/* Tests for the spi_master device driver */ #include <esp_types.h> #include <stdio.h> #include <stdlib.h> #include <malloc.h> #include <string.h> #include "rom/ets_sys.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "freertos/xtensa_api.h" #include "unity.h" #include "driver/spi_master.h" #include "driver/spi_slave.h" #include "soc/dport_reg.h" #include "soc/spi_reg.h" #include "soc/spi_struct.h" #include "esp_heap_caps.h" #include "esp_log.h" #include "freertos/ringbuf.h" const static char TAG[] = "test_spi"; static void check_spi_pre_n_for(int clk, int pre, int n) { esp_err_t ret; spi_device_handle_t handle; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=clk, .duty_cycle_pos=128, .mode=0, .spics_io_num=21, .queue_size=3 }; char sendbuf[16]=""; spi_transaction_t t; memset(&t, 0, sizeof(t)); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle); TEST_ASSERT(ret==ESP_OK); t.length=16*8; t.tx_buffer=sendbuf; ret=spi_device_transmit(handle, &t); printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1); TEST_ASSERT(SPI2.clock.clkcnt_n+1==n); TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre); ret=spi_bus_remove_device(handle); TEST_ASSERT(ret==ESP_OK); } TEST_CASE("SPI Master clockdiv calculation routines", "[spi]") { spi_bus_config_t buscfg={ .mosi_io_num=4, .miso_io_num=26, .sclk_io_num=25, .quadwp_io_num=-1, .quadhd_io_num=-1 }; esp_err_t ret; ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); check_spi_pre_n_for(26000000, 1, 3); check_spi_pre_n_for(20000000, 1, 4); check_spi_pre_n_for(8000000, 1, 10); check_spi_pre_n_for(800000, 2, 50); check_spi_pre_n_for(100000, 16, 50); check_spi_pre_n_for(333333, 4, 60); check_spi_pre_n_for(900000, 2, 44); check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz check_spi_pre_n_for(26000000, 1, 3); ret=spi_bus_free(HSPI_HOST); TEST_ASSERT(ret==ESP_OK); } static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) { spi_bus_config_t buscfg={ .mosi_io_num=4, .miso_io_num=26, .sclk_io_num=25, .quadwp_io_num=-1, .quadhd_io_num=-1, .max_transfer_sz=4096*3 }; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=clkspeed, .duty_cycle_pos=128, .mode=0, .spics_io_num=21, .queue_size=3, }; esp_err_t ret; spi_device_handle_t handle; printf("THIS TEST NEEDS A JUMPER BETWEEN IO4 AND IO26\n"); ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle); TEST_ASSERT(ret==ESP_OK); printf("Bus/dev inited.\n"); return handle; } static void spi_test(spi_device_handle_t handle, int num_bytes) { esp_err_t ret; int x; srand(num_bytes); char *sendbuf=heap_caps_malloc(num_bytes, MALLOC_CAP_DMA); char *recvbuf=heap_caps_malloc(num_bytes, MALLOC_CAP_DMA); for (x=0; x<num_bytes; x++) { sendbuf[x]=rand()&0xff; recvbuf[x]=0x55; } spi_transaction_t t; memset(&t, 0, sizeof(t)); t.length=num_bytes*8; t.tx_buffer=sendbuf; t.rx_buffer=recvbuf; t.addr=0xA00000000000000FL; t.cmd=0x55; printf("Transmitting %d bytes...\n", num_bytes); ret=spi_device_transmit(handle, &t); TEST_ASSERT(ret==ESP_OK); srand(num_bytes); for (x=0; x<num_bytes; x++) { if (sendbuf[x]!=(rand()&0xff)) { printf("Huh? Sendbuf corrupted at byte %d\n", x); TEST_ASSERT(0); } if (sendbuf[x]!=recvbuf[x]) break; } if (x!=num_bytes) { int from=x-16; if (from<0) from=0; printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from); for (int i=0; i<32; i++) { if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]); } printf("\n"); for (int i=0; i<32; i++) { if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]); } printf("\n"); // TEST_ASSERT(0); } printf("Success!