS_REG(LACT_MODULE)) #define INT_CLR_REG (TIMG_INT_CLR_TIMERS_REG(LACT_MODULE)) /* Helper type to convert between a 64-bit value and a pair of 32-bit values without shifts and masks */ typedef struct { union { struct { uint32_t lo; uint32_t hi; }; uint64_t val; }; } timer_64b_reg_t; static const char* TAG = "esp_timer_impl"; #define NOT_USED 0xBAD00FAD /* Interrupt handle returned by the interrupt allocator */ #ifdef CONFIG_ESP_TIMER_ISR_AFFINITY_NO_AFFINITY #define ISR_HANDLERS (portNUM_PROCESSORS) #else #define ISR_HANDLERS (1) #endif static intr_handle_t s_timer_interrupt_handle[ISR_HANDLERS] = { NULL }; /* Function from the upper layer to be called when the interrupt happens. * Registered in esp_timer_impl_init. */ static intr_handler_t s_alarm_handler = NULL; /* Spinlock used to protect access to the hardware registers. */ extern portMUX_TYPE s_time_update_lock; /* Alarm values to generate interrupt on match */ extern uint64_t timestamp_id[2]; uint64_t IRAM_ATTR esp_timer_impl_get_counter_reg(void) { uint32_t lo, hi; uint32_t lo_start = REG_READ(COUNT_LO_REG); uint32_t div = REG_GET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER); /* The peripheral doesn't have a bit to indicate that the update is done, so we poll the * lower 32 bit part of the counter until it changes, or a timeout expires. */ REG_WRITE(UPDATE_REG, 1); do { lo = REG_READ(COUNT_LO_REG); } while (lo == lo_start && div-- > 0); /* Since this function is called without a critical section, verify that LO and HI * registers are consistent. That is, if an interrupt happens between reading LO and * HI registers, and esp_timer_impl_get_time is called from an ISR, then try to * detect this by the change in LO register value, and re-read both registers. */ do { lo_start = lo; hi = REG_READ(COUNT_HI_REG); lo = REG_READ(COUNT_LO_REG); } while (lo != lo_start); timer_64b_reg_t result = { .lo = lo, .hi = hi }; return result.val; } int64_t IRAM_ATTR esp_timer_impl_get_time(void) { return esp_timer_impl_get_counter_reg() / TICKS_PER_US; } int64_t esp_timer_get_time(void) __attribute__((alias("esp_timer_impl_get_time"))); void IRAM_ATTR esp_timer_impl_set_alarm_id(uint64_t timestamp, unsigned alarm_id) { assert(alarm_id < sizeof(timestamp_id) / sizeof(timestamp_id[0])); portENTER_CRITICAL_SAFE(&s_time_update_lock); timestamp_id[alarm_id] = timestamp; timestamp = MIN(timestamp_id[0], timestamp_id[1]); if (timestamp != UINT64_MAX) { int64_t offset = TICKS_PER_US * 2; uint64_t now_time = esp_timer_impl_get_counter_reg(); timer_64b_reg_t alarm = { .val = MAX(timestamp * TICKS_PER_US, now_time + offset) }; do { REG_CLR_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN); REG_WRITE(ALARM_LO_REG, alarm.lo); REG_WRITE(ALARM_HI_REG, alarm.hi); REG_SET_BIT(CONFIG_REG, TIMG_LACT_ALARM_EN); now_time = esp_timer_impl_get_counter_reg(); int64_t delta = (int64_t)alarm.val - (int64_t)now_time; if (delta <= 0 && REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) == 0) { // new alarm is less than the counter and the interrupt flag is not set offset += llabs(delta) + TICKS_PER_US * 2; alarm.val = now_time + offset; } else { // finish if either (alarm > counter) or the interrupt flag is already set. break; } } while(1); } portEXIT_CRITICAL_SAFE(&s_time_update_lock); } static void IRAM_ATTR timer_alarm_isr(void *arg) { #if ISR_HANDLERS == 1 /* Clear interrupt status */ REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR); /* Call the upper layer handler */ (*s_alarm_handler)(arg); #else static volatile uint32_t processed_by = NOT_USED; static volatile bool pending_alarm = false; /* CRITICAL section ensures the read/clear is atomic between cores */ portENTER_CRITICAL_ISR(&s_time_update_lock); if (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST)) { // Clear interrupt status REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR); // Is the other core already processing a previous alarm? if (processed_by == NOT_USED) { // Current core is not processing an alarm yet processed_by = xPortGetCoreID(); do { pending_alarm = false; // Clear interrupt status REG_WRITE(INT_CLR_REG, TIMG_LACT_INT_CLR); portEXIT_CRITICAL_ISR(&s_time_update_lock); (*s_alarm_handler)(arg); portENTER_CRITICAL_ISR(&s_time_update_lock); // Another alarm could have occurred while were handling the previous alarm. // Check if we need to call the s_alarm_handler again: // 1) if the alarm has already been fired, it helps to handle it immediately without an additional ISR call. // 2) handle pending alarm that was cleared