/*
 * SPDX-FileCopyrightText: 2015-2023 Espressif Systems (Shanghai) CO LTD
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <string.h>
#include <stdbool.h>
#include <math.h>
#include <esp_types.h>
#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/semphr.h"

#include "sdkconfig.h"

#if CONFIG_I2S_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif

#include "soc/lldesc.h"
#include "driver/gpio.h"
#include "hal/gpio_hal.h"
#include "driver/i2s_types_legacy.h"
#include "hal/i2s_hal.h"
#if SOC_I2S_SUPPORTS_APLL
#include "hal/clk_tree_ll.h"
#endif

#if SOC_I2S_SUPPORTS_DAC
#include "hal/dac_ll.h"
#include "hal/dac_types.h"
#include "esp_private/adc_share_hw_ctrl.h"
#include "esp_private/sar_periph_ctrl.h"
#include "adc1_private.h"
#include "driver/adc_i2s_legacy.h"
#include "driver/adc_types_legacy.h"
#endif // SOC_I2S_SUPPORTS_ADC

#if CONFIG_IDF_TARGET_ESP32
#include "esp_clock_output.h"
#endif

#if SOC_GDMA_SUPPORTED
#include "esp_private/gdma.h"
#endif

#include "clk_ctrl_os.h"
#include "esp_intr_alloc.h"
#include "esp_err.h"
#include "esp_check.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_efuse.h"
#include "esp_rom_gpio.h"
#include "esp_private/i2s_platform.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"

static const char *TAG = "i2s(legacy)";

#define I2S_ENTER_CRITICAL_ISR(i2s_num)          portENTER_CRITICAL_ISR(&i2s_spinlock[i2s_num])
#define I2S_EXIT_CRITICAL_ISR(i2s_num)           portEXIT_CRITICAL_ISR(&i2s_spinlock[i2s_num])
#define I2S_ENTER_CRITICAL(i2s_num)              portENTER_CRITICAL(&i2s_spinlock[i2s_num])
#define I2S_EXIT_CRITICAL(i2s_num)               portEXIT_CRITICAL(&i2s_spinlock[i2s_num])

#if SOC_PERIPH_CLK_CTRL_SHARED
#define I2S_CLOCK_SRC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define I2S_CLOCK_SRC_ATOMIC()
#endif

#if !SOC_RCC_IS_INDEPENDENT
#define I2S_RCC_ATOMIC() PERIPH_RCC_ATOMIC()
#else
#define I2S_RCC_ATOMIC()
#endif

#define I2S_DMA_BUFFER_MAX_SIZE     4092

#if SOC_I2S_SUPPORTS_ADC_DAC
#define    I2S_COMM_MODE_ADC_DAC    -1
#endif

/**
 * @brief General clock configuration information
 * @note It is a general purpose struct, not supposed to be used directly by user
 */
typedef struct {
    uint32_t                sample_rate_hz;     /*!< I2S sample rate */
    i2s_clock_src_t         clk_src;            /*!< Choose clock source */
    i2s_mclk_multiple_t     mclk_multiple;      /*!< The multiple of mclk to the sample rate */
#if SOC_I2S_SUPPORTS_PDM_TX
    uint32_t                up_sample_fp;       /*!< Up-sampling param fp */
    uint32_t                up_sample_fs;       /*!< Up-sampling param fs */
#endif
#if SOC_I2S_SUPPORTS_PDM_RX
    i2s_pdm_dsr_t           dn_sample_mode;     /*!< Down-sampling rate mode */
#endif
} i2s_clk_config_t;

/**
 * @brief DMA buffer object
 *
 */
typedef struct {
    char **buf;
    int buf_size;
    volatile int rw_pos;
    volatile void *curr_ptr;
    SemaphoreHandle_t mux;
    QueueHandle_t queue;
    lldesc_t **desc;
} i2s_dma_t;

