/*
 * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <stddef.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include "sdkconfig.h"
#include "esp_heap_caps.h"
#include "esp_heap_caps_init.h"
#include "freertos/FreeRTOS.h"
#include "freertos/task.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"
#include "freertos/portmacro.h"
#include "esp_types.h"
#include "esp_mac.h"
#include "esp_random.h"
#include "esp_task.h"
#include "riscv/interrupt.h"
#include "esp_attr.h"
#include "esp_phy_init.h"
#include "esp_bt.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_ipc.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"
#include "soc/rtc.h"
#include "soc/rtc_cntl_reg.h"
#include "soc/soc_memory_layout.h"
#include "esp_coexist_internal.h"
#include "esp32c3/rom/rom_layout.h"
#include "esp_timer.h"
#include "esp_sleep.h"
#include "phy.h"

#if CONFIG_BT_ENABLED

/* Macro definition
 ************************************************************************
 */

#define BTDM_LOG_TAG                        "BTDM_INIT"

#define BTDM_INIT_PERIOD                    (5000)    /* ms */

/* Low Power Clock Selection */
#define BTDM_LPCLK_SEL_XTAL      (0)
#define BTDM_LPCLK_SEL_XTAL32K   (1)
#define BTDM_LPCLK_SEL_RTC_SLOW  (2)
#define BTDM_LPCLK_SEL_8M        (3)

// wakeup request sources
enum {
    BTDM_ASYNC_WAKEUP_SRC_VHCI = 0,
    BTDM_ASYNC_WAKEUP_SRC_DISA,
    BTDM_ASYNC_WAKEUP_SRC_TMR,
    BTDM_ASYNC_WAKEUP_SRC_MAX,
};

// low power control struct
typedef union {
    struct {
        uint32_t enable                  :  1; // whether low power mode is required
        uint32_t lpclk_sel               :  2; // low power clock source
        uint32_t mac_bb_pd               :  1; // whether hardware(MAC, BB) force-power-down is required during sleep
        uint32_t wakeup_timer_required   :  1; // whether system timer is needed
        uint32_t no_light_sleep          :  1; // do not allow system to enter light sleep after bluetooth is enabled
        uint32_t reserved                : 26; // reserved
    };
    uint32_t val;
} btdm_lpcntl_t;

// low power control status
typedef union {
    struct {
        uint32_t pm_lock_released        :  1; // whether power management lock is released
        uint32_t mac_bb_pd               :  1; // whether hardware(MAC, BB) is powered down
        uint32_t phy_enabled             :  1; // whether phy is switched on
        uint32_t wakeup_timer_started    :  1; // whether wakeup timer is started
        uint32_t reserved                : 28; // reserved
    };
    uint32_t val;
} btdm_lpstat_t;

/* Sleep and wakeup interval control */
#define BTDM_MIN_SLEEP_DURATION          (24) // threshold of interval in half slots to allow to fall into modem sleep
#define BTDM_MODEM_WAKE_UP_DELAY         (8)  // delay in half slots of modem wake up procedure, including re-enable PHY/RF

#define BT_DEBUG(...)
#define BT_API_CALL_CHECK(info, api_call, ret) \
do{\
    esp_err_t __err = (api_call);\
    if ((ret) != __err) {\
        BT_DEBUG("%s %d %s ret=0x%X\n", __FUNCTION__, __LINE__, (info), __err);\
        return __err;\
    }\
} while(0)

#define OSI_FUNCS_TIME_BLOCKING  0xffffffff
#define OSI_VERSION              0x00010006
#define OSI_MAGIC_VALUE          0xFADEBEAD

/* Types definition
 ************************************************************************
 */
/* vendor dependent signals to be posted to controller task */
typedef enum {
    BTDM_VND_OL_SIG_WAKEUP_TMR = 0,
    BTDM_VND_OL_SIG_NUM,
} btdm_vnd_ol_sig_t;

/* prototype of function to handle vendor dependent signals */
typedef void (* btdm_vnd_ol_task_func_t)(void *param);

/* VHCI function interface */
typedef struct vhci_host_callback {
    void (*notify_host_send_available)(void);               /*!< callback used to notify that the host can send packet to controller */
    int (*notify_host_recv)(uint8_t *data, uint16_t len);   /*!< callback used to notify that the controller has a packet to send to the host*/
} vhci_host_callback_t;

/* Dram region */
typedef struct {
    esp_bt_mode_t mode;
    intptr_t start;
    intptr_t end;
} btdm_dram_available_region_t;

typedef void (* osi_intr_handler)(void);

/* OSI function */
struct osi_funcs_t {
    uint32_t _magic;
    uint32_t _version;
    void (*_interrupt_set)(int cpu_no, int intr_source, int interrupt_no, int interrpt_prio);
    void (*_interrupt_clear)(int interrupt_source, int interrupt_no);
    void (*_interrupt_handler_set)(int interrupt_no, intr_handler_t fn, void *arg);
    void (*_interrupt_disable)(void);
    void (*_interrupt_restore)(void);
    void (*_task_yield)(void);
    void (*_task_yield_from_isr)(void);
    void *(*_semphr_create)(uint32_t max, uint32_t init);
    void (*_semphr_delete)(void *semphr);
    int (*_semphr_take_from_isr)(void *semphr, void *hptw);
    int (*_semphr_give_from_isr)(void *semphr, void *hptw);
    int (*_semphr_take)(void *semphr, uint32_t block_time_ms);
    int (*_semphr_give)(void *semphr);
    void *(*_mutex_create)(void);
    void (*_mutex_delete)(void *mutex);
    int (*_mutex_lock)(void *mutex);
    int (*_mutex_unlock)(void *mutex);
    void *(* _queue_create)(uint32_t queue_len, uint32_t item_size);
    void (* _queue_delete)(void *queue);
    int (* _queue_send)(void *queue, void *item, uint32_t block_time_ms);
    int (* _queue_send_from_isr)(void *queue, void *item, void *hptw);
    int (* _queue_recv)(void *queue, void *item, uint32_t block_time_ms);
    int (* _queue_recv_from_isr)(void *queue, void *item, void *hptw);
    int (* _task_create)(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
    void (* _task_delete)(void *task_handle);
    bool (* _is_in_isr)(void);
    int (* _cause_sw_intr_to_core)(int core_id, int intr_no);
    void *(* _malloc)(size_t size);
    void *(* _malloc_internal)(size_t size);
    void (* _free)(void *p);
    int (* _read_efuse_mac)(uint8_t mac[6]);
    void (* _srand)(unsigned int seed);
    int (* _rand)(void);
    uint32_t (* _btdm_lpcycles_2_hus)(uint32_t cycles, uint32_t *error_corr);
    uint32_t (* _btdm_hus_2_lpcycles)(uint32_t hus);
    bool (* _btdm_sleep_check_duration)(int32_t *slot_cnt);
    void (* _btdm_sleep_enter_phase1)(uint32_t lpcycles);  /* called when interrupt is disabled */
    void (* _btdm_sleep_enter_phase2)(void);
    void (* _btdm_sleep_exit_phase1)(void);  /* called from ISR */
    void (* _btdm_sleep_exit_phase2)(void);  /* called from ISR */
    void (* _btdm_sleep_exit_phase3)(void);  /* called from task */
    void (* _coex_wifi_sleep_set)(bool sleep);
    int (* _coex_core_ble_conn_dyn_prio_get)(bool *low, bool *high);
    void (* _coex_schm_status_bit_set)(uint32_t type, uint32_t status);
    void (* _coex_schm_status_bit_clear)(uint32_t type, uint32_t status);
    void (* _interrupt_on)(int intr_num);
    void (* _interrupt_off)(int intr_num);
    void (* _esp_hw_power_down)(void);
    void (* _esp_hw_power_up)(void);
    void (* _ets_backup_dma_copy)(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_rem);
};


