/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include "sdkconfig.h" #include "stdatomic.h" #include "esp_types.h" #include "esp_attr.h" #include "esp_check.h" #include "esp_cache.h" #include "esp_rom_gpio.h" #include "esp_heap_caps.h" #include "soc/spi_periph.h" #include "soc/ext_mem_defs.h" #include "driver/spi_master.h" #include "driver/gpio.h" #include "esp_private/gpio.h" #include "esp_private/periph_ctrl.h" #include "esp_private/spi_common_internal.h" #include "esp_private/spi_share_hw_ctrl.h" #include "esp_private/esp_cache_private.h" #include "hal/spi_hal.h" #include "hal/gpio_hal.h" #if CONFIG_IDF_TARGET_ESP32 #include "soc/dport_reg.h" #endif #if SOC_GDMA_SUPPORTED #include "esp_private/gdma.h" #endif static const char *SPI_TAG = "spi"; #define SPI_CHECK(a, str, ret_val) ESP_RETURN_ON_FALSE(a, ret_val, SPI_TAG, str) #define SPI_CHECK_PIN(pin_num, pin_name, check_output) if (check_output) { \ SPI_CHECK(GPIO_IS_VALID_OUTPUT_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ } else { \ SPI_CHECK(GPIO_IS_VALID_GPIO(pin_num), pin_name" not valid", ESP_ERR_INVALID_ARG); \ } #define SPI_MAIN_BUS_DEFAULT() { \ .host_id = 0, \ .bus_attr = { \ .max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE, \ }, \ } #define FUNC_GPIO PIN_FUNC_GPIO typedef struct { int host_id; spi_destroy_func_t destroy_func; void* destroy_arg; spi_bus_attr_t bus_attr; spi_dma_ctx_t *dma_ctx; #if SOC_GDMA_SUPPORTED gdma_channel_handle_t tx_channel; gdma_channel_handle_t rx_channel; #endif } spicommon_bus_context_t; static spicommon_bus_context_t s_mainbus = SPI_MAIN_BUS_DEFAULT(); static spicommon_bus_context_t* bus_ctx[SOC_SPI_PERIPH_NUM] = {&s_mainbus}; #if CONFIG_SPI_FLASH_SHARE_SPI1_BUS /* The lock for the share SPI1 bus is registered here in a constructor due to need to access the context This way we are able to decouple the SPI-flash driver from the spi-master driver */ static __attribute__((constructor)) void spi_bus_lock_init_main_bus(void) { /* Initialize bus context about the main SPI bus lock, called during chip startup. */ spi_bus_main_set_lock(g_main_spi_bus_lock); } #endif #if SOC_GDMA_SUPPORTED //NOTE!! If both A and B are not defined, '#if (A==B)' is true, because GCC use 0 stand for undefined symbol #if defined(SOC_GDMA_BUS_AXI) && (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AXI) #define SPI_GDMA_NEW_CHANNEL gdma_new_axi_channel #elif defined(SOC_GDMA_BUS_AHB) && (SOC_GDMA_TRIG_PERIPH_SPI2_BUS == SOC_GDMA_BUS_AHB) #define SPI_GDMA_NEW_CHANNEL gdma_new_ahb_channel #endif #else //Each bit stands for 1 dma channel, BIT(0) should be used for SPI1 static uint8_t spi_dma_chan_enabled = 0; static portMUX_TYPE spi_dma_spinlock = portMUX_INITIALIZER_UNLOCKED; #endif //!SOC_GDMA_SUPPORTED static inline bool is_valid_host(spi_host_device_t host) { #if (SOC_SPI_PERIPH_NUM == 2) return host >= SPI1_HOST && host <= SPI2_HOST; #elif (SOC_SPI_PERIPH_NUM == 3) return host >= SPI1_HOST && host <= SPI3_HOST; #endif } int spicommon_irqsource_for_host(spi_host_device_t host) { return spi_periph_signal[host].irq; } int spicommon_irqdma_source_for_host(spi_host_device_t host) { return spi_periph_signal[host].irq_dma; } //----------------------------------------------------------alloc dma periph-------------------------------------------------------// #if !SOC_GDMA_SUPPORTED #if SPI_LL_DMA_SHARED static inline periph_module_t get_dma_periph(int dma_chan) { assert(dma_chan >= 1 && dma_chan <= SOC_SPI_DMA_CHAN_NUM); if (dma_chan == 1) { return PERIPH_SPI2_DMA_MODULE; } else if (dma_chan == 2) { return PERIPH_SPI3_DMA_MODULE; } else { abort(); } } #endif static bool claim_dma_chan(int dma_chan, uint32_t *out_actual_dma_chan) { bool ret = false; portENTER_CRITICAL(&spi_dma_spinlock); bool is_used = (BIT(dma_chan) & spi_dma_chan_enabled); if (!is_used) { spi_dma_chan_enabled |= BIT(dma_chan); #if SPI_LL_DMA_SHARED PERIPH_RCC_ACQUIRE_ATOMIC(get_dma_periph(dma_chan), ref_count) { //esp32s2: dma_chan index is same as spi host_id, no matter dma_chan_auto or not if (ref_count == 0) { spi_dma_ll_enable_bus_clock(dma_chan, true); spi_dma_ll_reset_register(dma_chan); } } #else