/**
 * @brief I2S object instance
 *
 */
typedef struct {
    i2s_port_t i2s_num;         /*!< I2S port number*/
    int queue_size;             /*!< I2S event queue size*/
    QueueHandle_t i2s_queue;    /*!< I2S queue handler*/
    uint32_t last_buf_size;     /*!< DMA last buffer size */
    i2s_dma_t *tx;              /*!< DMA Tx buffer*/
    i2s_dma_t *rx;              /*!< DMA Rx buffer*/
#if SOC_GDMA_SUPPORTED
    gdma_channel_handle_t rx_dma_chan;  /*!< I2S rx gDMA channel handle*/
    gdma_channel_handle_t tx_dma_chan;  /*!< I2S tx gDMA channel handle*/
#else
    intr_handle_t i2s_isr_handle; /*!< I2S Interrupt handle*/
#endif
    uint32_t dma_desc_num;
    uint32_t dma_frame_num;
    bool tx_desc_auto_clear;    /*!< I2S auto clear tx descriptor on underflow */
    bool use_apll;              /*!< I2S use APLL clock */
    int fixed_mclk;             /*!< I2S fixed MLCK clock */
    i2s_mclk_multiple_t mclk_multiple; /*!< The multiple of I2S master clock(MCLK) to sample rate */
#if CONFIG_IDF_TARGET_ESP32
    esp_clock_output_mapping_handle_t mclk_out_hdl;
#endif
#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_handle_t pm_lock;
#endif
    i2s_hal_context_t hal;       /*!< I2S hal context*/

    /* New config */
    i2s_dir_t         dir;
    i2s_role_t        role;
    i2s_comm_mode_t   mode;
    i2s_hal_slot_config_t slot_cfg;
    i2s_clk_config_t      clk_cfg;
    uint32_t          active_slot;    /*!< Active slot number */
    uint32_t          total_slot;     /*!< Total slot number */
} i2s_obj_t;

// Global I2S object pointer
static i2s_obj_t *p_i2s[SOC_I2S_NUM] = {
    [0 ... SOC_I2S_NUM - 1] = NULL,
};

// Global spin lock for all i2s controllers
static portMUX_TYPE i2s_spinlock[SOC_I2S_NUM] = {
    [0 ... SOC_I2S_NUM - 1] = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED,
};

/*-------------------------------------------------------------
                    I2S DMA operation
  -------------------------------------------------------------*/
#if SOC_GDMA_SUPPORTED
static bool IRAM_ATTR i2s_dma_rx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
    i2s_obj_t *p_i2s = (i2s_obj_t *) user_data;
    BaseType_t need_awoke = 0;
    BaseType_t tmp = 0;
    int dummy;
    i2s_event_t i2s_event;
    uint32_t finish_desc;

    if (p_i2s->rx) {
        finish_desc = event_data->rx_eof_desc_addr;
        i2s_event.size = ((lldesc_t *)finish_desc)->size;
        if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) {
            xQueueReceiveFromISR(p_i2s->rx->queue, &dummy, &tmp);
            need_awoke |= tmp;
            if (p_i2s->i2s_queue) {
                i2s_event.type = I2S_EVENT_RX_Q_OVF;
                xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
                need_awoke |= tmp;
            }
        }
        xQueueSendFromISR(p_i2s->rx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp);
        need_awoke |= tmp;
        if (p_i2s->i2s_queue) {
            i2s_event.type = I2S_EVENT_RX_DONE;
            xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
            need_awoke |= tmp;
        }
    }
    return need_awoke;
}

