/*
 * SPDX-FileCopyrightText: 2017 Amazon.com, Inc. or its affiliates
 * SPDX-FileCopyrightText: 2015-2019 Cadence Design Systems, Inc.
 *
 * SPDX-License-Identifier: MIT
 *
 * SPDX-FileContributor: 2016-2022 Espressif Systems (Shanghai) CO LTD
 */
/*
 * FreeRTOS Kernel V10.4.3
 * Copyright (C) 2017 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software. If you wish to use our Amazon
 * FreeRTOS name, please do so in a fair use way that does not cause confusion.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * https://www.FreeRTOS.org
 * https://github.com/FreeRTOS
 *
 * 1 tab == 4 spaces!
 */

/*
 * Copyright (c) 2015-2019 Cadence Design Systems, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
 * CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#include "sdkconfig.h"
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <xtensa/config/core.h>
#include <xtensa/xtensa_context.h>
#include "soc/soc_caps.h"
#include "esp_private/crosscore_int.h"
#include "esp_system.h"
#include "esp_log.h"
#include "esp_int_wdt.h"
#ifdef CONFIG_APPTRACE_ENABLE
#include "esp_app_trace.h"    /* Required for esp_apptrace_init. [refactor-todo] */
#endif
#include "FreeRTOS.h"        /* This pulls in portmacro.h */
#include "task.h"            /* Required for TaskHandle_t, tskNO_AFFINITY, and vTaskStartScheduler */
#include "port_systick.h"
#include "esp_cpu.h"

_Static_assert(tskNO_AFFINITY == CONFIG_FREERTOS_NO_AFFINITY, "incorrect tskNO_AFFINITY value");


/* ---------------------------------------------------- Variables ------------------------------------------------------
 *
 * ------------------------------------------------------------------------------------------------------------------ */

static const char *TAG = "cpu_start"; /* [refactor-todo]: might be appropriate to change in the future, but for now maintain the same log output */
extern volatile int port_xSchedulerRunning[portNUM_PROCESSORS];
unsigned port_interruptNesting[portNUM_PROCESSORS] = {0};  // Interrupt nesting level. Increased/decreased in portasm.c, _frxt_int_enter/_frxt_int_exit
BaseType_t port_uxCriticalNesting[portNUM_PROCESSORS] = {0};
BaseType_t port_uxOldInterruptState[portNUM_PROCESSORS] = {0};


/* ------------------------------------------------ FreeRTOS Portable --------------------------------------------------
 * - Provides implementation for functions required by FreeRTOS
 * - Declared in portable.h
 * ------------------------------------------------------------------------------------------------------------------ */

// ----------------- Scheduler Start/End -------------------

/* Defined in xtensa_context.S */
extern void _xt_coproc_init(void);

BaseType_t xPortStartScheduler( void )
{
    portDISABLE_INTERRUPTS();
    // Interrupts are disabled at this point and stack contains PS with enabled interrupts when task context is restored

#if XCHAL_CP_NUM > 0
    /* Initialize co-processor management for tasks. Leave CPENABLE alone. */
    _xt_coproc_init();
#endif

    /* Setup the hardware to generate the tick. */
    vPortSetupTimer();

    port_xSchedulerRunning[xPortGetCoreID()] = 1;

    // Cannot be directly called from C; never returns
    __asm__ volatile ("call0    _frxt_dispatch\n");

    /* Should not get here. */
    return pdTRUE;
}

void vPortEndScheduler( void )
{
    /* It is unlikely that the Xtensa port will get stopped.  If required simply
    disable the tick interrupt here. */
    abort();
}

// ------------------------ Stack --------------------------

// User exception dispatcher when exiting
void _xt_user_exit(void);

#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
// Wrapper to allow task functions to return (increases stack overhead by 16 bytes)
static void vPortTaskWrapper(TaskFunction_t pxCode, void *pvParameters)
{
    pxCode(pvParameters);
    //FreeRTOS tasks should not return. Log the task name and abort.
    char *pcTaskName = pcTaskGetName(NULL);
    ESP_LOGE("FreeRTOS", "FreeRTOS Task \"%s\" should not return, Aborting now!", pcTaskName);
    abort();
}
#endif

#if portUSING_MPU_WRAPPERS
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters, BaseType_t xRunPrivileged )
#else
StackType_t *pxPortInitialiseStack( StackType_t *pxTopOfStack, TaskFunction_t pxCode, void *pvParameters )
#endif
{
    StackType_t *sp, *tp;
    XtExcFrame  *frame;
#if XCHAL_CP_NUM > 0
    uint32_t *p;
#endif
    uint32_t *threadptr;
    void *task_thread_local_start;
    extern int _thread_local_start, _thread_local_end, _flash_rodata_start, _flash_rodata_align;
    // TODO: check that TLS area fits the stack
    uint32_t thread_local_sz = (uint8_t *)&_thread_local_end - (uint8_t *)&_thread_local_start;

    thread_local_sz = ALIGNUP(0x10, thread_local_sz);