SPI_COMMON_RCC_CLOCK_ATOMIC() { //esp32: have only one spi_dma spi_dma_ll_enable_bus_clock(dma_chan, true); spi_dma_ll_reset_register(dma_chan); } #endif *out_actual_dma_chan = dma_chan; ret = true; } portEXIT_CRITICAL(&spi_dma_spinlock); return ret; } static void connect_spi_and_dma(spi_host_device_t host, int dma_chan) { #if CONFIG_IDF_TARGET_ESP32 DPORT_SET_PERI_REG_BITS(DPORT_SPI_DMA_CHAN_SEL_REG, 3, dma_chan, (host * 2)); #elif CONFIG_IDF_TARGET_ESP32S2 //On ESP32S2, each SPI controller has its own DMA channel. So there is no need to connect them. #endif } static esp_err_t alloc_dma_chan(spi_host_device_t host_id, spi_dma_chan_t dma_chan, spi_dma_ctx_t *dma_ctx) { assert(is_valid_host(host_id)); #if CONFIG_IDF_TARGET_ESP32 assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO); #elif CONFIG_IDF_TARGET_ESP32S2 assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO); #endif esp_err_t ret = ESP_OK; bool success = false; uint32_t actual_dma_chan = 0; if (dma_chan == SPI_DMA_CH_AUTO) { #if CONFIG_IDF_TARGET_ESP32 for (int i = 1; i < SOC_SPI_DMA_CHAN_NUM + 1; i++) { success = claim_dma_chan(i, &actual_dma_chan); if (success) { break; } } #elif CONFIG_IDF_TARGET_ESP32S2 //On ESP32S2, each SPI controller has its own DMA channel success = claim_dma_chan(host_id, &actual_dma_chan); #endif //#if CONFIG_IDF_TARGET_XXX } else { success = claim_dma_chan((int)dma_chan, &actual_dma_chan); } //On ESP32 and ESP32S2, actual_tx_dma_chan and actual_rx_dma_chan are always same dma_ctx->tx_dma_chan.chan_id = actual_dma_chan; dma_ctx->rx_dma_chan.chan_id = actual_dma_chan; dma_ctx->tx_dma_chan.host_id = host_id; dma_ctx->rx_dma_chan.host_id = host_id; dma_ctx->tx_dma_chan.dir = DMA_CHANNEL_DIRECTION_TX; dma_ctx->rx_dma_chan.dir = DMA_CHANNEL_DIRECTION_RX; if (!success) { SPI_CHECK(false, "no available dma channel", ESP_ERR_NOT_FOUND); } connect_spi_and_dma(host_id, actual_dma_chan); spi_dma_enable_burst(dma_ctx->tx_dma_chan, true, true); spi_dma_enable_burst(dma_ctx->rx_dma_chan, true, true); return ret; } #else //SOC_GDMA_SUPPORTED static esp_err_t alloc_dma_chan(spi_host_device_t host_id, spi_dma_chan_t dma_chan, spi_dma_ctx_t *dma_ctx) { assert(is_valid_host(host_id)); assert(dma_chan == SPI_DMA_CH_AUTO); esp_err_t ret = ESP_OK; if (dma_chan == SPI_DMA_CH_AUTO) { gdma_channel_alloc_config_t tx_alloc_config = { .flags.reserve_sibling = 1, .direction = GDMA_CHANNEL_DIRECTION_TX, }; ESP_RETURN_ON_ERROR(SPI_GDMA_NEW_CHANNEL(&tx_alloc_config, &dma_ctx->tx_dma_chan), SPI_TAG, "alloc gdma tx failed"); gdma_channel_alloc_config_t rx_alloc_config = { .direction = GDMA_CHANNEL_DIRECTION_RX, .sibling_chan = dma_ctx->tx_dma_chan, }; ESP_RETURN_ON_ERROR(SPI_GDMA_NEW_CHANNEL(&rx_alloc_config, &dma_ctx->rx_dma_chan), SPI_TAG, "alloc gdma rx failed"); if (host_id == SPI2_HOST) { gdma_connect(dma_ctx->tx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2)); gdma_connect(dma_ctx->rx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 2)); } #if (SOC_SPI_PERIPH_NUM >= 3) else if (host_id == SPI3_HOST) { gdma_connect(dma_ctx->tx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3)); gdma_connect(dma_ctx->rx_dma_chan, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_SPI, 3)); } #endif gdma_transfer_ability_t ability = { .psram_trans_align = 0, // fall back to use the same size of the psram data cache line size .sram_trans_align = 4, }; ESP_RETURN_ON_ERROR(gdma_set_transfer_ability(dma_ctx->tx_dma_chan, &ability), SPI_TAG, "set gdma tx transfer ability failed"); ESP_RETURN_ON_ERROR(gdma_set_transfer_ability(dma_ctx->rx_dma_chan, &ability), SPI_TAG, "set gdma rx transfer ability failed"); } return ret; } #endif //#if !SOC_GDMA_SUPPORTED esp_err_t spicommon_dma_chan_alloc(spi_host_device_t host_id, spi_dma_chan_t dma_chan, spi_dma_ctx_t **out_dma_ctx) { assert(is_valid_host(host_id)); #if CONFIG_IDF_TARGET_ESP32 assert(dma_chan > SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO); #elif CONFIG_IDF_TARGET_ESP32S2 assert(dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO); #endif esp_err_t