static bool IRAM_ATTR i2s_dma_tx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
    i2s_obj_t *p_i2s = (i2s_obj_t *) user_data;
    BaseType_t need_awoke = 0;
    BaseType_t tmp = 0;
    int dummy;
    i2s_event_t i2s_event;
    uint32_t finish_desc;
    if (p_i2s->tx) {
        finish_desc = event_data->tx_eof_desc_addr;
        i2s_event.size = ((lldesc_t *)finish_desc)->size;
        if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) {
            xQueueReceiveFromISR(p_i2s->tx->queue, &dummy, &tmp);
            need_awoke |= tmp;
            if (p_i2s->i2s_queue) {
                i2s_event.type = I2S_EVENT_TX_Q_OVF;
                i2s_event.size = p_i2s->tx->buf_size;
                xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
                need_awoke |= tmp;
            }
        }
        if (p_i2s->tx_desc_auto_clear) {
            memset((void *) (((lldesc_t *)finish_desc)->buf), 0, p_i2s->tx->buf_size);
        }
        xQueueSendFromISR(p_i2s->tx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp);
        need_awoke |= tmp;
        if (p_i2s->i2s_queue) {
            i2s_event.type = I2S_EVENT_TX_DONE;
            xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
            need_awoke |= tmp;
        }
    }
    return need_awoke;
}

#else
static void IRAM_ATTR i2s_intr_handler_default(void *arg)
{
    i2s_obj_t *p_i2s = (i2s_obj_t *) arg;
    uint32_t status = i2s_hal_get_intr_status(&(p_i2s->hal));
    if (status == 0) {
        //Avoid spurious interrupt
        return;
    }

    i2s_event_t i2s_event;
    int dummy;
    BaseType_t need_awoke = 0;
    BaseType_t tmp = 0;
    uint32_t  finish_desc = 0;
    if ((status & I2S_LL_EVENT_TX_DSCR_ERR) || (status & I2S_LL_EVENT_RX_DSCR_ERR)) {
        ESP_EARLY_LOGE(TAG, "dma error, interrupt status: 0x%08x", status);
        if (p_i2s->i2s_queue) {
            i2s_event.type = I2S_EVENT_DMA_ERROR;
            if (xQueueIsQueueFullFromISR(p_i2s->i2s_queue)) {
                xQueueReceiveFromISR(p_i2s->i2s_queue, &dummy, &tmp);
                need_awoke |= tmp;
            }
            xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
            need_awoke |= tmp;
        }
    }

    if ((status & I2S_LL_EVENT_TX_EOF) && p_i2s->tx) {
        i2s_hal_get_out_eof_des_addr(&(p_i2s->hal), &finish_desc);
        i2s_event.size = ((lldesc_t *)finish_desc)->size;
        // All buffers are empty. This means we have an underflow on our hands.
        if (xQueueIsQueueFullFromISR(p_i2s->tx->queue)) {
            xQueueReceiveFromISR(p_i2s->tx->queue, &dummy, &tmp);
            need_awoke |= tmp;
            if (p_i2s->i2s_queue) {
                i2s_event.type = I2S_EVENT_TX_Q_OVF;
                xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
                need_awoke |= tmp;
            }
        }
        // See if tx descriptor needs to be auto cleared:
        // This will avoid any kind of noise that may get introduced due to transmission
        // of previous data from tx descriptor on I2S line.
        if (p_i2s->tx_desc_auto_clear == true) {
            memset((void *)(((lldesc_t *)finish_desc)->buf), 0, p_i2s->tx->buf_size);
        }
        xQueueSendFromISR(p_i2s->tx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp);
        need_awoke |= tmp;
        if (p_i2s->i2s_queue) {
            i2s_event.type = I2S_EVENT_TX_DONE;
            xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
            need_awoke |= tmp;
        }
    }

    if ((status & I2S_LL_EVENT_RX_EOF) && p_i2s->rx) {
        // All buffers are full. This means we have an overflow.
        i2s_hal_get_in_eof_des_addr(&(p_i2s->hal), &finish_desc);
        i2s_event.size = ((lldesc_t *)finish_desc)->size;
        if (xQueueIsQueueFullFromISR(p_i2s->rx->queue)) {
            xQueueReceiveFromISR(p_i2s->rx->queue, &dummy, &tmp);
            need_awoke |= tmp;
            if (p_i2s->i2s_queue) {
                i2s_event.type = I2S_EVENT_RX_Q_OVF;
                xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
                need_awoke |= tmp;
            }
        }
        xQueueSendFromISR(p_i2s->rx->queue, &(((lldesc_t *)finish_desc)->buf), &tmp);
        need_awoke |= tmp;
        if (p_i2s->i2s_queue) {
            i2s_event.type = I2S_EVENT_RX_DONE;
            xQueueSendFromISR(p_i2s->i2s_queue, (void * )&i2s_event, &tmp);
            need_awoke |= tmp;
        }
    }
    i2s_hal_clear_intr_status(&(p_i2s->hal), status);