    /* Initialize task's stack so that we have the following structure at the top:

        ----LOW ADDRESSES ----------------------------------------HIGH ADDRESSES----------
         task stack | interrupt stack frame | thread local vars | co-processor save area |
        ----------------------------------------------------------------------------------
                    |                                                                     |
                    SP                                                                 pxTopOfStack

        All parts are aligned to 16 byte boundary. */
    sp = (StackType_t *) (((UBaseType_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz - XT_STK_FRMSZ) & ~0xf);

    /* Clear the entire frame (do not use memset() because we don't depend on C library) */
    for (tp = sp; tp <= pxTopOfStack; ++tp) {
        *tp = 0;
    }

    frame = (XtExcFrame *) sp;

    /* Explicitly initialize certain saved registers */
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
    frame->pc    = (UBaseType_t) vPortTaskWrapper;    /* task wrapper                        */
#else
    frame->pc   = (UBaseType_t) pxCode;                /* task entrypoint                    */
#endif
    frame->a0    = 0;                                /* to terminate GDB backtrace        */
    frame->a1    = (UBaseType_t) sp + XT_STK_FRMSZ;    /* physical top of stack frame        */
    frame->exit = (UBaseType_t) _xt_user_exit;        /* user exception exit dispatcher    */

    /* Set initial PS to int level 0, EXCM disabled ('rfe' will enable), user mode. */
    /* Also set entry point argument parameter. */
#ifdef __XTENSA_CALL0_ABI__
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
    frame->a2 = (UBaseType_t) pxCode;
    frame->a3 = (UBaseType_t) pvParameters;
#else
    frame->a2 = (UBaseType_t) pvParameters;
#endif
    frame->ps = PS_UM | PS_EXCM;
#else /* __XTENSA_CALL0_ABI__ */
    /* + for windowed ABI also set WOE and CALLINC (pretend task was 'call4'd). */
#if CONFIG_FREERTOS_TASK_FUNCTION_WRAPPER
    frame->a6 = (UBaseType_t) pxCode;
    frame->a7 = (UBaseType_t) pvParameters;
#else
    frame->a6 = (UBaseType_t) pvParameters;
#endif
    frame->ps = PS_UM | PS_EXCM | PS_WOE | PS_CALLINC(1);
#endif /* __XTENSA_CALL0_ABI__ */

#ifdef XT_USE_SWPRI
    /* Set the initial virtual priority mask value to all 1's. */
    frame->vpri = 0xFFFFFFFF;
#endif

    /* Init threadptr register and set up TLS run-time area.
     * The diagram in port/riscv/port.c illustrates the calculations below.
     */
    task_thread_local_start = (void *)(((uint32_t)pxTopOfStack - XT_CP_SIZE - thread_local_sz) & ~0xf);
    memcpy(task_thread_local_start, &_thread_local_start, thread_local_sz);
    threadptr = (uint32_t *)(sp + XT_STK_EXTRA);
    /* Calculate THREADPTR value.
     * The generated code will add THREADPTR value to a constant value determined at link time,
     * to get the address of the TLS variable.
     * The constant value is calculated by the linker as follows
     * (search for 'tpoff' in elf32-xtensa.c in BFD):
     *    offset = address - tls_section_vma + align_up(TCB_SIZE, tls_section_alignment)
     * where TCB_SIZE is hardcoded to 8.
     * Note this is slightly different compared to the RISC-V port, where offset = address - tls_section_vma.
     */
    const uint32_t tls_section_alignment = (uint32_t) &_flash_rodata_align;  /* ALIGN value of .flash.rodata section */
    const uint32_t tcb_size = 8; /* Unrelated to FreeRTOS, this is the constant from BFD */
    const uint32_t base = (tcb_size + tls_section_alignment - 1) & (~(tls_section_alignment - 1));
    *threadptr = (uint32_t)task_thread_local_start - ((uint32_t)&_thread_local_start - (uint32_t)&_flash_rodata_start) - base;