\n"); free(sendbuf); free(recvbuf); } static void destroy_spi_bus(spi_device_handle_t handle) { esp_err_t ret; ret=spi_bus_remove_device(handle); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_free(HSPI_HOST); TEST_ASSERT(ret==ESP_OK); } #define TEST_LEN 111 TEST_CASE("SPI Master test", "[spi][ignore]") { printf("Testing bus at 80KHz\n"); spi_device_handle_t handle=setup_spi_bus(80000, true); spi_test(handle, 16); //small spi_test(handle, 21); //small, unaligned spi_test(handle, 36); //aligned spi_test(handle, 128); //aligned spi_test(handle, 129); //unaligned spi_test(handle, 4096-2); //multiple descs, edge case 1 spi_test(handle, 4096-1); //multiple descs, edge case 2 spi_test(handle, 4096*3); //multiple descs destroy_spi_bus(handle); printf("Testing bus at 80KHz, non-DMA\n"); handle=setup_spi_bus(80000, false); spi_test(handle, 4); //aligned spi_test(handle, 16); //small spi_test(handle, 21); //small, unaligned destroy_spi_bus(handle); printf("Testing bus at 26MHz\n"); handle=setup_spi_bus(20000000, true); spi_test(handle, 128); //DMA, aligned spi_test(handle, 4096*3); //DMA, multiple descs destroy_spi_bus(handle); printf("Testing bus at 900KHz\n"); handle=setup_spi_bus(9000000, true); spi_test(handle, 128); //DMA, aligned spi_test(handle, 4096*3); //DMA, multiple descs destroy_spi_bus(handle); } TEST_CASE("SPI Master test, interaction of multiple devs", "[spi][ignore]") { esp_err_t ret; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=1000000, .duty_cycle_pos=128, .mode=0, .spics_io_num=23, .queue_size=3, }; spi_device_handle_t handle1=setup_spi_bus(80000, true); spi_device_handle_t handle2; spi_bus_add_device(HSPI_HOST, &devcfg, &handle2); printf("Sending to dev 1\n"); spi_test(handle1, 7); printf("Sending to dev 1\n"); spi_test(handle1, 15); printf("Sending to dev 2\n"); spi_test(handle2, 15); printf("Sending to dev 1\n"); spi_test(handle1, 32); printf("Sending to dev 2\n"); spi_test(handle2, 32); printf("Sending to dev 1\n"); spi_test(handle1, 63); printf("Sending to dev 2\n"); spi_test(handle2, 63); printf("Sending to dev 1\n"); spi_test(handle1, 5000); printf("Sending to dev 2\n"); spi_test(handle2, 5000); ret=spi_bus_remove_device(handle2); TEST_ASSERT(ret==ESP_OK); destroy_spi_bus(handle1); } TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]") { //spi config spi_bus_config_t bus_config; spi_device_interface_config_t device_config; spi_device_handle_t spi; spi_host_device_t host; int dma = 1; memset(&bus_config, 0, sizeof(spi_bus_config_t)); memset(&device_config, 0, sizeof(spi_device_interface_config_t)); bus_config.miso_io_num = -1; bus_config.mosi_io_num = 26; bus_config.sclk_io_num = 25; bus_config.quadwp_io_num = -1; bus_config.quadhd_io_num = -1; device_config.clock_speed_hz = 50000; device_config.mode = 0; device_config.spics_io_num = -1; device_config.queue_size = 1; device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST; struct spi_transaction_t transaction = { .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA, .length = 16, .rx_buffer = NULL, .tx_data = {0x04, 0x00} }; //initialize for first host host = 1; TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK); TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK); printf("before first xmit\n"); TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK); printf("after first xmit\n"); TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(host) == ESP_OK); //for second host and failed before host = 2; TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK); TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK); printf("before second xmit\n"); // the original version (bit mis-written) stucks here. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK); // test case success when see this. printf("after second xmit\n"); TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(host) == ESP_OK); } IRAM_ATTR static uint32_t data_iram[320]; DRAM_ATTR static uint32_t data_dram[320]; //force to place in code area. static const uint32_t data_drom[320] = {0}; #define PIN_NUM_MISO 25 #define PIN_NUM_MOSI 23 #define PIN_NUM_CLK 19 #define PIN_NUM_CS 22 #define PIN_NUM_DC 21 #define PIN_NUM_RST 18 #define PIN_NUM_BCKL 5 TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]") { uint32_t data_rxdram[320]; esp_err_t ret; spi_device_handle_t spi; spi_bus_config_t buscfg={ .miso_io_num=PIN_NUM_MISO, .mosi_io_num=PIN_NUM_MOSI, .sclk_io_num=PIN_NUM_CLK, .quadwp_io_num=-1, .quadhd_io_num=-1 }; spi_device_interface_config_t devcfg={ .clock_speed_hz=10000000, //Clock out at 10 MHz .mode=0, //SPI mode 0 .spics_io_num=PIN_NUM_CS, //CS pin .queue_size=7, //We want to be able to queue 7 transactions at a time .pre_cb=NULL, //Specify pre-transfer callback to handle D/C line }; //Initialize the SPI bus ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); //Attach the LCD to the SPI bus ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi); TEST_ASSERT(ret==ESP_OK); static spi_transaction_t trans[6]; int x; printf("iram: %p, dram: %p, drom: %p\n", data_iram, data_dram, data_drom); memset(trans, 0, 6*sizeof(spi_transaction_t)); trans[0].length = 320*8, trans[0].tx_buffer = data_iram; trans[0].rx_buffer = data_rxdram; trans[1].length = 320*8, trans[1].tx_buffer = data_dram; trans[1].rx_buffer = data_rxdram; trans[2].length = 320*8, trans[2].tx_buffer = data_drom; trans[2].rx_buffer = data_rxdram; trans[3].length = 320*8, trans[3].tx_buffer = data_drom; trans[3].rx_buffer = data_iram; trans[4].length = 320*8, trans[4].rxlength = 8*4; trans[4].tx_buffer = data_drom; trans[4].flags = SPI_TRANS_USE_RXDATA; trans[5].length = 8*4; trans[5].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA; //Queue all transactions. for (x=0; x<6; x++) { ret=spi_device_queue_trans(spi,&trans[x], portMAX_DELAY); TEST_ASSERT(ret==ESP_OK); } for (x=0; x<6; x++) { spi_transaction_t* ptr; ret=spi_device_get_trans_result(spi,&ptr, portMAX_DELAY); TEST_ASSERT(ret==ESP_OK); TEST_ASSERT(ptr = trans+x); } TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK); } static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi ) { gpio_matrix_out( gpio, sigo, false, false ); gpio_matrix_in( gpio, sigi, false ); } //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1 // 1. RX buffer not aligned (start and end) // 2. not setting rx_buffer // 3. setting rx_length != length TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]") { uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43}; uint8_t rx_buf[320]; esp_err_t ret; spi_device_handle_t spi; spi_bus_config_t buscfg={ .miso_io_num=PIN_NUM_MISO, .mosi_io_num=PIN_NUM_MOSI, .sclk_io_num=PIN_NUM_CLK, .quadwp_io_num=-1, .quadhd_io_num=-1 }; spi_device_interface_config_t devcfg={ .