    if (need_awoke == pdTRUE) {
        portYIELD_FROM_ISR();
    }
}
#endif

static esp_err_t i2s_dma_intr_init(i2s_port_t i2s_num, int intr_flag)
{
#if SOC_GDMA_SUPPORTED
    /* Set GDMA trigger module */
    gdma_trigger_t trig = {.periph = GDMA_TRIG_PERIPH_I2S};

    switch (i2s_num) {
#if SOC_I2S_NUM > 1
    case I2S_NUM_1:
        trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S1;
        break;
#endif
    default:
        trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S0;
        break;
    }

    /* Set GDMA config */
    gdma_channel_alloc_config_t dma_cfg = {};
    if ( p_i2s[i2s_num]->dir & I2S_DIR_TX) {
        dma_cfg.direction = GDMA_CHANNEL_DIRECTION_TX;
        /* Register a new GDMA tx channel */
        ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->tx_dma_chan), TAG, "Register tx dma channel error");
        ESP_RETURN_ON_ERROR(gdma_connect(p_i2s[i2s_num]->tx_dma_chan, trig), TAG, "Connect tx dma channel error");
        gdma_tx_event_callbacks_t cb = {.on_trans_eof = i2s_dma_tx_callback};
        /* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the  callback function */
        gdma_register_tx_event_callbacks(p_i2s[i2s_num]->tx_dma_chan, &cb, p_i2s[i2s_num]);
    }
    if ( p_i2s[i2s_num]->dir & I2S_DIR_RX) {
        dma_cfg.direction = GDMA_CHANNEL_DIRECTION_RX;
        /* Register a new GDMA rx channel */
        ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &p_i2s[i2s_num]->rx_dma_chan), TAG, "Register rx dma channel error");
        ESP_RETURN_ON_ERROR(gdma_connect(p_i2s[i2s_num]->rx_dma_chan, trig), TAG, "Connect rx dma channel error");
        gdma_rx_event_callbacks_t cb = {.on_recv_eof = i2s_dma_rx_callback};
        /* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the  callback function */
        gdma_register_rx_event_callbacks(p_i2s[i2s_num]->rx_dma_chan, &cb, p_i2s[i2s_num]);
    }
#else
    /* Initial I2S module interrupt */
    ESP_RETURN_ON_ERROR(esp_intr_alloc(i2s_periph_signal[i2s_num].irq, intr_flag, i2s_intr_handler_default, p_i2s[i2s_num], &p_i2s[i2s_num]->i2s_isr_handle), TAG, "Register I2S Interrupt error");
#endif // SOC_GDMA_SUPPORTED
    return ESP_OK;
}

static void i2s_tx_reset(i2s_port_t i2s_num)
{
    p_i2s[i2s_num]->tx->curr_ptr = NULL;
    p_i2s[i2s_num]->tx->rw_pos = 0;
    i2s_hal_tx_reset(&(p_i2s[i2s_num]->hal));
#if SOC_GDMA_SUPPORTED
    gdma_reset(p_i2s[i2s_num]->tx_dma_chan);
#else
    i2s_hal_tx_reset_dma(&(p_i2s[i2s_num]->hal));
#endif
    i2s_hal_tx_reset_fifo(&(p_i2s[i2s_num]->hal));
}