/* External functions or values
 ************************************************************************
 */

/* not for user call, so don't put to include file */
/* OSI */
extern int btdm_osi_funcs_register(void *osi_funcs);
/* Initialise and De-initialise */
extern int btdm_controller_init(esp_bt_controller_config_t *config_opts);
extern void btdm_controller_deinit(void);
extern int btdm_controller_enable(esp_bt_mode_t mode);
extern void btdm_controller_disable(void);
extern uint8_t btdm_controller_get_mode(void);
extern const char *btdm_controller_get_compile_version(void);
extern void btdm_rf_bb_init_phase2(void); // shall be called after PHY/RF is enabled

/* Sleep */
extern void btdm_controller_enable_sleep(bool enable);
extern uint8_t btdm_controller_get_sleep_mode(void);
extern bool btdm_power_state_active(void);
extern void btdm_wakeup_request(void);
extern void btdm_in_wakeup_requesting_set(bool in_wakeup_requesting);

/* vendor dependent tasks to be posted and handled by controller task*/
extern int btdm_vnd_offload_task_register(btdm_vnd_ol_sig_t sig, btdm_vnd_ol_task_func_t func);
extern int btdm_vnd_offload_task_deregister(btdm_vnd_ol_sig_t sig);
extern int btdm_vnd_offload_post_from_isr(btdm_vnd_ol_sig_t sig, void *param, bool need_yield);
extern int btdm_vnd_offload_post(btdm_vnd_ol_sig_t sig, void *param);

/* Low Power Clock */
extern bool btdm_lpclk_select_src(uint32_t sel);
extern bool btdm_lpclk_set_div(uint32_t div);
extern int btdm_hci_tl_io_event_post(int event);

/* VHCI */
extern bool API_vhci_host_check_send_available(void);
extern void API_vhci_host_send_packet(uint8_t *data, uint16_t len);
extern int API_vhci_host_register_callback(const vhci_host_callback_t *callback);
/* TX power */
extern int ble_txpwr_set(int power_type, int power_level);
extern int ble_txpwr_get(int power_type);

extern uint16_t l2c_ble_link_get_tx_buf_num(void);
extern int coex_core_ble_conn_dyn_prio_get(bool *low, bool *high);

extern bool btdm_deep_sleep_mem_init(void);
extern void btdm_deep_sleep_mem_deinit(void);
extern void btdm_ble_power_down_dma_copy(bool copy);
extern uint8_t btdm_sleep_clock_sync(void);

#if CONFIG_MAC_BB_PD
extern void esp_mac_bb_power_down(void);
extern void esp_mac_bb_power_up(void);
extern void ets_backup_dma_copy(uint32_t reg, uint32_t mem_addr, uint32_t num, bool to_mem);
#endif

extern char _bss_start_btdm;
extern char _bss_end_btdm;
extern char _data_start_btdm;
extern char _data_end_btdm;
extern uint32_t _data_start_btdm_rom;
extern uint32_t _data_end_btdm_rom;

extern uint32_t _bt_bss_start;
extern uint32_t _bt_bss_end;
extern uint32_t _btdm_bss_start;
extern uint32_t _btdm_bss_end;
extern uint32_t _bt_data_start;
extern uint32_t _bt_data_end;
extern uint32_t _btdm_data_start;
extern uint32_t _btdm_data_end;

extern char _bt_tmp_bss_start;
extern char _bt_tmp_bss_end;

/* Local Function Declare
 *********************************************************************
 */
static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio);
static void interrupt_clear_wrapper(int intr_source, int intr_num);
static void interrupt_handler_set_wrapper(int n, intr_handler_t fn, void *arg);
static void interrupt_disable(void);
static void interrupt_restore(void);
static void task_yield_from_isr(void);
static void *semphr_create_wrapper(uint32_t max, uint32_t init);
static void semphr_delete_wrapper(void *semphr);
static int semphr_take_from_isr_wrapper(void *semphr, void *hptw);
static int semphr_give_from_isr_wrapper(void *semphr, void *hptw);
static int  semphr_take_wrapper(void *semphr, uint32_t block_time_ms);
static int  semphr_give_wrapper(void *semphr);
static void *mutex_create_wrapper(void);
static void mutex_delete_wrapper(void *mutex);
static int mutex_lock_wrapper(void *mutex);
static int mutex_unlock_wrapper(void *mutex);
static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size);
static void queue_delete_wrapper(void *queue);
static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int queue_send_from_isr_wrapper(void *queue, void *item, void *hptw);
static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms);
static int queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw);
static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id);
static void task_delete_wrapper(void *task_handle);
static bool is_in_isr_wrapper(void);
static void *malloc_internal_wrapper(size_t size);
static int read_mac_wrapper(uint8_t mac[6]);
static void srand_wrapper(unsigned int seed);
static int rand_wrapper(void);
static uint32_t btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr);
static uint32_t btdm_hus_2_lpcycles(uint32_t hus);
static bool btdm_sleep_check_duration(int32_t *slot_cnt);
static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles);
static void btdm_sleep_enter_phase2_wrapper(void);
static void btdm_sleep_exit_phase3_wrapper(void);
static void coex_wifi_sleep_set_hook(bool sleep);
static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status);
static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status);
static void interrupt_on_wrapper(int intr_num);
static void interrupt_off_wrapper(int intr_num);
static void btdm_hw_mac_power_up_wrapper(void);
static void btdm_hw_mac_power_down_wrapper(void);
static void btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num,  bool to_mem);