ret = ESP_OK; spi_dma_ctx_t *dma_ctx = (spi_dma_ctx_t *)calloc(1, sizeof(spi_dma_ctx_t)); if (!dma_ctx) { ret = ESP_ERR_NO_MEM; goto cleanup; } ret = alloc_dma_chan(host_id, dma_chan, dma_ctx); if (ret != ESP_OK) { goto cleanup; } *out_dma_ctx = dma_ctx; return ret; cleanup: free(dma_ctx); return ret; } esp_err_t spicommon_dma_desc_alloc(spi_dma_ctx_t *dma_ctx, int cfg_max_sz, int *actual_max_sz) { int dma_desc_ct = (cfg_max_sz + DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED - 1) / DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED; if (dma_desc_ct == 0) { dma_desc_ct = 1; //default to 4k when max is not given } dma_ctx->dmadesc_tx = heap_caps_aligned_alloc(DMA_DESC_MEM_ALIGN_SIZE, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA); dma_ctx->dmadesc_rx = heap_caps_aligned_alloc(DMA_DESC_MEM_ALIGN_SIZE, sizeof(spi_dma_desc_t) * dma_desc_ct, MALLOC_CAP_DMA); if (dma_ctx->dmadesc_tx == NULL || dma_ctx->dmadesc_rx == NULL) { if (dma_ctx->dmadesc_tx) { free(dma_ctx->dmadesc_tx); dma_ctx->dmadesc_tx = NULL; } if (dma_ctx->dmadesc_rx) { free(dma_ctx->dmadesc_rx); dma_ctx->dmadesc_rx = NULL; } return ESP_ERR_NO_MEM; } dma_ctx->dma_desc_num = dma_desc_ct; *actual_max_sz = dma_desc_ct * DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED; return ESP_OK; } #if SOC_NON_CACHEABLE_OFFSET #define ADDR_DMA_2_CPU(addr) ((typeof(addr))((uint32_t)(addr) + SOC_NON_CACHEABLE_OFFSET)) #define ADDR_CPU_2_DMA(addr) ((typeof(addr))((uint32_t)(addr) - SOC_NON_CACHEABLE_OFFSET)) #else #define ADDR_DMA_2_CPU(addr) (addr) #define ADDR_CPU_2_DMA(addr) (addr) #endif void SPI_MASTER_ISR_ATTR spicommon_dma_desc_setup_link(spi_dma_desc_t *dmadesc, const void *data, int len, bool is_rx) { dmadesc = ADDR_DMA_2_CPU(dmadesc); int n = 0; while (len) { int dmachunklen = len; if (dmachunklen > DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED) { dmachunklen = DMA_DESCRIPTOR_BUFFER_MAX_SIZE_4B_ALIGNED; } if (is_rx) { //Receive needs DMA length rounded to next 32-bit boundary dmadesc[n].dw0.size = (dmachunklen + 3) & (~3); } else { dmadesc[n].dw0.size = dmachunklen; dmadesc[n].dw0.length = dmachunklen; } dmadesc[n].buffer = (uint8_t *)data; dmadesc[n].dw0.suc_eof = 0; dmadesc[n].dw0.owner = DMA_DESCRIPTOR_BUFFER_OWNER_DMA; dmadesc[n].next = ADDR_CPU_2_DMA(&dmadesc[n + 1]); len -= dmachunklen; data += dmachunklen; n++; } dmadesc[n - 1].dw0.suc_eof = 1; //Mark last DMA desc as end of stream. dmadesc[n - 1].next = NULL; } //----------------------------------------------------------free dma periph-------------------------------------------------------// esp_err_t spicommon_dma_chan_free(spi_dma_ctx_t *dma_ctx) { assert(dma_ctx); #if !SOC_GDMA_SUPPORTED //On ESP32S2, each SPI controller has its own DMA channel int dma_chan = dma_ctx->tx_dma_chan.chan_id; assert(spi_dma_chan_enabled & BIT(dma_chan)); portENTER_CRITICAL(&spi_dma_spinlock); spi_dma_chan_enabled &= ~BIT(dma_chan); #if SPI_LL_DMA_SHARED PERIPH_RCC_RELEASE_ATOMIC(get_dma_periph(dma_chan), ref_count) { if (ref_count == 0) { spi_dma_ll_enable_bus_clock(dma_ctx->tx_dma_chan.host_id, false); } } #else SPI_COMMON_RCC_CLOCK_ATOMIC() { spi_dma_ll_enable_bus_clock(dma_ctx->tx_dma_chan.host_id, false); } #endif portEXIT_CRITICAL(&spi_dma_spinlock); #else //SOC_GDMA_SUPPORTED if (dma_ctx->rx_dma_chan) { gdma_disconnect(dma_ctx->rx_dma_chan); gdma_del_channel(dma_ctx->rx_dma_chan); } if (dma_ctx->tx_dma_chan) { gdma_disconnect(dma_ctx->tx_dma_chan); gdma_del_channel(dma_ctx->tx_dma_chan); } #endif free(dma_ctx); return ESP_OK; } //----------------------------------------------------------IO general-------------------------------------------------------// #if SOC_SPI_SUPPORT_OCT static bool check_iomux_pins_oct(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (host != SPI2_HOST) { return false; } int io_nums[] = {bus_config->data0_io_num, bus_config->data1_io_num, bus_config->data2_io_num, bus_config->data3_io_num, bus_config->sclk_io_num, bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num }; int