/**
 * @brief   I2S rx reset
 *
 * @param   i2s_num     I2S device number
 */
static void i2s_rx_reset(i2s_port_t i2s_num)
{
    p_i2s[i2s_num]->rx->curr_ptr = NULL;
    p_i2s[i2s_num]->rx->rw_pos = 0;
    i2s_hal_rx_reset(&(p_i2s[i2s_num]->hal));
#if SOC_GDMA_SUPPORTED
    gdma_reset(p_i2s[i2s_num]->rx_dma_chan);
#else
    i2s_hal_rx_reset_dma(&(p_i2s[i2s_num]->hal));
#endif
    i2s_hal_rx_reset_fifo(&(p_i2s[i2s_num]->hal));
}

static void i2s_tx_start(i2s_port_t i2s_num)
{
#if SOC_GDMA_SUPPORTED
    gdma_start(p_i2s[i2s_num]->tx_dma_chan, (uint32_t) p_i2s[i2s_num]->tx->desc[0]);
#else
    i2s_hal_tx_enable_dma(&(p_i2s[i2s_num]->hal));
    i2s_hal_tx_enable_intr(&(p_i2s[i2s_num]->hal));
    i2s_hal_tx_start_link(&(p_i2s[i2s_num]->hal), (uint32_t) p_i2s[i2s_num]->tx->desc[0]);
#endif
    i2s_hal_tx_start(&(p_i2s[i2s_num]->hal));
}

static void i2s_rx_start(i2s_port_t i2s_num)
{
#if SOC_GDMA_SUPPORTED
    gdma_start(p_i2s[i2s_num]->rx_dma_chan, (uint32_t) p_i2s[i2s_num]->rx->desc[0]);
#else
    i2s_hal_rx_enable_dma(&(p_i2s[i2s_num]->hal));
    i2s_hal_rx_enable_intr(&(p_i2s[i2s_num]->hal));
    i2s_hal_rx_start_link(&(p_i2s[i2s_num]->hal), (uint32_t) p_i2s[i2s_num]->rx->desc[0]);
#endif
    i2s_hal_rx_start(&(p_i2s[i2s_num]->hal));
}

static void i2s_tx_stop(i2s_port_t i2s_num)
{
    i2s_hal_tx_stop(&(p_i2s[i2s_num]->hal));
#if SOC_GDMA_SUPPORTED
    gdma_stop(p_i2s[i2s_num]->tx_dma_chan);
#else
    i2s_hal_tx_stop_link(&(p_i2s[i2s_num]->hal));
    i2s_hal_tx_disable_intr(&(p_i2s[i2s_num]->hal));
    i2s_hal_tx_disable_dma(&(p_i2s[i2s_num]->hal));
#endif
}

static void i2s_rx_stop(i2s_port_t i2s_num)
{
    i2s_hal_rx_stop(&(p_i2s[i2s_num]->hal));
#if SOC_GDMA_SUPPORTED
    gdma_stop(p_i2s[i2s_num]->rx_dma_chan);
#else
    i2s_hal_rx_stop_link(&(p_i2s[i2s_num]->hal));
    i2s_hal_rx_disable_intr(&(p_i2s[i2s_num]->hal));
    i2s_hal_rx_disable_dma(&(p_i2s[i2s_num]->hal));
#endif
}

esp_err_t i2s_start(i2s_port_t i2s_num)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    //start DMA link
    I2S_ENTER_CRITICAL(i2s_num);

    if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
        i2s_tx_reset(i2s_num);
        i2s_tx_start(i2s_num);
    }
    if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
        i2s_rx_reset(i2s_num);
        i2s_rx_start(i2s_num);
    }
#if !SOC_GDMA_SUPPORTED
    esp_intr_enable(p_i2s[i2s_num]->i2s_isr_handle);
#endif
    I2S_EXIT_CRITICAL(i2s_num);
    return ESP_OK;
}

esp_err_t i2s_stop(i2s_port_t i2s_num)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    I2S_ENTER_CRITICAL(i2s_num);
#if !SOC_GDMA_SUPPORTED
    esp_intr_disable(p_i2s[i2s_num]->i2s_isr_handle);
#endif
    if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
        i2s_tx_stop(i2s_num);
    }
    if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
        i2s_rx_stop(i2s_num);
    }
#if !SOC_GDMA_SUPPORTED
    i2s_hal_clear_intr_status(&(p_i2s[i2s_num]->hal), I2S_INTR_MAX);
#endif
    I2S_EXIT_CRITICAL(i2s_num);
    return ESP_OK;
}