#if XCHAL_CP_NUM > 0
    /* Init the coprocessor save area (see xtensa_context.h) */
    /* No access to TCB here, so derive indirectly. Stack growth is top to bottom.
     * //p = (uint32_t *) xMPUSettings->coproc_area;
     */
    p = (uint32_t *)(((uint32_t) pxTopOfStack - XT_CP_SIZE) & ~0xf);
    configASSERT( ( uint32_t ) p >= frame->a1 );
    p[0] = 0;
    p[1] = 0;
    p[2] = (((uint32_t) p) + 12 + XCHAL_TOTAL_SA_ALIGN - 1) & -XCHAL_TOTAL_SA_ALIGN;
#endif /* XCHAL_CP_NUM */

    return sp;
}



/* ---------------------------------------------- Port Implementations -------------------------------------------------
 *
 * ------------------------------------------------------------------------------------------------------------------ */

// --------------------- Interrupts ------------------------

BaseType_t xPortInIsrContext(void)
{
    unsigned int irqStatus;
    BaseType_t ret;
    irqStatus = portSET_INTERRUPT_MASK_FROM_ISR();
    ret = (port_interruptNesting[xPortGetCoreID()] != 0);
    portCLEAR_INTERRUPT_MASK_FROM_ISR(irqStatus);
    return ret;
}

void vPortAssertIfInISR(void)
{
    configASSERT(xPortInIsrContext());
}

BaseType_t IRAM_ATTR xPortInterruptedFromISRContext(void)
{
    return (port_interruptNesting[xPortGetCoreID()] != 0);
}

// ------------------ Critical Sections --------------------

BaseType_t __attribute__((optimize("-O3"))) xPortEnterCriticalTimeout(portMUX_TYPE *mux, BaseType_t timeout)
{
    /* Interrupts may already be disabled (if this function is called in nested
     * manner). However, there's no atomic operation that will allow us to check,
     * thus we have to disable interrupts again anyways.
     *
     * However, if this is call is NOT nested (i.e., the first call to enter a
     * critical section), we will save the previous interrupt level so that the
     * saved level can be restored on the last call to exit the critical.
     */
    BaseType_t xOldInterruptLevel = portSET_INTERRUPT_MASK_FROM_ISR();
    if (!spinlock_acquire(mux, timeout)) {
        //Timed out attempting to get spinlock. Restore previous interrupt level and return
        portCLEAR_INTERRUPT_MASK_FROM_ISR(xOldInterruptLevel);
        return pdFAIL;
    }
    //Spinlock acquired. Increment the critical nesting count.
    BaseType_t coreID = xPortGetCoreID();
    BaseType_t newNesting = port_uxCriticalNesting[coreID] + 1;
    port_uxCriticalNesting[coreID] = newNesting;
    //If this is the first entry to a critical section. Save the old interrupt level.
    if ( newNesting == 1 ) {
        port_uxOldInterruptState[coreID] = xOldInterruptLevel;
    }
    return pdPASS;
}

void __attribute__((optimize("-O3"))) vPortExitCritical(portMUX_TYPE *mux)
{
    /* This function may be called in a nested manner. Therefore, we only need
     * to reenable interrupts if this is the last call to exit the critical. We
     * can use the nesting count to determine whether this is the last exit call.
     */
    spinlock_release(mux);
    BaseType_t coreID = xPortGetCoreID();
    BaseType_t nesting = port_uxCriticalNesting[coreID];

    if (nesting > 0) {
        nesting--;
        port_uxCriticalNesting[coreID] = nesting;
        //This is the last exit call, restore the saved interrupt level
        if ( nesting == 0 ) {
            portCLEAR_INTERRUPT_MASK_FROM_ISR(port_uxOldInterruptState[coreID]);
        }
    }
}

BaseType_t xPortEnterCriticalTimeoutCompliance(portMUX_TYPE *mux, BaseType_t timeout)
{
    BaseType_t ret;
    if (!xPortInIsrContext()) {
        ret = xPortEnterCriticalTimeout(mux, timeout);
    } else {
        esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
        abort();
        ret = pdFAIL;
    }
    return ret;
}

void vPortExitCriticalCompliance(portMUX_TYPE *mux)
{
    if (!xPortInIsrContext()) {
        vPortExitCritical(mux);
    } else {
        esp_rom_printf("port*_CRITICAL called from ISR context. Aborting!\n");
        abort();
    }
}

// ---------------------- Yielding -------------------------

void vPortYieldOtherCore( BaseType_t coreid )
{
    esp_crosscore_int_send_yield( coreid );
}

// ------------------- Hook Functions ----------------------

void  __attribute__((weak)) vApplicationStackOverflowHook( TaskHandle_t xTask, char *pcTaskName )
{
#define ERR_STR1 "***ERROR*** A stack overflow in task "
#define ERR_STR2 " has been detected."
    const char *str[] = {ERR_STR1, pcTaskName, ERR_STR2};

    char buf[sizeof(ERR_STR1) + CONFIG_FREERTOS_MAX_TASK_NAME_LEN + sizeof(ERR_STR2) + 1 /* null char */] = { 0 };

    char *dest = buf;
    for (size_t i = 0 ; i < sizeof(str) / sizeof(str[0]); i++) {
        dest = strcat(dest, str[i]);
    }
    esp_system_abort(buf);
}