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz .mode=0, //SPI mode 0 .spics_io_num=PIN_NUM_CS, //CS pin .queue_size=7, //We want to be able to queue 7 transactions at a time .pre_cb=NULL, }; //Initialize the SPI bus ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); //Attach the LCD to the SPI bus ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi); TEST_ASSERT(ret==ESP_OK); //do internal connection int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, HSPIQ_IN_IDX ); memset(rx_buf, 0x66, 320); for ( int i = 0; i < 8; i ++ ) { memset( rx_buf, 0x66, sizeof(rx_buf)); spi_transaction_t t = {}; t.length = 8*(i+1); t.rxlength = 0; t.tx_buffer = tx_buf+2*i; t.rx_buffer = rx_buf + i; if ( i == 1 ) { //test set no start t.rx_buffer = NULL; } else if ( i == 2 ) { //test rx length != tx_length t.rxlength = t.length - 8; } spi_device_transmit( spi, &t ); for( int i = 0; i < 16; i ++ ) { printf("%02X ", rx_buf[i]); } printf("\n"); if ( i == 1 ) { // no rx, skip check } else if ( i == 2 ) { //test rx length = tx length-1 TEST_ASSERT( memcmp(t.tx_buffer, t.rx_buffer, t.length/8-1)==0 ); } else { //normal check TEST_ASSERT( memcmp(t.tx_buffer, t.rx_buffer, t.length/8)==0 ); } } TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK); } static const char MASTER_TAG[] = "test_master"; static const char SLAVE_TAG[] = "test_slave"; DRAM_ATTR static uint8_t master_send[] = {0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43}; DRAM_ATTR static uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 }; static void master_init( spi_device_handle_t* spi, int mode, uint32_t speed) { esp_err_t ret; spi_bus_config_t buscfg={ .miso_io_num=PIN_NUM_MISO, .mosi_io_num=PIN_NUM_MOSI, .sclk_io_num=PIN_NUM_CLK, .quadwp_io_num=-1, .quadhd_io_num=-1 }; spi_device_interface_config_t devcfg={ .clock_speed_hz=speed, //currently only up to 4MHz for internel connect .mode=mode, //SPI mode 0 .spics_io_num=PIN_NUM_CS, //CS pin .queue_size=16, //We want to be able to queue 7 transactions at a time .pre_cb=NULL, .cs_ena_pretrans = 0, }; //Initialize the SPI bus ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); //Attach the LCD to the SPI bus ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi); TEST_ASSERT(ret==ESP_OK); } static void slave_init(int mode, int dma_chan) { //Configuration for the SPI bus spi_bus_config_t buscfg={ .mosi_io_num=PIN_NUM_MOSI, .miso_io_num=PIN_NUM_MISO, .sclk_io_num=PIN_NUM_CLK }; //Configuration for the SPI slave interface spi_slave_interface_config_t slvcfg={ .mode=mode, .spics_io_num=PIN_NUM_CS, .queue_size=3, .flags=0, }; //Enable pull-ups on SPI lines so we don't detect rogue pulses when no master is connected. gpio_set_pull_mode(PIN_NUM_MOSI, GPIO_PULLUP_ONLY); gpio_set_pull_mode(PIN_NUM_CLK, GPIO_PULLUP_ONLY); gpio_set_pull_mode(PIN_NUM_CS, GPIO_PULLUP_ONLY); //Initialize SPI slave interface TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, dma_chan) ); } typedef struct { uint32_t len; uint8_t *start; } slave_txdata_t; typedef struct { uint32_t len; uint8_t data[1]; } slave_rxdata_t; typedef struct { RingbufHandle_t data_received; QueueHandle_t data_to_send; } spi_slave_task_context_t; esp_err_t init_slave_context(spi_slave_task_context_t *context) { context->data_to_send = xQueueCreate( 16, sizeof( slave_txdata_t )); if ( context->data_to_send == NULL ) { return ESP_ERR_NO_MEM; } context->data_received = xRingbufferCreate( 1024, RINGBUF_TYPE_NOSPLIT ); if ( context->data_received == NULL ) { return ESP_ERR_NO_MEM; } return ESP_OK; } void deinit_slave_context(spi_slave_task_context_t *context) { TEST_ASSERT( context->data_to_send != NULL ); vQueueDelete( context->data_to_send ); context->data_to_send = NULL; TEST_ASSERT( context->data_received != NULL ); vRingbufferDelete( context->data_received ); context->data_received = NULL; } static void task_slave(void* arg) { spi_slave_task_context_t* context = (spi_slave_task_context_t*) arg; QueueHandle_t queue = context->data_to_send; RingbufHandle_t ringbuf = context->data_received; uint8_t recvbuf[320+4]; slave_txdata_t txdata; ESP_LOGI( SLAVE_TAG, "slave up" ); //never quit, but blocked by the queue, waiting to be killed, when no more send from main task. while( 1 ) { xQueueReceive( queue, &txdata, portMAX_DELAY ); ESP_LOGI( "test", "received: %p", txdata.start ); spi_slave_transaction_t t = {}; t.length = txdata.len; t.tx_buffer = txdata.start; t.rx_buffer = recvbuf+4; //loop until trans_len != 0 to skip glitches do { TEST_ESP_OK( spi_slave_transmit( VSPI_HOST, &t, portMAX_DELAY ) ); } while ( t.trans_len == 0 ); *(uint32_t*)recvbuf = t.trans_len; ESP_LOGI( SLAVE_TAG, "received: %d", t.trans_len ); xRingbufferSend( ringbuf, recvbuf, 4+(t.trans_len+7)/8, portMAX_DELAY ); } } TEST_CASE("SPI master variable cmd & addr test","[spi]") { uint8_t *tx_buf=master_send; uint8_t rx_buf[320]; uint8_t *rx_buf_ptr = rx_buf; spi_slave_task_context_t slave_context = {}; esp_err_t err = init_slave_context( &slave_context ); TEST_ASSERT( err == ESP_OK ); spi_device_handle_t spi; //initial master, mode 0, 1MHz master_init( &spi, 0, 1*1000*1000 ); //initial slave, mode 0, no dma slave_init(0, 0); //do internal connection int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, VSPIQ_IN_IDX ); int_connect( PIN_NUM_MISO, VSPIQ_OUT_IDX, HSPID_IN_IDX ); int_connect( PIN_NUM_CS, HSPICS0_OUT_IDX, VSPICS0_IN_IDX ); int_connect( PIN_NUM_CLK, HSPICLK_OUT_IDX, VSPICLK_IN_IDX ); TaskHandle_t handle_slave; xTaskCreate( task_slave, "spi_slave", 4096, &slave_context, 0, &handle_slave); slave_txdata_t slave_txdata[16]; spi_transaction_ext_t trans[16]; for( int i= 0; i < 16; i ++ ) { //prepare slave tx data slave_txdata[i] = (slave_txdata_t) { .start = slave_send + 4*(i%3), .len = 256, }; xQueueSend( slave_context.data_to_send, &slave_txdata[i], portMAX_DELAY ); //prepare master tx data trans[i] = (spi_transaction_ext_t) { .base = { .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR, .addr = 0x456789ab, .cmd = 0xcdef, .length = 8*i, .tx_buffer = tx_buf+i, .rx_buffer = rx_buf_ptr, }, .command_bits = ((i+1)%3) * 8, .address_bits = ((i/3)%5) * 8, }; if ( trans[i].base.length == 0 ) { trans[i].base.tx_buffer = NULL; trans[i].base.rx_buffer = NULL; } else { rx_buf_ptr += (trans[i].base.length + 31)/32*4; } } vTaskDelay(10); for ( int i = 0; i < 16; i ++ ) { TEST_ESP_OK (spi_device_queue_trans( spi, (spi_transaction_t*)&trans[i], portMAX_DELAY ) ); vTaskDelay(10); } for( int i= 0; i < 16; i ++ ) { //wait for both master and slave end ESP_LOGI( MASTER_TAG, "===== test%d =====", i ); spi_transaction_ext_t *t; size_t rcv_len; spi_device_get_trans_result( spi, (spi_transaction_t**)&t, portMAX_DELAY ); TEST_ASSERT( t == &trans[i] ); if ( trans[i].base.length != 0 ) { ESP_LOG_BUFFER_HEX( "master tx", trans[i].base.tx_buffer, trans[i].base.length/8 ); ESP_LOG_BUFFER_HEX( "master rx", trans[i].base.rx_buffer, trans[i].base.length/8 ); } else { ESP_LOGI( "master tx", "no data" ); ESP_LOGI( "master rx", "no data" ); } slave_rxdata_t *rcv_data = xRingbufferReceive( slave_context.data_received, &rcv_len, portMAX_DELAY ); uint8_t *buffer = rcv_data->data; rcv_len = rcv_data->len; ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len); ESP_LOG_BUFFER_HEX( "slave tx", slave_txdata[i].start, (rcv_len+7)/8); ESP_LOG_BUFFER_HEX( "slave