io_mux_nums[] = {SPI2_IOMUX_PIN_NUM_MOSI_OCT, SPI2_IOMUX_PIN_NUM_MISO_OCT, SPI2_IOMUX_PIN_NUM_WP_OCT, SPI2_IOMUX_PIN_NUM_HD_OCT, SPI2_IOMUX_PIN_NUM_CLK_OCT, SPI2_IOMUX_PIN_NUM_IO4_OCT, SPI2_IOMUX_PIN_NUM_IO5_OCT, SPI2_IOMUX_PIN_NUM_IO6_OCT, SPI2_IOMUX_PIN_NUM_IO7_OCT }; for (size_t i = 0; i < sizeof(io_nums) / sizeof(io_nums[0]); i++) { if (io_nums[i] >= 0 && io_nums[i] != io_mux_nums[i]) { return false; } } return true; } #endif static bool check_iomux_pins_quad(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (bus_config->sclk_io_num >= 0 && bus_config->sclk_io_num != spi_periph_signal[host].spiclk_iomux_pin) { return false; } if (bus_config->quadwp_io_num >= 0 && bus_config->quadwp_io_num != spi_periph_signal[host].spiwp_iomux_pin) { return false; } if (bus_config->quadhd_io_num >= 0 && bus_config->quadhd_io_num != spi_periph_signal[host].spihd_iomux_pin) { return false; } if (bus_config->mosi_io_num >= 0 && bus_config->mosi_io_num != spi_periph_signal[host].spid_iomux_pin) { return false; } if (bus_config->miso_io_num >= 0 && bus_config->miso_io_num != spi_periph_signal[host].spiq_iomux_pin) { return false; } return true; } static bool bus_uses_iomux_pins(spi_host_device_t host, const spi_bus_config_t* bus_config) { //Check if SPI pins could be routed to iomux. #if SOC_SPI_SUPPORT_OCT //The io mux pins available for Octal mode is not the same as the ones we use for non-Octal mode. if ((bus_config->flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) { return check_iomux_pins_oct(host, bus_config); } #endif return check_iomux_pins_quad(host, bus_config); } #if SOC_SPI_SUPPORT_OCT static void bus_iomux_pins_set_oct(spi_host_device_t host, const spi_bus_config_t* bus_config) { assert(host == SPI2_HOST); int io_nums[] = {bus_config->data0_io_num, bus_config->data1_io_num, bus_config->data2_io_num, bus_config->data3_io_num, bus_config->sclk_io_num, bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num }; int io_signals[] = {spi_periph_signal[host].spid_in, spi_periph_signal[host].spiq_in, spi_periph_signal[host].spiwp_in, spi_periph_signal[host].spihd_in, spi_periph_signal[host].spiclk_in, spi_periph_signal[host].spid4_out, spi_periph_signal[host].spid5_out, spi_periph_signal[host].spid6_out, spi_periph_signal[host].spid7_out }; for (size_t i = 0; i < sizeof(io_nums) / sizeof(io_nums[0]); i++) { if (io_nums[i] > 0) { gpio_iomux_in(io_nums[i], io_signals[i]); // In Octal mode use function channel 2 gpio_iomux_out(io_nums[i], SPI2_FUNC_NUM_OCT, false); } } } #endif //SOC_SPI_SUPPORT_OCT static void bus_iomux_pins_set_quad(spi_host_device_t host, const spi_bus_config_t* bus_config) { if (bus_config->mosi_io_num >= 0) { gpio_iomux_in(bus_config->mosi_io_num, spi_periph_signal[host].spid_in); gpio_iomux_out(bus_config->mosi_io_num, spi_periph_signal[host].func, false); } if (bus_config->miso_io_num >= 0) { gpio_iomux_in(bus_config->miso_io_num, spi_periph_signal[host].spiq_in); gpio_iomux_out(bus_config->miso_io_num, spi_periph_signal[host].func, false); } if (bus_config->quadwp_io_num >= 0) { gpio_iomux_in(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in); gpio_iomux_out(bus_config->quadwp_io_num, spi_periph_signal[host].func, false); } if (bus_config->quadhd_io_num >= 0) { gpio_iomux_in(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in); gpio_iomux_out(bus_config->quadhd_io_num, spi_periph_signal[host].func, false); } if (bus_config->sclk_io_num >= 0) { gpio_iomux_in(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in); gpio_iomux_out(bus_config->sclk_io_num, spi_periph_signal[host].func, false); } } static void bus_iomux_pins_set(spi_host_device_t host, const spi_bus_config_t* bus_config) { #if SOC_SPI_SUPPORT_OCT if ((bus_config->flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) { bus_iomux_pins_set_oct(host, bus_config); return; } #endif bus_iomux_pins_set_quad(host, bus_config); } /* Do the common stuff to hook up a SPI host to a bus defined by a bunch of GPIO pins. Feed it a host number and a bus config struct and it'll set up the GPIO matrix and enable the device. If a pin is set to non-negative value, it should be able to be initialized. */ esp_err_t