// ----------------------- System --------------------------

uint32_t xPortGetTickRateHz(void)
{
    return (uint32_t)configTICK_RATE_HZ;
}


#define STACK_WATCH_AREA_SIZE 32
#define STACK_WATCH_POINT_NUMBER (SOC_CPU_WATCHPOINTS_NUM - 1)

void vPortSetStackWatchpoint( void *pxStackStart )
{
    //Set watchpoint 1 to watch the last 32 bytes of the stack.
    //Unfortunately, the Xtensa watchpoints can't set a watchpoint on a random [base - base+n] region because
    //the size works by masking off the lowest address bits. For that reason, we futz a bit and watch the lowest 32
    //bytes of the stack we can actually watch. In general, this can cause the watchpoint to be triggered at most
    //28 bytes early. The value 32 is chosen because it's larger than the stack canary, which in FreeRTOS is 20 bytes.
    //This way, we make sure we trigger before/when the stack canary is corrupted, not after.
    int addr = (int)pxStackStart;
    addr = (addr + 31) & (~31);
    esp_cpu_set_watchpoint(STACK_WATCH_POINT_NUMBER, (char *)addr, 32, ESP_CPU_WATCHPOINT_STORE);
}

/* ---------------------------------------------- Misc Implementations -------------------------------------------------
 *
 * ------------------------------------------------------------------------------------------------------------------ */

// -------------------- Co-Processor -----------------------

/*
 * Used to set coprocessor area in stack. Current hack is to reuse MPU pointer for coprocessor area.
 */
#if portUSING_MPU_WRAPPERS
void vPortStoreTaskMPUSettings( xMPU_SETTINGS *xMPUSettings, const struct xMEMORY_REGION *const xRegions, StackType_t *pxBottomOfStack, uint32_t usStackDepth )
{
#if XCHAL_CP_NUM > 0
    xMPUSettings->coproc_area = ( StackType_t * ) ( ( uint32_t ) ( pxBottomOfStack + usStackDepth - 1 ));
    xMPUSettings->coproc_area = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) xMPUSettings->coproc_area ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) );
    xMPUSettings->coproc_area = ( StackType_t * ) ( ( ( uint32_t ) xMPUSettings->coproc_area - XT_CP_SIZE ) & ~0xf );


    /* NOTE: we cannot initialize the coprocessor save area here because FreeRTOS is going to
     * clear the stack area after we return. This is done in pxPortInitialiseStack().
     */
#endif
}

void vPortReleaseTaskMPUSettings( xMPU_SETTINGS *xMPUSettings )
{
    /* If task has live floating point registers somewhere, release them */
    _xt_coproc_release( xMPUSettings->coproc_area );
}
#endif /* portUSING_MPU_WRAPPERS */

// --------------------- App Start-up ----------------------

#if !CONFIG_FREERTOS_UNICORE
void esp_startup_start_app_other_cores(void)
{
    // For now, we only support up to two core: 0 and 1.
    if (xPortGetCoreID() >= 2) {
        abort();
    }

    // Wait for FreeRTOS initialization to finish on PRO CPU
    while (port_xSchedulerRunning[0] == 0) {
        ;
    }

#if CONFIG_APPTRACE_ENABLE
    // [refactor-todo] move to esp_system initialization
    esp_err_t err = esp_apptrace_init();
    assert(err == ESP_OK && "Failed to init apptrace module on APP CPU!");
#endif

#if CONFIG_ESP_INT_WDT
    //Initialize the interrupt watch dog for CPU1.
    esp_int_wdt_cpu_init();
#endif

    esp_crosscore_int_init();

    ESP_EARLY_LOGI(TAG, "Starting scheduler on APP CPU.");
    xPortStartScheduler();
    abort(); /* Only get to here if FreeRTOS somehow very broken */
}
#endif // !CONFIG_FREERTOS_UNICORE

extern void esp_startup_start_app_common(void);

void esp_startup_start_app(void)
{
#if !CONFIG_ESP_INT_WDT
#if CONFIG_ESP32_ECO3_CACHE_LOCK_FIX
    assert(!soc_has_cache_lock_bug() && "ESP32 Rev 3 + Dual Core + PSRAM requires INT WDT enabled in project config!");
#endif
#endif

    esp_startup_start_app_common();

    ESP_LOGI(TAG, "Starting scheduler on PRO CPU.");
    vTaskStartScheduler();
}