static void btdm_slp_tmr_callback(void *arg);
/* Local variable definition
 ***************************************************************************
 */
/* OSI funcs */
static const struct osi_funcs_t osi_funcs_ro = {
    ._magic = OSI_MAGIC_VALUE,
    ._version = OSI_VERSION,
    ._interrupt_set = interrupt_set_wrapper,
    ._interrupt_clear = interrupt_clear_wrapper,
    ._interrupt_handler_set = interrupt_handler_set_wrapper,
    ._interrupt_disable = interrupt_disable,
    ._interrupt_restore = interrupt_restore,
    ._task_yield = vPortYield,
    ._task_yield_from_isr = task_yield_from_isr,
    ._semphr_create = semphr_create_wrapper,
    ._semphr_delete = semphr_delete_wrapper,
    ._semphr_take_from_isr = semphr_take_from_isr_wrapper,
    ._semphr_give_from_isr = semphr_give_from_isr_wrapper,
    ._semphr_take = semphr_take_wrapper,
    ._semphr_give = semphr_give_wrapper,
    ._mutex_create = mutex_create_wrapper,
    ._mutex_delete = mutex_delete_wrapper,
    ._mutex_lock = mutex_lock_wrapper,
    ._mutex_unlock = mutex_unlock_wrapper,
    ._queue_create = queue_create_wrapper,
    ._queue_delete = queue_delete_wrapper,
    ._queue_send = queue_send_wrapper,
    ._queue_send_from_isr = queue_send_from_isr_wrapper,
    ._queue_recv = queue_recv_wrapper,
    ._queue_recv_from_isr = queue_recv_from_isr_wrapper,
    ._task_create = task_create_wrapper,
    ._task_delete = task_delete_wrapper,
    ._is_in_isr = is_in_isr_wrapper,
    ._cause_sw_intr_to_core = NULL,
    ._malloc = malloc,
    ._malloc_internal = malloc_internal_wrapper,
    ._free = free,
    ._read_efuse_mac = read_mac_wrapper,
    ._srand = srand_wrapper,
    ._rand = rand_wrapper,
    ._btdm_lpcycles_2_hus = btdm_lpcycles_2_hus,
    ._btdm_hus_2_lpcycles = btdm_hus_2_lpcycles,
    ._btdm_sleep_check_duration = btdm_sleep_check_duration,
    ._btdm_sleep_enter_phase1 = btdm_sleep_enter_phase1_wrapper,
    ._btdm_sleep_enter_phase2 = btdm_sleep_enter_phase2_wrapper,
    ._btdm_sleep_exit_phase1 = NULL,
    ._btdm_sleep_exit_phase2 = NULL,
    ._btdm_sleep_exit_phase3 = btdm_sleep_exit_phase3_wrapper,
    ._coex_wifi_sleep_set = coex_wifi_sleep_set_hook,
    ._coex_core_ble_conn_dyn_prio_get = coex_core_ble_conn_dyn_prio_get,
    ._coex_schm_status_bit_set = coex_schm_status_bit_set_wrapper,
    ._coex_schm_status_bit_clear = coex_schm_status_bit_clear_wrapper,
    ._interrupt_on = interrupt_on_wrapper,
    ._interrupt_off = interrupt_off_wrapper,
    ._esp_hw_power_down = btdm_hw_mac_power_down_wrapper,
    ._esp_hw_power_up = btdm_hw_mac_power_up_wrapper,
    ._ets_backup_dma_copy = btdm_backup_dma_copy_wrapper,
};

static DRAM_ATTR struct osi_funcs_t *osi_funcs_p;

/* Static variable declare */
static DRAM_ATTR esp_bt_controller_status_t btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;

static DRAM_ATTR portMUX_TYPE global_int_mux = portMUX_INITIALIZER_UNLOCKED;

// low power control struct
static DRAM_ATTR btdm_lpcntl_t s_lp_cntl;
// low power status struct
static DRAM_ATTR btdm_lpstat_t s_lp_stat;
// measured average low power clock period in micro seconds
static DRAM_ATTR uint32_t btdm_lpcycle_us = 0;
// number of fractional bit for btdm_lpcycle_us
static DRAM_ATTR uint8_t btdm_lpcycle_us_frac = 0;
// semaphore used for blocking VHCI API to wait for controller to wake up
static DRAM_ATTR QueueHandle_t s_wakeup_req_sem = NULL;
// wakeup timer
static DRAM_ATTR esp_timer_handle_t s_btdm_slp_tmr;

#ifdef CONFIG_PM_ENABLE
static DRAM_ATTR esp_pm_lock_handle_t s_pm_lock;
// pm_lock to prevent light sleep due to incompatibility currently
static DRAM_ATTR esp_pm_lock_handle_t s_light_sleep_pm_lock;
#endif

void IRAM_ATTR btdm_hw_mac_power_down_wrapper(void)
{
#if CONFIG_MAC_BB_PD
    // Bluetooth module power down
    SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);
    SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);

    esp_mac_bb_power_down();
#endif
}

void IRAM_ATTR btdm_hw_mac_power_up_wrapper(void)
{
#if CONFIG_MAC_BB_PD
    // Bluetooth module power up
    CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);
    CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);

    esp_mac_bb_power_up();
#endif
}

static inline void esp_bt_power_domain_on(void)
{
    // Bluetooth module power up
    CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);
    CLEAR_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);
    esp_wifi_bt_power_domain_on();
}

static inline void esp_bt_power_domain_off(void)
{
    // Bluetooth module power down
    SET_PERI_REG_MASK(RTC_CNTL_DIG_ISO_REG, RTC_CNTL_BT_FORCE_ISO);
    SET_PERI_REG_MASK(RTC_CNTL_DIG_PWC_REG, RTC_CNTL_BT_FORCE_PD);
    esp_wifi_bt_power_domain_off();
}

void IRAM_ATTR btdm_backup_dma_copy_wrapper(uint32_t reg, uint32_t mem_addr, uint32_t num,  bool to_mem)
{
#if CONFIG_MAC_BB_PD
    ets_backup_dma_copy(reg, mem_addr, num, to_mem);
#endif
}

static void interrupt_set_wrapper(int cpu_no, int intr_source, int intr_num, int intr_prio)
{
    intr_matrix_route(intr_source, intr_num);
    esprv_intc_int_set_priority(intr_num, intr_prio);
    //esprv_intc_int_enable_level(1 << intr_num);
    esprv_intc_int_set_type(intr_num, 0);
}

static void interrupt_clear_wrapper(int intr_source, int intr_num)
{
}

static void interrupt_handler_set_wrapper(int n, intr_handler_t fn, void *arg)
{
    intr_handler_set(n, fn, arg);
}

static void interrupt_on_wrapper(int intr_num)
{
    esprv_intc_int_enable(1 << intr_num);
}

static void interrupt_off_wrapper(int intr_num)
{
    esprv_intc_int_disable(1<<intr_num);
}