rx", buffer, (rcv_len+7)/8); //check result uint8_t *ptr_addr = (uint8_t*)&t->base.addr; uint8_t *ptr_cmd = (uint8_t*)&t->base.cmd; for ( int j = 0; j < t->command_bits/8; j ++ ) { TEST_ASSERT_EQUAL( buffer[j], ptr_cmd[t->command_bits/8-j-1] ); } for ( int j = 0; j < t->address_bits/8; j ++ ) { TEST_ASSERT_EQUAL( buffer[t->command_bits/8+j], ptr_addr[t->address_bits/8-j-1] ); } if ( t->base.length != 0) { TEST_ASSERT_EQUAL_HEX8_ARRAY(t->base.tx_buffer, buffer + (t->command_bits + t->address_bits)/8, t->base.length/8); TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_txdata[i].start + (t->command_bits + t->address_bits)/8, t->base.rx_buffer, t->base.length/8); } TEST_ASSERT_EQUAL( t->base.length + t->command_bits + t->address_bits, rcv_len ); //clean vRingbufferReturnItem( slave_context.data_received, buffer ); } vTaskDelete( handle_slave ); handle_slave = 0; deinit_slave_context(&slave_context); TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK); TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK); ESP_LOGI(MASTER_TAG, "test passed."); } #define RECORD_TIME_PREPARE() uint32_t __t1, __t2 #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0) #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0) static void speed_setup(spi_device_handle_t* spi, bool use_dma) { esp_err_t ret; spi_bus_config_t buscfg={ .miso_io_num=PIN_NUM_MISO, .mosi_io_num=PIN_NUM_MOSI, .sclk_io_num=PIN_NUM_CLK, .quadwp_io_num=-1, .quadhd_io_num=-1 }; spi_device_interface_config_t devcfg={ .clock_speed_hz=10*1000*1000, //currently only up to 4MHz for internel connect .mode=0, //SPI mode 0 .spics_io_num=PIN_NUM_CS, //CS pin .queue_size=8, //We want to be able to queue 7 transactions at a time .pre_cb=NULL, .cs_ena_pretrans = 0, }; //Initialize the SPI bus and the device to test ret=spi_bus_initialize(HSPI_HOST, &buscfg, (use_dma?1:0)); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi); TEST_ASSERT(ret==ESP_OK); } static void speed_deinit(spi_device_handle_t spi) { TEST_ESP_OK( spi_bus_remove_device(spi) ); TEST_ESP_OK( spi_bus_free(HSPI_HOST) ); } static void sorted_array_insert(uint32_t* array, int* size, uint32_t item) { int pos; for (pos = *size; pos>0; pos--) { if (array[pos-1] < item) break; array[pos] = array[pos-1]; } array[pos]=item; (*size)++; } #define TEST_TIMES 11 TEST_CASE("spi_speed","[spi]") { RECORD_TIME_PREPARE(); uint32_t t_flight; //to get rid of the influence of randomly interrupts, we measured the performance by median value uint32_t t_flight_sorted[TEST_TIMES]; int t_flight_num = 0; spi_device_handle_t spi; const bool use_dma = true; WORD_ALIGNED_ATTR spi_transaction_t trans = { .length = 1*8, .flags = SPI_TRANS_USE_TXDATA, }; //first work with DMA speed_setup(&spi, use_dma); //first time introduces a device switch, which costs more time. we skip this spi_device_transmit(spi, &trans); //record flight time by isr, with DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { RECORD_TIME_START(); spi_device_transmit(spi, &trans); RECORD_TIME_END(&t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } speed_deinit(spi); speed_setup(&spi, !use_dma); //first time introduces a device switch, which costs more time. we skip this spi_device_transmit(spi, &trans); //record flight time by isr, without DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { RECORD_TIME_START(); spi_device_transmit(spi, &trans); RECORD_TIME_END(&t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } speed_deinit(spi); }