spicommon_bus_initialize_io(spi_host_device_t host, const spi_bus_config_t *bus_config, uint32_t flags, uint32_t* flags_o) { #if SOC_SPI_SUPPORT_OCT // In the driver of previous version, spi data4 ~ spi data7 are not in spi_bus_config_t struct. So the new-added pins come as 0 // if they are not really set. Add this boolean variable to check if the user has set spi data4 ~spi data7 pins . bool io4_7_is_blank = !bus_config->data4_io_num && !bus_config->data5_io_num && !bus_config->data6_io_num && !bus_config->data7_io_num; // This boolean variable specifies if user sets pins used for octal mode (users can set spi data4 ~ spi data7 to -1). bool io4_7_enabled = !io4_7_is_blank && bus_config->data4_io_num >= 0 && bus_config->data5_io_num >= 0 && bus_config->data6_io_num >= 0 && bus_config->data7_io_num >= 0; SPI_CHECK((flags & SPICOMMON_BUSFLAG_MASTER) || !((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL), "Octal SPI mode / OPI mode only works when SPI is used as Master", ESP_ERR_INVALID_ARG); SPI_CHECK(host == SPI2_HOST || !((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL), "Only SPI2 supports Octal SPI mode / OPI mode", ESP_ERR_INVALID_ARG); #endif //SOC_SPI_SUPPORT_OCT uint32_t temp_flag = 0; bool miso_need_output; bool mosi_need_output; bool sclk_need_output; if ((flags & SPICOMMON_BUSFLAG_MASTER) != 0) { //initial for master miso_need_output = ((flags & SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; mosi_need_output = true; sclk_need_output = true; } else { //initial for slave miso_need_output = true; mosi_need_output = ((flags & SPICOMMON_BUSFLAG_DUAL) != 0) ? true : false; sclk_need_output = false; } const bool wp_need_output = true; const bool hd_need_output = true; //check pin capabilities if (bus_config->sclk_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_SCLK; SPI_CHECK_PIN(bus_config->sclk_io_num, "sclk", sclk_need_output); } if (bus_config->quadwp_io_num >= 0) { SPI_CHECK_PIN(bus_config->quadwp_io_num, "wp", wp_need_output); } if (bus_config->quadhd_io_num >= 0) { SPI_CHECK_PIN(bus_config->quadhd_io_num, "hd", hd_need_output); } #if SOC_SPI_SUPPORT_OCT const bool io4_need_output = true; const bool io5_need_output = true; const bool io6_need_output = true; const bool io7_need_output = true; // set flags for OCTAL mode according to the existence of spi data4 ~ spi data7 if (io4_7_enabled) { temp_flag |= SPICOMMON_BUSFLAG_IO4_IO7; if (bus_config->data4_io_num >= 0) { SPI_CHECK_PIN(bus_config->data4_io_num, "spi data4", io4_need_output); } if (bus_config->data5_io_num >= 0) { SPI_CHECK_PIN(bus_config->data5_io_num, "spi data5", io5_need_output); } if (bus_config->data6_io_num >= 0) { SPI_CHECK_PIN(bus_config->data6_io_num, "spi data6", io6_need_output); } if (bus_config->data7_io_num >= 0) { SPI_CHECK_PIN(bus_config->data7_io_num, "spi data7", io7_need_output); } } #endif //SOC_SPI_SUPPORT_OCT //set flags for QUAD mode according to the existence of wp and hd if (bus_config->quadhd_io_num >= 0 && bus_config->quadwp_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_WPHD; } if (bus_config->mosi_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_MOSI; SPI_CHECK_PIN(bus_config->mosi_io_num, "mosi", mosi_need_output); } if (bus_config->miso_io_num >= 0) { temp_flag |= SPICOMMON_BUSFLAG_MISO; SPI_CHECK_PIN(bus_config->miso_io_num, "miso", miso_need_output); } //set flags for DUAL mode according to output-capability of MOSI and MISO pins. if ((bus_config->mosi_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->mosi_io_num)) && (bus_config->miso_io_num < 0 || GPIO_IS_VALID_OUTPUT_GPIO(bus_config->miso_io_num))) { temp_flag |= SPICOMMON_BUSFLAG_DUAL; } //check if the selected pins correspond to the iomux pins of the peripheral bool use_iomux = !