static void IRAM_ATTR interrupt_disable(void)
{
    if (xPortInIsrContext()) {
        portENTER_CRITICAL_ISR(&global_int_mux);
    } else {
        portENTER_CRITICAL(&global_int_mux);
    }
}

static void IRAM_ATTR interrupt_restore(void)
{
    if (xPortInIsrContext()) {
        portEXIT_CRITICAL_ISR(&global_int_mux);
    } else {
        portEXIT_CRITICAL(&global_int_mux);
    }
}

static void IRAM_ATTR task_yield_from_isr(void)
{
    portYIELD_FROM_ISR();
}

static void *semphr_create_wrapper(uint32_t max, uint32_t init)
{
    return (void *)xSemaphoreCreateCounting(max, init);
}

static void semphr_delete_wrapper(void *semphr)
{
    vSemaphoreDelete(semphr);
}

static int IRAM_ATTR semphr_take_from_isr_wrapper(void *semphr, void *hptw)
{
    return (int)xSemaphoreTakeFromISR(semphr, hptw);
}

static int IRAM_ATTR semphr_give_from_isr_wrapper(void *semphr, void *hptw)
{
    return (int)xSemaphoreGiveFromISR(semphr, hptw);
}

static int semphr_take_wrapper(void *semphr, uint32_t block_time_ms)
{
    if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
        return (int)xSemaphoreTake(semphr, portMAX_DELAY);
    } else {
        return (int)xSemaphoreTake(semphr, block_time_ms / portTICK_PERIOD_MS);
    }
}

static int semphr_give_wrapper(void *semphr)
{
    return (int)xSemaphoreGive(semphr);
}

static void *mutex_create_wrapper(void)
{
    return (void *)xSemaphoreCreateMutex();
}

static void mutex_delete_wrapper(void *mutex)
{
    vSemaphoreDelete(mutex);
}

static int mutex_lock_wrapper(void *mutex)
{
    return (int)xSemaphoreTake(mutex, portMAX_DELAY);
}

static int mutex_unlock_wrapper(void *mutex)
{
    return (int)xSemaphoreGive(mutex);
}

static void *queue_create_wrapper(uint32_t queue_len, uint32_t item_size)
{
    return (void *)xQueueCreate(queue_len, item_size);
}

static void queue_delete_wrapper(void *queue)
{
    vQueueDelete(queue);
}

static int queue_send_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
    if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
        return (int)xQueueSend(queue, item, portMAX_DELAY);
    } else {
        return (int)xQueueSend(queue, item, block_time_ms / portTICK_PERIOD_MS);
    }
}

static int IRAM_ATTR queue_send_from_isr_wrapper(void *queue, void *item, void *hptw)
{
    return (int)xQueueSendFromISR(queue, item, hptw);
}

static int queue_recv_wrapper(void *queue, void *item, uint32_t block_time_ms)
{
    if (block_time_ms == OSI_FUNCS_TIME_BLOCKING) {
        return (int)xQueueReceive(queue, item, portMAX_DELAY);
    } else {
        return (int)xQueueReceive(queue, item, block_time_ms / portTICK_PERIOD_MS);
    }
}

static int IRAM_ATTR queue_recv_from_isr_wrapper(void *queue, void *item, void *hptw)
{
    return (int)xQueueReceiveFromISR(queue, item, hptw);
}

static int task_create_wrapper(void *task_func, const char *name, uint32_t stack_depth, void *param, uint32_t prio, void *task_handle, uint32_t core_id)
{
    return (uint32_t)xTaskCreatePinnedToCore(task_func, name, stack_depth, param, prio, task_handle, (core_id < portNUM_PROCESSORS ? core_id : tskNO_AFFINITY));
}

static void task_delete_wrapper(void *task_handle)
{
    vTaskDelete(task_handle);
}

static bool IRAM_ATTR is_in_isr_wrapper(void)
{
    return (bool)xPortInIsrContext();
}

static void *malloc_internal_wrapper(size_t size)
{
    return heap_caps_malloc(size, MALLOC_CAP_DEFAULT|MALLOC_CAP_INTERNAL|MALLOC_CAP_DMA);
}

static int IRAM_ATTR read_mac_wrapper(uint8_t mac[6])
{
    int ret = esp_read_mac(mac, ESP_MAC_BT);
    ESP_LOGI(BTDM_LOG_TAG, "Bluetooth MAC: %02x:%02x:%02x:%02x:%02x:%02x\n",
               mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);

    return ret;
}

static void IRAM_ATTR srand_wrapper(unsigned int seed)
{
    /* empty function */
}

static int IRAM_ATTR rand_wrapper(void)
{
    return (int)esp_random();
}

static uint32_t IRAM_ATTR btdm_lpcycles_2_hus(uint32_t cycles, uint32_t *error_corr)
{
    uint64_t local_error_corr = (error_corr == NULL) ? 0 : (uint64_t)(*error_corr);
    uint64_t res = (uint64_t)btdm_lpcycle_us * cycles * 2;
    local_error_corr += res;
    res = (local_error_corr >> btdm_lpcycle_us_frac);
    local_error_corr -= (res << btdm_lpcycle_us_frac);
    if (error_corr) {
        *error_corr = (uint32_t) local_error_corr;
    }
    return (uint32_t)res;
}

/*
 * @brief Converts a duration in half us into a number of low power clock cycles.
 */
static uint32_t IRAM_ATTR btdm_hus_2_lpcycles(uint32_t hus)
{
    // The number of sleep duration(us) should not lead to overflow. Thrs: 100s
    // Compute the sleep duration in us to low power clock cycles, with calibration result applied
    // clock measurement is conducted
    uint64_t cycles = ((uint64_t)(hus) << btdm_lpcycle_us_frac) / btdm_lpcycle_us;
    cycles >>= 1;

    return (uint32_t)cycles;
}

static bool IRAM_ATTR btdm_sleep_check_duration(int32_t *half_slot_cnt)
{
    if (*half_slot_cnt < BTDM_MIN_SLEEP_DURATION) {
        return false;
    }
    /* wake up in advance considering the delay in enabling PHY/RF */
    *half_slot_cnt -= BTDM_MODEM_WAKE_UP_DELAY;
    return true;
}

static void btdm_sleep_enter_phase1_wrapper(uint32_t lpcycles)
{
    if (s_lp_cntl.wakeup_timer_required == 0) {
        return;
    }

    // start a timer to wake up and acquire the pm_lock before modem_sleep awakes
    uint32_t us_to_sleep = btdm_lpcycles_2_hus(lpcycles, NULL) >> 1;