by the other core in time when this core worked with the current alarm. } while (REG_GET_FIELD(INT_ST_REG, TIMG_LACT_INT_ST) || pending_alarm); processed_by = NOT_USED; } else { // Current core arrived at ISR but the other core is still handling a previous alarm. // Once we already cleared the ISR status we need to let the other core know that it was. // Set the flag to handle the current alarm by the other core later. pending_alarm = true; } } portEXIT_CRITICAL_ISR(&s_time_update_lock); #endif // ISR_HANDLERS != 1 } void IRAM_ATTR esp_timer_impl_update_apb_freq(uint32_t apb_ticks_per_us) { portENTER_CRITICAL(&s_time_update_lock); assert(apb_ticks_per_us >= 3 && "divider value too low"); assert(apb_ticks_per_us % TICKS_PER_US == 0 && "APB frequency (in MHz) should be divisible by TICK_PER_US"); REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, apb_ticks_per_us / TICKS_PER_US); portEXIT_CRITICAL(&s_time_update_lock); } void esp_timer_impl_set(uint64_t new_us) { portENTER_CRITICAL(&s_time_update_lock); timer_64b_reg_t dst = { .val = new_us * TICKS_PER_US }; REG_WRITE(LOAD_LO_REG, dst.lo); REG_WRITE(LOAD_HI_REG, dst.hi); REG_WRITE(LOAD_REG, 1); portEXIT_CRITICAL(&s_time_update_lock); } void esp_timer_impl_advance(int64_t time_diff_us) { uint64_t now = esp_timer_impl_get_time(); esp_timer_impl_set(now + time_diff_us); } esp_err_t esp_timer_impl_early_init(void) { PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_LACT, ref_count) { if (ref_count == 0) { timer_ll_enable_bus_clock(LACT_MODULE, true); timer_ll_reset_register(LACT_MODULE); } } REG_WRITE(CONFIG_REG, 0); REG_WRITE(LOAD_LO_REG, 0); REG_WRITE(LOAD_HI_REG, 0); REG_WRITE(ALARM_LO_REG, UINT32_MAX); REG_WRITE(ALARM_HI_REG, UINT32_MAX); REG_WRITE(LOAD_REG, 1); REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR); REG_SET_FIELD(CONFIG_REG, TIMG_LACT_DIVIDER, APB_CLK_FREQ / 1000000 / TICKS_PER_US); REG_SET_BIT(CONFIG_REG, TIMG_LACT_INCREASE | TIMG_LACT_LEVEL_INT_EN | TIMG_LACT_EN); return ESP_OK; } esp_err_t esp_timer_impl_init(intr_handler_t alarm_handler) { if (s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()] != NULL) { ESP_EARLY_LOGE(TAG, "timer ISR is already initialized"); return ESP_ERR_INVALID_STATE; } int isr_flags = ESP_INTR_FLAG_INTRDISABLED | ((1 << CONFIG_ESP_TIMER_INTERRUPT_LEVEL) & ESP_INTR_FLAG_LEVELMASK) | ESP_INTR_FLAG_IRAM; esp_err_t err = esp_intr_alloc(INTR_SOURCE_LACT, isr_flags, &timer_alarm_isr, NULL, &s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]); if (err != ESP_OK) { ESP_EARLY_LOGE(TAG, "Can not allocate ISR handler (0x%0x)", err); return err; } if (s_alarm_handler == NULL) { s_alarm_handler = alarm_handler; /* In theory, this needs a shared spinlock with the timer group driver. * However since esp_timer_impl_init is called early at startup, this * will not cause issues in practice. */ REG_SET_BIT(INT_ENA_REG, TIMG_LACT_INT_ENA); esp_timer_impl_update_apb_freq(esp_clk_apb_freq() / 1000000); // Set the step for the sleep mode when the timer will work // from a slow_clk frequency instead of the APB frequency. uint32_t slowclk_ticks_per_us = esp_clk_slowclk_cal_get() * TICKS_PER_US; REG_SET_FIELD(RTC_STEP_REG, TIMG_LACT_RTC_STEP_LEN, slowclk_ticks_per_us); } err = esp_intr_enable(s_timer_interrupt_handle[(ISR_HANDLERS == 1) ? 0 : xPortGetCoreID()]); if (err != ESP_OK) { ESP_EARLY_LOGE(TAG, "Can not enable ISR (0x%0x)", err); } return err; } void esp_timer_impl_deinit(void) { REG_WRITE(CONFIG_REG, 0); REG_SET_BIT(INT_CLR_REG, TIMG_LACT_INT_CLR); /* TODO: also clear TIMG_LACT_INT_ENA; however see the note in esp_timer_impl_init. */ for (unsigned i = 0; i < ISR_HANDLERS; i++) { if (s_timer_interrupt_handle[i] != NULL) { esp_intr_disable(s_timer_interrupt_handle[i]); esp_intr_free(s_timer_interrupt_handle[i]); s_timer_interrupt_handle[i] = NULL; } } s_alarm_handler = NULL; PERIPH_RCC_RELEASE_ATOMIC(PERIPH_LACT, ref_count) { if (ref_count == 0) { timer_ll_enable_bus_clock(LACT_MODULE, false); } } } uint64_t esp_timer_impl_get_alarm_reg(void) { portENTER_CRITICAL_SAFE(&s_time_update_lock); timer_64b_reg_t alarm = { .lo = REG_READ(ALARM_LO_REG), .hi = REG_READ(ALARM_HI_REG) }; portEXIT_CRITICAL_SAFE(&s_time_update_lock); return alarm.val; } void esp_timer_private_update_apb_freq(uint32_t apb_ticks_per_us) __attribute__((alias("esp_timer_impl_update_apb_freq"))); void esp_timer_private_set(uint64_t new_us) __attribute__((alias("esp_timer_impl_set"))); void esp_timer_private_advance(int64_t time_diff_us) __attribute__((alias("esp_timer_impl_advance")));