(flags & SPICOMMON_BUSFLAG_GPIO_PINS) && bus_uses_iomux_pins(host, bus_config); if (use_iomux) { temp_flag |= SPICOMMON_BUSFLAG_IOMUX_PINS; } else { temp_flag |= SPICOMMON_BUSFLAG_GPIO_PINS; } uint32_t missing_flag = flags & ~temp_flag; missing_flag &= ~SPICOMMON_BUSFLAG_MASTER;//don't check this flag if (missing_flag != 0) { //check pins existence if (missing_flag & SPICOMMON_BUSFLAG_SCLK) { ESP_LOGE(SPI_TAG, "sclk pin required."); } if (missing_flag & SPICOMMON_BUSFLAG_MOSI) { ESP_LOGE(SPI_TAG, "mosi pin required."); } if (missing_flag & SPICOMMON_BUSFLAG_MISO) { ESP_LOGE(SPI_TAG, "miso pin required."); } if (missing_flag & SPICOMMON_BUSFLAG_DUAL) { ESP_LOGE(SPI_TAG, "not both mosi and miso output capable"); } if (missing_flag & SPICOMMON_BUSFLAG_WPHD) { ESP_LOGE(SPI_TAG, "both wp and hd required."); } if (missing_flag & SPICOMMON_BUSFLAG_IOMUX_PINS) { ESP_LOGE(SPI_TAG, "not using iomux pins"); } #if SOC_SPI_SUPPORT_OCT if (missing_flag & SPICOMMON_BUSFLAG_IO4_IO7) { ESP_LOGE(SPI_TAG, "spi data4 ~ spi data7 are required."); } #endif SPI_CHECK(missing_flag == 0, "not all required capabilities satisfied.", ESP_ERR_INVALID_ARG); } if (use_iomux) { //All SPI iomux pin selections resolve to 1, so we put that here instead of trying to figure //out which FUNC_GPIOx_xSPIxx to grab; they all are defined to 1 anyway. ESP_LOGD(SPI_TAG, "SPI%d use iomux pins.", host + 1); bus_iomux_pins_set(host, bus_config); } else { //Use GPIO matrix ESP_LOGD(SPI_TAG, "SPI%d use gpio matrix.", host + 1); if (bus_config->mosi_io_num >= 0) { if (mosi_need_output || (temp_flag & SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_out, false, false); } else { gpio_set_direction(bus_config->mosi_io_num, GPIO_MODE_INPUT); } esp_rom_gpio_connect_in_signal(bus_config->mosi_io_num, spi_periph_signal[host].spid_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->mosi_io_num]); #endif gpio_func_sel(bus_config->mosi_io_num, FUNC_GPIO); } if (bus_config->miso_io_num >= 0) { if (miso_need_output || (temp_flag & SPICOMMON_BUSFLAG_DUAL)) { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_out, false, false); } else { gpio_set_direction(bus_config->miso_io_num, GPIO_MODE_INPUT); } esp_rom_gpio_connect_in_signal(bus_config->miso_io_num, spi_periph_signal[host].spiq_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->miso_io_num]); #endif gpio_func_sel(bus_config->miso_io_num, FUNC_GPIO); } if (bus_config->quadwp_io_num >= 0) { gpio_set_direction(bus_config->quadwp_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_out, false, false); esp_rom_gpio_connect_in_signal(bus_config->quadwp_io_num, spi_periph_signal[host].spiwp_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadwp_io_num]); #endif gpio_func_sel(bus_config->quadwp_io_num, FUNC_GPIO); } if (bus_config->quadhd_io_num >= 0) { gpio_set_direction(bus_config->quadhd_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_out, false, false); esp_rom_gpio_connect_in_signal(bus_config->quadhd_io_num, spi_periph_signal[host].spihd_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->quadhd_io_num]); #endif gpio_func_sel(bus_config->quadhd_io_num, FUNC_GPIO); } if (bus_config->sclk_io_num >= 0) { if (sclk_need_output) { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_out, false, false); } else { gpio_set_direction(bus_config->sclk_io_num, GPIO_MODE_INPUT); } esp_rom_gpio_connect_in_signal(bus_config->sclk_io_num, spi_periph_signal[host].spiclk_in, false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[bus_config->sclk_io_num]); #endif gpio_func_sel(bus_config->sclk_io_num, FUNC_GPIO); } #if SOC_SPI_SUPPORT_OCT if ((flags & SPICOMMON_BUSFLAG_OCTAL) == SPICOMMON_BUSFLAG_OCTAL) { int io_nums[] = {bus_config->data4_io_num, bus_config->data5_io_num, bus_config->data6_io_num, bus_config->data7_io_num}; uint8_t io_signals[4][2] = {{spi_periph_signal[host].spid4_out, spi_periph_signal[host].spid4_in}, {spi_periph_signal[host].spid5_out, spi_periph_signal[host].spid5_in}, {spi_periph_signal[host].spid6_out, spi_periph_signal[host].spid6_in}, {spi_periph_signal[host].spid7_out, spi_periph_signal[host].spid7_in} }; for (size_t i = 0; i < sizeof(io_nums) / sizeof(io_nums[0]); i++) { if (io_nums[i] >= 0) { gpio_set_direction(io_nums[i], GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(io_nums[i], io_signals[i][0], false, false); esp_rom_gpio_connect_in_signal(io_nums[i], io_signals[i][1], false); #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[io_nums[i]]); #endif