#define BTDM_MIN_TIMER_UNCERTAINTY_US      (1800)
    assert(us_to_sleep > BTDM_MIN_TIMER_UNCERTAINTY_US);
    // allow a maximum time uncertainty to be about 488ppm(1/2048) at least as clock drift
    // and set the timer in advance
    uint32_t uncertainty = (us_to_sleep >> 11);
    if (uncertainty < BTDM_MIN_TIMER_UNCERTAINTY_US) {
        uncertainty = BTDM_MIN_TIMER_UNCERTAINTY_US;
    }

    assert (s_lp_stat.wakeup_timer_started == 0);
    if (esp_timer_start_once(s_btdm_slp_tmr, us_to_sleep - uncertainty) == ESP_OK) {
        s_lp_stat.wakeup_timer_started = 1;
    } else {
        ESP_LOGE(BTDM_LOG_TAG, "timer start failed");
        assert(0);
    }
}

static void btdm_sleep_enter_phase2_wrapper(void)
{
    if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
        if (s_lp_stat.phy_enabled) {
            esp_phy_disable();
            s_lp_stat.phy_enabled = 0;
        } else {
            assert(0);
        }

        if (s_lp_stat.pm_lock_released == 0) {
#ifdef CONFIG_PM_ENABLE
            esp_pm_lock_release(s_pm_lock);
#endif
            s_lp_stat.pm_lock_released = 1;
        }
    }
}

static void btdm_sleep_exit_phase3_wrapper(void)
{
#ifdef CONFIG_PM_ENABLE
    // If BT wakeup before esp timer coming due to timer task have no chance to run.
    // Then we will not run into `btdm_sleep_exit_phase0` and acquire PM lock,
    // Do it again here to fix this issue.
    if (s_lp_stat.pm_lock_released) {
        esp_pm_lock_acquire(s_pm_lock);
        s_lp_stat.pm_lock_released = 0;
    }
#endif

    if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
        if (s_lp_stat.phy_enabled == 0) {
            esp_phy_enable();
            s_lp_stat.phy_enabled = 1;
        }
    }

    // If BT wakeup before esp timer coming due to timer task have no chance to run.
    // Then we will not run into `btdm_sleep_exit_phase0` and stop esp timer,
    // Do it again here to fix this issue.
    if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) {
        esp_timer_stop(s_btdm_slp_tmr);
        s_lp_stat.wakeup_timer_started = 0;
    }

    // wait for the sleep state to change
    // the procedure duration is at micro-second level or less
    while (btdm_sleep_clock_sync()) {
        ;
    }
}

static void IRAM_ATTR btdm_sleep_exit_phase0(void *param)
{
    assert(s_lp_cntl.enable == 1);

#ifdef CONFIG_PM_ENABLE
    if (s_lp_stat.pm_lock_released) {
        esp_pm_lock_acquire(s_pm_lock);
        s_lp_stat.pm_lock_released = 0;
    }
#endif

    int event = (int) param;
    if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) {
        btdm_wakeup_request();
    }

    if (s_lp_cntl.wakeup_timer_required && s_lp_stat.wakeup_timer_started) {
        esp_timer_stop(s_btdm_slp_tmr);
        s_lp_stat.wakeup_timer_started = 0;
    }

    if (event == BTDM_ASYNC_WAKEUP_SRC_VHCI || event == BTDM_ASYNC_WAKEUP_SRC_DISA) {
        semphr_give_wrapper(s_wakeup_req_sem);
    }
}

static void IRAM_ATTR btdm_slp_tmr_callback(void *arg)
{
#ifdef CONFIG_PM_ENABLE
    btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)BTDM_ASYNC_WAKEUP_SRC_TMR);
#endif
}


static bool async_wakeup_request(int event)
{
    if (s_lp_cntl.enable == 0) {
        return false;
    }

    bool do_wakeup_request = false;
    switch (event) {
        case BTDM_ASYNC_WAKEUP_SRC_VHCI:
        case BTDM_ASYNC_WAKEUP_SRC_DISA:
            btdm_in_wakeup_requesting_set(true);
            if (!btdm_power_state_active()) {
                btdm_vnd_offload_post(BTDM_VND_OL_SIG_WAKEUP_TMR, (void *)event);
                do_wakeup_request = true;
                semphr_take_wrapper(s_wakeup_req_sem, OSI_FUNCS_TIME_BLOCKING);
            }
            break;
        default:
            break;
    }

    return do_wakeup_request;
}

static void async_wakeup_request_end(int event)
{
    if (s_lp_cntl.enable == 0) {
        return;
    }

    bool allow_to_sleep;
    switch (event) {
        case BTDM_ASYNC_WAKEUP_SRC_VHCI:
        case BTDM_ASYNC_WAKEUP_SRC_DISA:
            allow_to_sleep = true;
            break;
        default:
            allow_to_sleep = true;
            break;
    }

    if (allow_to_sleep) {
        btdm_in_wakeup_requesting_set(false);
    }

    return;
}

static void coex_schm_status_bit_set_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
    coex_schm_status_bit_set(type, status);
#endif
}

static void coex_schm_status_bit_clear_wrapper(uint32_t type, uint32_t status)
{
#if CONFIG_SW_COEXIST_ENABLE
    coex_schm_status_bit_clear(type, status);
#endif
}

bool esp_vhci_host_check_send_available(void)
{
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
        return false;
    }
    return API_vhci_host_check_send_available();
}

void esp_vhci_host_send_packet(uint8_t *data, uint16_t len)
{
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
        return;
    }
    async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_VHCI);

    API_vhci_host_send_packet(data, len);

    async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_VHCI);
}

esp_err_t esp_vhci_host_register_callback(const esp_vhci_host_callback_t *callback)
{
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
        return ESP_FAIL;
    }
    return API_vhci_host_register_callback((const vhci_host_callback_t *)callback) == 0 ? ESP_OK : ESP_FAIL;
}

static void btdm_controller_mem_init(void)
{
    extern void btdm_controller_rom_data_init(void );
    btdm_controller_rom_data_init();
}

esp_err_t esp_bt_controller_mem_release(esp_bt_mode_t mode)
{
    ESP_LOGW(BTDM_LOG_TAG, "%s not implemented, return OK", __func__);
    return ESP_OK;
}

esp_err_t esp_bt_mem_release(esp_bt_mode_t mode)
{
    ESP_LOGW(BTDM_LOG_TAG, "%s not implemented, return OK", __func__);
    return ESP_OK;
}

static esp_err_t try_heap_caps_add_region(intptr_t start, intptr_t end)
{
    int ret = heap_caps_add_region(start, end);
    /* heap_caps_add_region() returns ESP_ERR_INVALID_SIZE if the memory region is
     * is too small to fit a heap. This cannot be termed as a fatal error and hence
     * we replace it by ESP_OK
     */
    if (ret == ESP_ERR_INVALID_SIZE) {
        return ESP_OK;
    }
    return ret;
}