/*-------------------------------------------------------------
                   I2S buffer operation
  -------------------------------------------------------------*/
static inline uint32_t i2s_get_buf_size(i2s_port_t i2s_num)
{
    i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg;
    /* Calculate bytes per sample, align to 16 bit */
    uint32_t bytes_per_sample = ((slot_cfg->data_bit_width + 15) / 16) * 2;
    /* The DMA buffer limitation is 4092 bytes */
    uint32_t bytes_per_frame = bytes_per_sample * p_i2s[i2s_num]->active_slot;
    p_i2s[i2s_num]->dma_frame_num = (p_i2s[i2s_num]->dma_frame_num * bytes_per_frame > I2S_DMA_BUFFER_MAX_SIZE) ?
                                    I2S_DMA_BUFFER_MAX_SIZE / bytes_per_frame : p_i2s[i2s_num]->dma_frame_num;
    return p_i2s[i2s_num]->dma_frame_num * bytes_per_frame;
}

static esp_err_t i2s_delete_dma_buffer(i2s_port_t i2s_num, i2s_dma_t *dma_obj)
{
    ESP_RETURN_ON_FALSE(dma_obj, ESP_ERR_INVALID_ARG, TAG, "I2S DMA object can't be NULL");
    uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num;
    /* Loop to destroy every descriptor and buffer */
    for (int cnt = 0; cnt < buf_cnt; cnt++) {
        if (dma_obj->desc && dma_obj->desc[cnt]) {
            free(dma_obj->desc[cnt]);
            dma_obj->desc[cnt] = NULL;
        }
        if (dma_obj->buf && dma_obj->buf[cnt]) {
            free(dma_obj->buf[cnt]);
            dma_obj->buf[cnt] = NULL;
        }
    }
    return ESP_OK;
}

static esp_err_t i2s_alloc_dma_buffer(i2s_port_t i2s_num, i2s_dma_t *dma_obj)
{
    esp_err_t ret = ESP_OK;
    ESP_GOTO_ON_FALSE(dma_obj, ESP_ERR_INVALID_ARG, err, TAG, "I2S DMA object can't be NULL");

    uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num;
    for (int cnt = 0; cnt < buf_cnt; cnt++) {
        /* Allocate DMA buffer */
        dma_obj->buf[cnt] = (char *) heap_caps_calloc(dma_obj->buf_size, sizeof(char), MALLOC_CAP_DMA);
        ESP_GOTO_ON_FALSE(dma_obj->buf[cnt], ESP_ERR_NO_MEM, err, TAG, "Error malloc dma buffer");
        /* Initialize DMA buffer to 0 */
        memset(dma_obj->buf[cnt], 0, dma_obj->buf_size);

        /* Allocate DMA descpriptor */
        dma_obj->desc[cnt] = (lldesc_t *) heap_caps_calloc(1, sizeof(lldesc_t), MALLOC_CAP_DMA);
        ESP_GOTO_ON_FALSE(dma_obj->desc[cnt], ESP_ERR_NO_MEM, err, TAG,  "Error malloc dma description entry");
    }
    /* DMA descriptor must be initialize after all descriptor has been created, otherwise they can't be linked together as a chain */
    for (int cnt = 0; cnt < buf_cnt; cnt++) {
        /* Initialize DMA descriptor */
        dma_obj->desc[cnt]->owner = 1;
        dma_obj->desc[cnt]->eof = 1;
        dma_obj->desc[cnt]->sosf = 0;
        dma_obj->desc[cnt]->length = dma_obj->buf_size;
        dma_obj->desc[cnt]->size = dma_obj->buf_size;
        dma_obj->desc[cnt]->buf = (uint8_t *) dma_obj->buf[cnt];
        dma_obj->desc[cnt]->offset = 0;
        /* Link to the next descriptor */
        dma_obj->desc[cnt]->empty = (uint32_t)((cnt < (buf_cnt - 1)) ? (dma_obj->desc[cnt + 1]) : dma_obj->desc[0]);
    }
    if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
        i2s_ll_rx_set_eof_num(p_i2s[i2s_num]->hal.dev, dma_obj->buf_size);
    }
    ESP_LOGD(TAG, "DMA Malloc info, datalen=blocksize=%d, dma_desc_num=%"PRIu32, dma_obj->buf_size, buf_cnt);
    return ESP_OK;
err:
    /* Delete DMA buffer if failed to allocate memory */
    i2s_delete_dma_buffer(i2s_num, dma_obj);
    return ret;
}

