// Copyright 2020 Espressif Systems (Shanghai) PTE LTD // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include "sdkconfig.h" #include "esp_attr.h" #include "esp_log.h" #include "esp_image_format.h" #include "flash_qio_mode.h" #include "soc/efuse_reg.h" #include "soc/gpio_sig_map.h" #include "soc/io_mux_reg.h" #include "soc/assist_debug_reg.h" #include "soc/cpu.h" #include "soc/dport_reg.h" #include "soc/rtc.h" #include "soc/rtc_cntl_reg.h" #include "soc/spi_periph.h" #include "soc/extmem_reg.h" #include "esp_rom_gpio.h" #include "esp_rom_efuse.h" #include "esp_rom_sys.h" #include "esp32s3/rom/spi_flash.h" #include "esp32s3/rom/cache.h" #include "esp32s3/rom/rtc.h" #include "bootloader_common.h" #include "bootloader_init.h" #include "bootloader_clock.h" #include "bootloader_flash_config.h" #include "bootloader_mem.h" #include "bootloader_console.h" #include "bootloader_flash_priv.h" static const char *TAG = "boot.esp32s3"; void IRAM_ATTR bootloader_configure_spi_pins(int drv) { const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info(); uint8_t wp_pin = esp_rom_efuse_get_flash_wp_gpio(); uint8_t clk_gpio_num = SPI_CLK_GPIO_NUM; uint8_t q_gpio_num = SPI_Q_GPIO_NUM; uint8_t d_gpio_num = SPI_D_GPIO_NUM; uint8_t cs0_gpio_num = SPI_CS0_GPIO_NUM; uint8_t hd_gpio_num = SPI_HD_GPIO_NUM; uint8_t wp_gpio_num = SPI_WP_GPIO_NUM; if (spiconfig == 0) { } else { clk_gpio_num = spiconfig & 0x3f; q_gpio_num = (spiconfig >> 6) & 0x3f; d_gpio_num = (spiconfig >> 12) & 0x3f; cs0_gpio_num = (spiconfig >> 18) & 0x3f; hd_gpio_num = (spiconfig >> 24) & 0x3f; wp_gpio_num = wp_pin; } esp_rom_gpio_pad_set_drv(clk_gpio_num, drv); esp_rom_gpio_pad_set_drv(q_gpio_num, drv); esp_rom_gpio_pad_set_drv(d_gpio_num, drv); esp_rom_gpio_pad_set_drv(cs0_gpio_num, drv); if (hd_gpio_num <= MAX_PAD_GPIO_NUM) { esp_rom_gpio_pad_set_drv(hd_gpio_num, drv); } if (wp_gpio_num <= MAX_PAD_GPIO_NUM) { esp_rom_gpio_pad_set_drv(wp_gpio_num, drv); } } static void bootloader_reset_mmu(void) { Cache_Suspend_DCache(); Cache_Invalidate_DCache_All(); Cache_MMU_Init(); REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_CORE0_BUS); #if !CONFIG_FREERTOS_UNICORE REG_CLR_BIT(EXTMEM_ICACHE_CTRL1_REG, EXTMEM_ICACHE_SHUT_CORE1_BUS); #endif } static void update_flash_config(const esp_image_header_t *bootloader_hdr) { uint32_t size; switch (bootloader_hdr->spi_size) { case ESP_IMAGE_FLASH_SIZE_1MB: size = 1; break; case ESP_IMAGE_FLASH_SIZE_2MB: size = 2; break; case ESP_IMAGE_FLASH_SIZE_4MB: size = 4; break; case ESP_IMAGE_FLASH_SIZE_8MB: size = 8; break; case ESP_IMAGE_FLASH_SIZE_16MB: size = 16; break; default: size = 2; } uint32_t autoload = Cache_Suspend_DCache(); // Set flash chip size esp_rom_spiflash_config_param(g_rom_flashchip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff); // TODO: set mode // TODO: set frequency Cache_Resume_DCache(autoload); } static void print_flash_info(const esp_image_header_t *bootloader_hdr) { ESP_LOGD(TAG, "magic %02x", bootloader_hdr->magic); ESP_LOGD(TAG, "segments %02x", bootloader_hdr->segment_count); ESP_LOGD(TAG, "spi_mode %02x", bootloader_hdr->spi_mode); ESP_LOGD(TAG, "spi_speed %02x", bootloader_hdr->spi_speed); ESP_LOGD(TAG, "spi_size %02x", bootloader_hdr->spi_size); const char *str; switch (bootloader_hdr->spi_speed) { case ESP_IMAGE_SPI_SPEED_40M: str = "40MHz"; break; case ESP_IMAGE_SPI_SPEED_26M: str = "26.7MHz"; break; case ESP_IMAGE_SPI_SPEED_20M: str = "20MHz"; break; case ESP_IMAGE_SPI_SPEED_80M: str = "80MHz"; break; default: str = "20MHz"; break; } ESP_LOGI(TAG, "SPI Speed : %s", str); /* SPI mode could have been set to QIO during boot already, so test the SPI registers not the flash header */ uint32_t spi_ctrl = REG_READ(SPI_MEM_CTRL_REG(0)); if (spi_ctrl & SPI_MEM_FREAD_QIO) { str = "QIO"; } else if (spi_ctrl & SPI_MEM_FREAD_QUAD) { str = "QOUT"; } else if (spi_ctrl & SPI_MEM_FREAD_DIO) { str = "DIO"; } else if (spi_ctrl & SPI_MEM_FREAD_DUAL) { str = "DOUT"; } else if (spi_ctrl & SPI_MEM_FASTRD_MODE) { str = "FAST READ"; } else { str = "SLOW READ"; } ESP_LOGI(TAG, "SPI Mode : %s", str); switch (bootloader_hdr->spi_size) { case ESP_IMAGE_FLASH_SIZE_1MB: str = "1MB"; break; case ESP_IMAGE_FLASH_SIZE_2MB: str = "2MB"; break; case ESP_IMAGE_FLASH_SIZE_4MB: str = "4MB"; break; case ESP_IMAGE_FLASH_SIZE_8MB: str = "8MB"; break; case ESP_IMAGE_FLASH_SIZE_16MB: str = "16MB"; break; default: str = "2MB"; break; } ESP_LOGI(TAG, "SPI Flash Size : %s", str); } static void IRAM_ATTR bootloader_init_flash_configure(void) { bootloader_flash_dummy_config(&bootloader_image_hdr); bootloader_flash_cs_timing_config(); } static esp_err_t bootloader_init_spi_flash(void) { bootloader_init_flash_configure(); #ifndef CONFIG_SPI_FLASH_ROM_DRIVER_PATCH const uint32_t spiconfig = esp_rom_efuse_get_flash_gpio_info(); if (spiconfig != ESP_ROM_EFUSE_FLASH_DEFAULT_SPI && spiconfig != ESP_ROM_EFUSE_FLASH_DEFAULT_HSPI) { ESP_LOGE(TAG, "SPI flash pins are overridden. Enable CONFIG_SPI_FLASH_ROM_DRIVER_PATCH in menuconfig"); return ESP_FAIL; } #endif esp_rom_spiflash_unlock(); #if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT bootloader_enable_qio_mode(); #endif print_flash_info(&bootloader_image_hdr); update_flash_config(&bootloader_image_hdr); //ensure the flash is write-protected bootloader_enable_wp(); return ESP_OK; } static void wdt_reset_cpu0_info_enable(void) { REG_SET_BIT(SYSTEM_CPU_PERI_CLK_EN_REG, SYSTEM_CLK_EN_ASSIST_DEBUG); REG_CLR_BIT(SYSTEM_CPU_PERI_RST_EN_REG, SYSTEM_RST_EN_ASSIST_DEBUG); REG_WRITE(ASSIST_DEBUG_CORE_0_RCD_PDEBUGENABLE_REG, 1); REG_WRITE(ASSIST_DEBUG_CORE_0_RCD_RECORDING_REG, 1); } static void wdt_reset_info_dump(int cpu) { uint32_t inst = 0, pid = 0, stat = 0, data = 0, pc = 0, lsstat = 0, lsaddr = 0, lsdata = 0, dstat = 0; const char *cpu_name = cpu ? "APP" : "PRO"; stat = 0xdeadbeef; pid = 0; if (cpu == 0) { inst = REG_READ(ASSIST_DEBUG_CORE_0_RCD_PDEBUGINST_REG); dstat = REG_READ(ASSIST_DEBUG_CORE_0_RCD_PDEBUGSTATUS_REG); data = REG_READ(ASSIST_DEBUG_CORE_0_RCD_PDEBUGDATA_REG); pc = REG_READ(ASSIST_DEBUG_CORE_0_RCD_PDEBUGPC_REG); lsstat = REG_READ(ASSIST_DEBUG_CORE_0_RCD_PDEBUGLS0STAT_REG); lsaddr = REG_READ(ASSIST_DEBUG_CORE_0_RCD_PDEBUGLS0ADDR_REG); lsdata = REG_READ(ASSIST_DEBUG_CORE_0_RCD_PDEBUGLS0DATA_REG); } else { #if !CONFIG_FREERTOS_UNICORE inst = REG_READ(ASSIST_DEBUG_CORE_1_RCD_PDEBUGINST_REG); dstat = REG_READ(ASSIST_DEBUG_CORE_1_RCD_PDEBUGSTATUS_REG); data = REG_READ(ASSIST_DEBUG_CORE_1_RCD_PDEBUGDATA_REG); pc = REG_READ(ASSIST_DEBUG_CORE_1_RCD_PDEBUGPC_REG); lsstat = REG_READ(ASSIST_DEBUG_CORE_1_RCD_PDEBUGLS0STAT_REG); lsaddr = REG_READ(ASSIST_DEBUG_CORE_1_RCD_PDEBUGLS0ADDR_REG); lsdata = REG_READ(ASSIST_DEBUG_CORE_1_RCD_PDEBUGLS0DATA_REG); #else ESP_LOGE(TAG, "WDT reset info: %s CPU not support!\n", cpu_name); return; #endif } ESP_LOGD(TAG, "WDT reset info: %s CPU STATUS 0x%08x", cpu_name, stat); ESP_LOGD(TAG, "WDT reset info: %s CPU PID 0x%08x", cpu_name, pid); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGINST 0x%08x", cpu_name, inst); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGSTATUS 0x%08x", cpu_name, dstat); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGDATA 0x%08x", cpu_name, data); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGPC 0x%08x", cpu_name, pc); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0STAT 0x%08x", cpu_name, lsstat); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0ADDR 0x%08x", cpu_name, lsaddr); ESP_LOGD(TAG, "WDT reset info: %s CPU PDEBUGLS0DATA 0x%08x", cpu_name, lsdata); } static void bootloader_check_wdt_reset(void) { int wdt_rst = 0; RESET_REASON rst_reas[2]; rst_reas[0] = rtc_get_reset_reason(0); if (rst_reas[0] == RTCWDT_SYS_RESET || rst_reas[0] == TG0WDT_SYS_RESET || rst_reas[0] == TG1WDT_SYS_RESET || rst_reas[0] == TG0WDT_CPU_RESET || rst_reas[0] == TG1WDT_CPU_RESET || rst_reas[0] == RTCWDT_CPU_RESET) { ESP_LOGW(TAG, "PRO CPU has been reset by WDT."); wdt_rst = 1; } if (wdt_rst) { // if reset by WDT dump info from trace port wdt_reset_info_dump(0); wdt_reset_info_dump(1); } wdt_reset_cpu0_info_enable(); } static void bootloader_super_wdt_auto_feed(void) { REG_SET_BIT(RTC_CNTL_SWD_CONF_REG, RTC_CNTL_SWD_AUTO_FEED_EN); } esp_err_t bootloader_init(void) { esp_err_t ret = ESP_OK; bootloader_super_wdt_auto_feed(); // protect memory region bootloader_init_mem(); /* check that static RAM is after the stack */ #ifndef NDEBUG { assert(&_bss_start <= &_bss_end); assert(&_data_start <= &_data_end); } #endif // clear bss section bootloader_clear_bss_section(); // reset MMU bootloader_reset_mmu(); // config clock bootloader_clock_configure(); // initialize console, from now on, we can use esp_log bootloader_console_init(); /* print 2nd bootloader banner */ bootloader_print_banner(); // update flash ID bootloader_flash_update_id(); // read bootloader header if ((ret = bootloader_read_bootloader_header()) != ESP_OK) { goto err; } // read chip revision and check if it's compatible to bootloader if ((ret = bootloader_check_bootloader_validity()) != ESP_OK) { goto err; } // initialize spi flash if ((ret = bootloader_init_spi_flash()) != ESP_OK) { goto err; } // check whether a WDT reset happend bootloader_check_wdt_reset(); // config WDT bootloader_config_wdt(); // enable RNG early entropy source bootloader_enable_random(); err: return ret; }