// release wifi and coex memory, free about 720 bytes,
void esp_release_wifi_and_coex_mem(void)
{
    ESP_ERROR_CHECK(try_heap_caps_add_region((intptr_t)ets_rom_layout_p->dram_start_coexist, (intptr_t)ets_rom_layout_p->dram_end_pp));
    ESP_ERROR_CHECK(try_heap_caps_add_region((intptr_t)ets_rom_layout_p->data_start_interface_coexist,(intptr_t)ets_rom_layout_p->bss_end_interface_pp));
}

#if CONFIG_MAC_BB_PD
static void IRAM_ATTR btdm_mac_bb_power_down_cb(void)
{
    if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd == 0) {
        btdm_ble_power_down_dma_copy(true);
        s_lp_stat.mac_bb_pd = 1;
    }
}

static void IRAM_ATTR btdm_mac_bb_power_up_cb(void)
{
    if (s_lp_cntl.mac_bb_pd && s_lp_stat.mac_bb_pd) {
        btdm_ble_power_down_dma_copy(false);
        s_lp_stat.mac_bb_pd = 0;
    }
}
#endif

esp_err_t esp_bt_controller_init(esp_bt_controller_config_t *cfg)
{
    esp_err_t err = ESP_FAIL;

    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_IDLE) {
        return ESP_ERR_INVALID_STATE;
    }

    if (cfg == NULL) {
        return ESP_ERR_INVALID_ARG;
    }

    if (cfg->controller_task_prio != ESP_TASK_BT_CONTROLLER_PRIO
        || cfg->controller_task_stack_size < ESP_TASK_BT_CONTROLLER_STACK) {
        ESP_LOGE(BTDM_LOG_TAG, "Invalid controller task prioriy or stack size");
        return ESP_ERR_INVALID_ARG;
    }

    if (cfg->bluetooth_mode != ESP_BT_MODE_BLE) {
        ESP_LOGE(BTDM_LOG_TAG, "%s controller only support BLE only mode", __func__);
        return ESP_ERR_NOT_SUPPORTED;
    }

    if (cfg->bluetooth_mode & ESP_BT_MODE_BLE) {
        if ((cfg->ble_max_act <= 0) || (cfg->ble_max_act > BT_CTRL_BLE_MAX_ACT_LIMIT)) {
            ESP_LOGE(BTDM_LOG_TAG, "Invalid value of ble_max_act");
            return ESP_ERR_INVALID_ARG;
        }
    }

    if (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) {
        if (cfg->sleep_clock == ESP_BT_SLEEP_CLOCK_NONE) {
            ESP_LOGE(BTDM_LOG_TAG, "SLEEP_MODE_1 enabled but sleep clock not configured");
            return ESP_ERR_INVALID_ARG;
        }
    }

    // overwrite some parameters
    cfg->magic = ESP_BT_CTRL_CONFIG_MAGIC_VAL;

#if CONFIG_MAC_BB_PD
    esp_mac_bb_pd_mem_init();
#endif
    esp_bt_power_domain_on();

    btdm_controller_mem_init();

#if CONFIG_MAC_BB_PD
    if (esp_register_mac_bb_pd_callback(btdm_mac_bb_power_down_cb) != 0) {
        err = ESP_ERR_INVALID_ARG;
        goto error;
    }

    if (esp_register_mac_bb_pu_callback(btdm_mac_bb_power_up_cb) != 0) {
        err = ESP_ERR_INVALID_ARG;
        goto error;
    }
#endif

    osi_funcs_p = (struct osi_funcs_t *)malloc_internal_wrapper(sizeof(struct osi_funcs_t));
    if (osi_funcs_p == NULL) {
        return ESP_ERR_NO_MEM;
    }

    memcpy(osi_funcs_p, &osi_funcs_ro, sizeof(struct osi_funcs_t));
    if (btdm_osi_funcs_register(osi_funcs_p) != 0) {
        return ESP_ERR_INVALID_ARG;
    }

    ESP_LOGI(BTDM_LOG_TAG, "BT controller compile version [%s]", btdm_controller_get_compile_version());

    // init low-power control resources
    do {
        // set default values for global states or resources
        s_lp_stat.val = 0;
        s_lp_cntl.val = 0;
        s_wakeup_req_sem = NULL;
        s_btdm_slp_tmr = NULL;

        // configure and initialize resources
        s_lp_cntl.enable = (cfg->sleep_mode == ESP_BT_SLEEP_MODE_1) ? 1 : 0;
        s_lp_cntl.no_light_sleep = 1;

        if (s_lp_cntl.enable) {
#if CONFIG_MAC_BB_PD
            if (!btdm_deep_sleep_mem_init()) {
                err = ESP_ERR_NO_MEM;
                goto error;
            }
            s_lp_cntl.mac_bb_pd = 1;
#endif
#ifdef CONFIG_PM_ENABLE
            s_lp_cntl.wakeup_timer_required = 1;
#endif
            // async wakeup semaphore for VHCI
            s_wakeup_req_sem = semphr_create_wrapper(1, 0);
            if (s_wakeup_req_sem == NULL) {
                err = ESP_ERR_NO_MEM;
                goto error;
            }
            btdm_vnd_offload_task_register(BTDM_VND_OL_SIG_WAKEUP_TMR, btdm_sleep_exit_phase0);
        }

        if (s_lp_cntl.wakeup_timer_required) {
            esp_timer_create_args_t create_args = {
                .callback = btdm_slp_tmr_callback,
                .arg = NULL,
                .name = "btSlp",
            };
            if ((err = esp_timer_create(&create_args, &s_btdm_slp_tmr)) != ESP_OK) {
                goto error;
            }
        }

        // set default bluetooth sleep clock cycle and its fractional bits
        btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
        btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);