gpio_func_sel(io_nums[i], FUNC_GPIO); } } } #endif //SOC_SPI_SUPPORT_OCT } if (flags_o) { *flags_o = temp_flag; } return ESP_OK; } esp_err_t spicommon_bus_free_io_cfg(const spi_bus_config_t *bus_cfg) { int pin_array[] = { bus_cfg->mosi_io_num, bus_cfg->miso_io_num, bus_cfg->sclk_io_num, bus_cfg->quadwp_io_num, bus_cfg->quadhd_io_num, }; for (int i = 0; i < sizeof(pin_array) / sizeof(int); i ++) { const int io = pin_array[i]; if (GPIO_IS_VALID_GPIO(io)) { gpio_reset_pin(io); } } return ESP_OK; } void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num, int force_gpio_matrix) { if (!force_gpio_matrix && cs_io_num == spi_periph_signal[host].spics0_iomux_pin && cs_num == 0) { //The cs0s for all SPI peripherals map to pin mux source 1, so we use that instead of a define. gpio_iomux_in(cs_io_num, spi_periph_signal[host].spics_in); gpio_iomux_out(cs_io_num, spi_periph_signal[host].func, false); } else { //Use GPIO matrix if (GPIO_IS_VALID_OUTPUT_GPIO(cs_io_num)) { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT); esp_rom_gpio_connect_out_signal(cs_io_num, spi_periph_signal[host].spics_out[cs_num], false, false); } else { gpio_set_direction(cs_io_num, GPIO_MODE_INPUT); } if (cs_num == 0) { esp_rom_gpio_connect_in_signal(cs_io_num, spi_periph_signal[host].spics_in, false); } #if CONFIG_IDF_TARGET_ESP32S2 PIN_INPUT_ENABLE(GPIO_PIN_MUX_REG[cs_io_num]); #endif gpio_func_sel(cs_io_num, FUNC_GPIO); } } void spicommon_cs_free_io(int cs_gpio_num) { assert(GPIO_IS_VALID_GPIO(cs_gpio_num)); gpio_reset_pin(cs_gpio_num); } bool spicommon_bus_using_iomux(spi_host_device_t host) { CHECK_IOMUX_PIN(host, spid); CHECK_IOMUX_PIN(host, spiq); CHECK_IOMUX_PIN(host, spiwp); CHECK_IOMUX_PIN(host, spihd); return true; } void spi_bus_main_set_lock(spi_bus_lock_handle_t lock) { bus_ctx[0]->bus_attr.lock = lock; } spi_bus_lock_handle_t spi_bus_lock_get_by_id(spi_host_device_t host_id) { return bus_ctx[host_id]->bus_attr.lock; } //----------------------------------------------------------master bus init-------------------------------------------------------// esp_err_t spi_bus_initialize(spi_host_device_t host_id, const spi_bus_config_t *bus_config, spi_dma_chan_t dma_chan) { esp_err_t err = ESP_OK; spicommon_bus_context_t *ctx = NULL; spi_bus_attr_t *bus_attr = NULL; SPI_CHECK(is_valid_host(host_id), "invalid host_id", ESP_ERR_INVALID_ARG); SPI_CHECK(bus_ctx[host_id] == NULL, "SPI bus already initialized.", ESP_ERR_INVALID_STATE); #ifdef CONFIG_IDF_TARGET_ESP32 SPI_CHECK(dma_chan >= SPI_DMA_DISABLED && dma_chan <= SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG); #elif CONFIG_IDF_TARGET_ESP32S2 SPI_CHECK(dma_chan == SPI_DMA_DISABLED || dma_chan == (int)host_id || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel", ESP_ERR_INVALID_ARG); #elif SOC_GDMA_SUPPORTED SPI_CHECK(dma_chan == SPI_DMA_DISABLED || dma_chan == SPI_DMA_CH_AUTO, "invalid dma channel, chip only support spi dma channel auto-alloc", ESP_ERR_INVALID_ARG); #endif SPI_CHECK((bus_config->intr_flags & (ESP_INTR_FLAG_HIGH | ESP_INTR_FLAG_EDGE | ESP_INTR_FLAG_INTRDISABLED)) == 0, "intr flag not allowed", ESP_ERR_INVALID_ARG); #ifndef CONFIG_SPI_MASTER_ISR_IN_IRAM SPI_CHECK((bus_config->intr_flags & ESP_INTR_FLAG_IRAM) == 0, "ESP_INTR_FLAG_IRAM should be disabled when CONFIG_SPI_MASTER_ISR_IN_IRAM is not set.", ESP_ERR_INVALID_ARG); #endif bool spi_chan_claimed = spicommon_periph_claim(host_id, "spi master"); SPI_CHECK(spi_chan_claimed, "host_id already in use", ESP_ERR_INVALID_STATE); //clean and initialize the context ctx = (spicommon_bus_context_t *)calloc(1, sizeof(spicommon_bus_context_t)); if (!ctx) { err = ESP_ERR_NO_MEM; goto cleanup; } bus_ctx[host_id] = ctx; ctx->host_id = host_id; bus_attr = &ctx->bus_attr; bus_attr->bus_cfg = *bus_config; if (dma_chan != SPI_DMA_DISABLED) { bus_attr->dma_enabled = 1; err = spicommon_dma_chan_alloc(host_id, dma_chan, &ctx->dma_ctx); if (err != ESP_OK) { goto cleanup; } err = spicommon_dma_desc_alloc(ctx->dma_ctx, bus_config->max_transfer_sz, &bus_attr->max_transfer_sz); if (err != ESP_OK) { goto cleanup; } #if SOC_CACHE_INTERNAL_MEM_VIA_L1CACHE esp_cache_get_alignment(MALLOC_CAP_DMA, (size_t *)&bus_attr->internal_mem_align_size); #else bus_attr->internal_mem_align_size = 4; #endif } else { bus_attr->dma_enabled = 0; bus_attr->max_transfer_sz = SOC_SPI_MAXIMUM_BUFFER_SIZE; } spi_bus_lock_config_t lock_config = { .host_id = host_id, .cs_num = SOC_SPI_PERIPH_CS_NUM(host_id), }; err = spi_bus_init_lock(&bus_attr->lock, &lock_config); if (err != ESP_OK) { goto cleanup; } #ifdef CONFIG_PM_ENABLE err = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "spi_master", &bus_attr->pm_lock); if (err != ESP_OK) { goto cleanup; } #endif //CONFIG_PM_ENABLE err = spicommon_bus_initialize_io(host_id, bus_config, SPICOMMON_BUSFLAG_MASTER | bus_config->flags, &bus_attr->flags); if (err != ESP_OK) { goto cleanup; } return ESP_OK; cleanup: if (bus_attr) { #ifdef CONFIG_PM_ENABLE esp_pm_lock_delete(bus_attr->pm_lock); #endif if (bus_attr->lock) { spi_bus_deinit_lock(bus_attr->lock); } if (ctx->dma_ctx) { free(ctx->dma_ctx->dmadesc_tx); free(ctx->dma_ctx->dmadesc_rx); spicommon_dma_chan_free(ctx->dma_ctx); ctx->dma_ctx = NULL; } } spicommon_periph_free(host_id); free(bus_ctx[host_id]); bus_ctx[host_id] = NULL; return err; } const spi_bus_attr_t* spi_bus_get_attr(spi_host_device_t host_id) { if (bus_ctx[host_id] == NULL) { return NULL; } return &bus_ctx[host_id]->bus_attr; } const spi_dma_ctx_t* spi_bus_get_dma_ctx(spi_host_device_t host_id) { if (bus_ctx[host_id] == NULL) { return NULL; } return bus_ctx[host_id]->dma_ctx; } esp_err_t spi_bus_free(spi_host_device_t host_id) { if (bus_ctx[host_id] == NULL) { return ESP_ERR_INVALID_STATE; } esp_err_t err = ESP_OK; spicommon_bus_context_t* ctx = bus_ctx[host_id]; spi_bus_attr_t* bus_attr = &ctx->bus_attr; if (ctx->destroy_func) { err = ctx->destroy_func(ctx->destroy_arg); } spicommon_bus_free_io_cfg(&bus_attr->bus_cfg); #ifdef CONFIG_PM_ENABLE esp_pm_lock_delete(bus_attr->pm_lock); #endif spi_bus_deinit_lock(bus_attr->lock); if (ctx->dma_ctx) { free(ctx->dma_ctx->dmadesc_tx); free(ctx->dma_ctx->dmadesc_rx); spicommon_dma_chan_free(ctx->dma_ctx); ctx->dma_ctx = NULL; } spicommon_periph_free(host_id); free(ctx); bus_ctx[host_id] = NULL; return err; } esp_err_t spi_bus_register_destroy_func(spi_host_device_t host_id, spi_destroy_func_t f, void *arg) { bus_ctx[host_id]->destroy_func = f; bus_ctx[host_id]->destroy_arg = arg; return ESP_OK; } /* Code for workaround for DMA issue in ESP32 v0/v1 silicon */ #if CONFIG_IDF_TARGET_ESP32 static volatile int dmaworkaround_channels_busy[2] = {0, 0}; static dmaworkaround_cb_t dmaworkaround_cb; static void *dmaworkaround_cb_arg; static portMUX_TYPE dmaworkaround_mux = portMUX_INITIALIZER_UNLOCKED; static int dmaworkaround_waiting_for_chan = 0; bool IRAM_ATTR spicommon_dmaworkaround_req_reset(int dmachan, dmaworkaround_cb_t cb, void *arg) { int otherchan = (dmachan == 1) ? 2 : 1; bool ret; portENTER_CRITICAL_ISR(&dmaworkaround_mux); if (dmaworkaround_channels_busy[otherchan - 1]) { //Other channel is busy. Call back when it's done. dmaworkaround_cb = cb; dmaworkaround_cb_arg = arg; dmaworkaround_waiting_for_chan = otherchan; ret = false; } else { //Reset DMA SPI_COMMON_RCC_CLOCK_ATOMIC() { spi_dma_ll_reset_register(dmachan); } ret = true; } portEXIT_CRITICAL_ISR(&dmaworkaround_mux); return ret; } bool IRAM_ATTR spicommon_dmaworkaround_reset_in_progress(void) { return (dmaworkaround_waiting_for_chan != 0); } void IRAM_ATTR spicommon_dmaworkaround_idle(int dmachan) { portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan - 1] = 0; if (dmaworkaround_waiting_for_chan == dmachan) { //Reset DMA SPI_COMMON_RCC_CLOCK_ATOMIC() { spi_dma_ll_reset_register(dmachan); } dmaworkaround_waiting_for_chan = 0; //Call callback dmaworkaround_cb(dmaworkaround_cb_arg); } portEXIT_CRITICAL_ISR(&dmaworkaround_mux); } void IRAM_ATTR spicommon_dmaworkaround_transfer_active(int dmachan) { portENTER_CRITICAL_ISR(&dmaworkaround_mux); dmaworkaround_channels_busy[dmachan - 1] = 1; portEXIT_CRITICAL_ISR(&dmaworkaround_mux); } #endif //#if CONFIG_IDF_TARGET_ESP32