        // set default bluetooth sleep clock source
        s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_XTAL;  // set default value
#if CONFIG_BT_CTRL_LPCLK_SEL_EXT_32K_XTAL
        // check whether or not EXT_CRYS is working
        if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_32K_XTAL) {
            s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_XTAL32K; // External 32 kHz XTAL
            s_lp_cntl.no_light_sleep = 0;
        } else {
            ESP_LOGW(BTDM_LOG_TAG, "32.768kHz XTAL not detected, fall back to main XTAL as Bluetooth sleep clock\n"
                 "light sleep mode will not be able to apply when bluetooth is enabled");
        }
#elif CONFIG_BT_CTRL_LPCLK_SEL_RTC_SLOW
        // check whether or not EXT_CRYS is working
        if (rtc_clk_slow_freq_get() == RTC_SLOW_FREQ_RTC) {
            s_lp_cntl.lpclk_sel = BTDM_LPCLK_SEL_RTC_SLOW; // Internal 150 kHz RC oscillator
            ESP_LOGW(BTDM_LOG_TAG, "Internal 150kHz RC osciallator. The accuracy of this clock is a lot larger than 500ppm which is "
                 "required in Bluetooth communication, so don't select this option in scenarios such as BLE connection state.");
        } else {
            ESP_LOGW(BT_LOG_TAG, "Internal 150kHz RC oscillator not detected.");
            assert(0);
        }
#else
        s_lp_cntl.no_light_sleep = 1;
#endif

        bool select_src_ret __attribute__((unused));
        bool set_div_ret __attribute__((unused));
        if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL) {
            select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL);
            set_div_ret = btdm_lpclk_set_div(rtc_clk_xtal_freq_get() * 2);
            assert(select_src_ret && set_div_ret);
            btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
            btdm_lpcycle_us = 2 << (btdm_lpcycle_us_frac);
        } else if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_XTAL32K) {
            select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_XTAL32K);
            set_div_ret = btdm_lpclk_set_div(0);
            assert(select_src_ret && set_div_ret);
            btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
            btdm_lpcycle_us = (RTC_CLK_CAL_FRACT > 15) ? (1000000 << (RTC_CLK_CAL_FRACT - 15)) :
                (1000000 >> (15 - RTC_CLK_CAL_FRACT));
            assert(btdm_lpcycle_us != 0);
        } else if (s_lp_cntl.lpclk_sel == BTDM_LPCLK_SEL_RTC_SLOW) {
            select_src_ret = btdm_lpclk_select_src(BTDM_LPCLK_SEL_RTC_SLOW);
            set_div_ret = btdm_lpclk_set_div(0);
            assert(select_src_ret && set_div_ret);
            btdm_lpcycle_us_frac = RTC_CLK_CAL_FRACT;
            btdm_lpcycle_us = esp_clk_slowclk_cal_get();
        } else {
            err = ESP_ERR_INVALID_ARG;
            goto error;
        }

#ifdef CONFIG_PM_ENABLE
        if (s_lp_cntl.no_light_sleep) {
            if ((err = esp_pm_lock_create(ESP_PM_NO_LIGHT_SLEEP, 0, "btLS", &s_light_sleep_pm_lock)) != ESP_OK) {
                err = ESP_ERR_NO_MEM;
                goto error;
            }
        }
        if ((err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "bt", &s_pm_lock)) != ESP_OK) {
            err = ESP_ERR_NO_MEM;
            goto error;
        } else {
            s_lp_stat.pm_lock_released = 1;
        }
#endif
    } while (0);

#if CONFIG_SW_COEXIST_ENABLE
    coex_init();
#endif

    periph_module_enable(PERIPH_BT_MODULE);

    esp_phy_enable();
    s_lp_stat.phy_enabled = 1;

    if (btdm_controller_init(cfg) != 0) {
        err = ESP_ERR_NO_MEM;
        goto error;
    }

    btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;

    return ESP_OK;

error:
    if (s_lp_stat.phy_enabled) {
        esp_phy_disable();
        s_lp_stat.phy_enabled = 0;
    }

    do {
        // deinit low power control resources
#ifdef CONFIG_PM_ENABLE
        if (s_lp_cntl.no_light_sleep) {
            if (s_light_sleep_pm_lock != NULL) {
                esp_pm_lock_delete(s_light_sleep_pm_lock);
                s_light_sleep_pm_lock = NULL;
            }
        }
        if (s_pm_lock != NULL) {
            esp_pm_lock_delete(s_pm_lock);
            s_pm_lock = NULL;
            s_lp_stat.pm_lock_released = 0;
        }

#endif
        if (s_lp_cntl.wakeup_timer_required && s_btdm_slp_tmr != NULL) {
            esp_timer_delete(s_btdm_slp_tmr);
            s_btdm_slp_tmr = NULL;
        }

#if CONFIG_MAC_BB_PD
        if (s_lp_cntl.mac_bb_pd) {
            btdm_deep_sleep_mem_deinit();
            s_lp_cntl.mac_bb_pd = 0;
        }
#endif
        if (s_lp_cntl.enable) {
            btdm_vnd_offload_task_deregister(BTDM_VND_OL_SIG_WAKEUP_TMR);
            if (s_wakeup_req_sem != NULL) {
                semphr_delete_wrapper(s_wakeup_req_sem);
                s_wakeup_req_sem = NULL;
            }
        }
    } while (0);

#if CONFIG_MAC_BB_PD
    esp_unregister_mac_bb_pd_callback(btdm_mac_bb_power_down_cb);

    esp_unregister_mac_bb_pu_callback(btdm_mac_bb_power_up_cb);
#endif

    if (osi_funcs_p != NULL) {
        free(osi_funcs_p);
        osi_funcs_p = NULL;
    }
    return err;
}

esp_err_t esp_bt_controller_deinit(void)
{
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
        return ESP_ERR_INVALID_STATE;
    }

    btdm_controller_deinit();
    periph_module_disable(PERIPH_BT_MODULE);

    if (s_lp_stat.phy_enabled) {
        esp_phy_disable();
        s_lp_stat.phy_enabled = 0;
    } else {
        assert(0);
    }

    // deinit low power control resources
    do {
#if CONFIG_MAC_BB_PD
        btdm_deep_sleep_mem_deinit();
#endif

#ifdef CONFIG_PM_ENABLE
        if (s_lp_cntl.no_light_sleep) {
            esp_pm_lock_delete(s_light_sleep_pm_lock);
            s_light_sleep_pm_lock = NULL;
        }

        esp_pm_lock_delete(s_pm_lock);
        s_pm_lock = NULL;
        s_lp_stat.pm_lock_released = 0;
#endif
        if (s_lp_cntl.wakeup_timer_required) {
            if (s_lp_stat.wakeup_timer_started) {
                esp_timer_stop(s_btdm_slp_tmr);
            }
            s_lp_stat.wakeup_timer_started = 0;
            esp_timer_delete(s_btdm_slp_tmr);
            s_btdm_slp_tmr = NULL;
        }

        if (s_lp_cntl.enable) {
            btdm_vnd_offload_task_deregister(BTDM_VND_OL_SIG_WAKEUP_TMR);

            semphr_delete_wrapper(s_wakeup_req_sem);
            s_wakeup_req_sem = NULL;
        }
    } while (0);

#if CONFIG_MAC_BB_PD
    esp_unregister_mac_bb_pd_callback(btdm_mac_bb_power_down_cb);
    esp_unregister_mac_bb_pu_callback(btdm_mac_bb_power_up_cb);
#endif

    /* Fix the issue caused by the power off the bt power domain.
     * This issue is only on ESP32C3.
     */
    phy_init_flag();

    esp_bt_power_domain_off();

    free(osi_funcs_p);
    osi_funcs_p = NULL;

    btdm_controller_status = ESP_BT_CONTROLLER_STATUS_IDLE;
    btdm_lpcycle_us = 0;
    return ESP_OK;
}

esp_err_t esp_bt_controller_enable(esp_bt_mode_t mode)
{
    int ret = ESP_OK;

    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_INITED) {
        return ESP_ERR_INVALID_STATE;
    }

    //As the history reason, mode should be equal to the mode which set in esp_bt_controller_init()
    if (mode != btdm_controller_get_mode()) {
        ESP_LOGE(BTDM_LOG_TAG, "invalid mode %d, controller support mode is %d", mode, btdm_controller_get_mode());
        return ESP_ERR_INVALID_ARG;
    }

#if CONFIG_SW_COEXIST_ENABLE
    coex_enable();
#endif

    // enable low power mode
    do {
#ifdef CONFIG_PM_ENABLE
        if (s_lp_cntl.no_light_sleep) {
            esp_pm_lock_acquire(s_light_sleep_pm_lock);
        }
        esp_pm_lock_acquire(s_pm_lock);
        s_lp_stat.pm_lock_released = 0;
#endif

        if (s_lp_cntl.enable) {
            btdm_controller_enable_sleep(true);
        }
    } while (0);

    if (btdm_controller_enable(mode) != 0) {
        ret = ESP_ERR_INVALID_STATE;
        goto error;
    }

    btdm_controller_status = ESP_BT_CONTROLLER_STATUS_ENABLED;

    return ret;

error:
    // disable low power mode
    do {
        btdm_controller_enable_sleep(false);
#ifdef CONFIG_PM_ENABLE
        if (s_lp_cntl.no_light_sleep) {
            esp_pm_lock_release(s_light_sleep_pm_lock);
        }
        if (s_lp_stat.pm_lock_released == 0) {
            esp_pm_lock_release(s_pm_lock);
            s_lp_stat.pm_lock_released = 1;
        }
#endif
    } while (0);

    return ret;
}

esp_err_t esp_bt_controller_disable(void)
{
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
        return ESP_ERR_INVALID_STATE;
    }

    async_wakeup_request(BTDM_ASYNC_WAKEUP_SRC_DISA);
    while (!btdm_power_state_active()){}
    btdm_controller_disable();

    async_wakeup_request_end(BTDM_ASYNC_WAKEUP_SRC_DISA);

#if CONFIG_SW_COEXIST_ENABLE
    coex_disable();
#endif

    btdm_controller_status = ESP_BT_CONTROLLER_STATUS_INITED;

    // disable low power mode
    do {
#ifdef CONFIG_PM_ENABLE
        if (s_lp_cntl.no_light_sleep) {
            esp_pm_lock_release(s_light_sleep_pm_lock);
        }

        if (s_lp_stat.pm_lock_released == 0) {
            esp_pm_lock_release(s_pm_lock);
            s_lp_stat.pm_lock_released = 1;
        } else {
            assert(0);
        }
#endif
    } while (0);

    return ESP_OK;
}

esp_bt_controller_status_t esp_bt_controller_get_status(void)
{
    return btdm_controller_status;
}

/* extra functions */
esp_err_t esp_ble_tx_power_set(esp_ble_power_type_t power_type, esp_power_level_t power_level)
{
    esp_err_t stat = ESP_FAIL;

    switch (power_type) {
    case ESP_BLE_PWR_TYPE_ADV:
    case ESP_BLE_PWR_TYPE_SCAN:
    case ESP_BLE_PWR_TYPE_DEFAULT:
        if (ble_txpwr_set(power_type, power_level) == 0) {
            stat = ESP_OK;
        }
        break;
    default:
        stat = ESP_ERR_NOT_SUPPORTED;
        break;
    }

    return stat;
}

esp_power_level_t esp_ble_tx_power_get(esp_ble_power_type_t power_type)
{
    esp_power_level_t lvl;

    switch (power_type) {
    case ESP_BLE_PWR_TYPE_ADV:
    case ESP_BLE_PWR_TYPE_SCAN:
        lvl = (esp_power_level_t)ble_txpwr_get(power_type);
        break;
    case ESP_BLE_PWR_TYPE_CONN_HDL0:
    case ESP_BLE_PWR_TYPE_CONN_HDL1:
    case ESP_BLE_PWR_TYPE_CONN_HDL2:
    case ESP_BLE_PWR_TYPE_CONN_HDL3:
    case ESP_BLE_PWR_TYPE_CONN_HDL4:
    case ESP_BLE_PWR_TYPE_CONN_HDL5:
    case ESP_BLE_PWR_TYPE_CONN_HDL6:
    case ESP_BLE_PWR_TYPE_CONN_HDL7:
    case ESP_BLE_PWR_TYPE_CONN_HDL8:
    case ESP_BLE_PWR_TYPE_DEFAULT:
        lvl = (esp_power_level_t)ble_txpwr_get(ESP_BLE_PWR_TYPE_DEFAULT);
        break;
    default:
        lvl = ESP_PWR_LVL_INVALID;
        break;
    }

    return lvl;
}

esp_err_t esp_bt_sleep_enable (void)
{
    esp_err_t status;
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
        return ESP_ERR_INVALID_STATE;
    }
    if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
        btdm_controller_enable_sleep (true);
        status = ESP_OK;
    } else {
        status = ESP_ERR_NOT_SUPPORTED;
    }

    return status;
}

esp_err_t esp_bt_sleep_disable (void)
{
    esp_err_t status;
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED) {
        return ESP_ERR_INVALID_STATE;
    }
    if (btdm_controller_get_sleep_mode() == ESP_BT_SLEEP_MODE_1) {
        btdm_controller_enable_sleep (false);
        status = ESP_OK;
    } else {
        status = ESP_ERR_NOT_SUPPORTED;
    }

    return status;
}

bool esp_bt_controller_is_sleeping(void)
{
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
        btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) {
        return false;
    }

    return !btdm_power_state_active();
}

void esp_bt_controller_wakeup_request(void)
{
    if (btdm_controller_status != ESP_BT_CONTROLLER_STATUS_ENABLED ||
        btdm_controller_get_sleep_mode() != ESP_BT_SLEEP_MODE_1) {
        return;
    }

    btdm_wakeup_request();

}

int IRAM_ATTR esp_bt_h4tl_eif_io_event_notify(int event)
{
    return btdm_hci_tl_io_event_post(event);
}

uint16_t esp_bt_get_tx_buf_num(void)
{
    return l2c_ble_link_get_tx_buf_num();
}

static void coex_wifi_sleep_set_hook(bool sleep)
{

}
#endif /*  CONFIG_BT_ENABLED */