static esp_err_t i2s_realloc_dma_buffer(i2s_port_t i2s_num, i2s_dma_t *dma_obj)
{
    ESP_RETURN_ON_FALSE(dma_obj, ESP_ERR_INVALID_ARG, TAG, "I2S DMA object can't be NULL");

    /* Destroy old dma descriptor and buffer */
    i2s_delete_dma_buffer(i2s_num, dma_obj);
    /* Alloc new dma descriptor and buffer */
    ESP_RETURN_ON_ERROR(i2s_alloc_dma_buffer(i2s_num, dma_obj), TAG, "Failed to allocate dma buffer");

    return ESP_OK;
}

static esp_err_t i2s_destroy_dma_object(i2s_port_t i2s_num, i2s_dma_t **dma)
{
    /* Check if DMA truely need destroy */
    ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_ERR_INVALID_ARG, TAG, "I2S not initialized yet");
    if (!(*dma)) {
        return ESP_OK;
    }
    /* Destroy every descriptor and buffer */
    i2s_delete_dma_buffer(i2s_num, (*dma));
    /* Destroy descriptor pointer */
    if ((*dma)->desc) {
        free((*dma)->desc);
        (*dma)->desc = NULL;
    }
    /* Destroy buffer pointer */
    if ((*dma)->buf) {
        free((*dma)->buf);
        (*dma)->buf = NULL;
    }
    /* Delete DMA mux */
    vSemaphoreDelete((*dma)->mux);
    /* Delete DMA queue */
    vQueueDelete((*dma)->queue);
    /* Free DMA structure */
    free(*dma);
    *dma = NULL;
    ESP_LOGD(TAG, "DMA queue destroyed");
    return ESP_OK;
}

static esp_err_t i2s_create_dma_object(i2s_port_t i2s_num, i2s_dma_t **dma)
{
    ESP_RETURN_ON_FALSE(dma, ESP_ERR_INVALID_ARG, TAG, "DMA object secondary pointer is NULL");
    ESP_RETURN_ON_FALSE((*dma == NULL), ESP_ERR_INVALID_ARG, TAG, "DMA object has been created");
    uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num;
    /* Allocate new DMA structure */
    *dma = (i2s_dma_t *) calloc(1, sizeof(i2s_dma_t));
    ESP_RETURN_ON_FALSE(*dma, ESP_ERR_NO_MEM, TAG, "DMA object allocate failed");
    /* Allocate DMA buffer poiter */
    (*dma)->buf = (char **)heap_caps_calloc(buf_cnt, sizeof(char *), MALLOC_CAP_DMA);
    if (!(*dma)->buf) {
        goto err;
    }
    /* Allocate secondary pointer of DMA descriptor chain */
    (*dma)->desc = (lldesc_t **)heap_caps_calloc(buf_cnt, sizeof(lldesc_t *), MALLOC_CAP_DMA);
    if (!(*dma)->desc) {
        goto err;
    }
    /* Create queue and mutex */
    (*dma)->queue = xQueueCreate(buf_cnt - 1, sizeof(char *));
    if (!(*dma)->queue) {
        goto err;
    }
    (*dma)->mux = xSemaphoreCreateMutex();
    if (!(*dma)->mux) {
        goto err;
    }

    return ESP_OK;
err:
    ESP_LOGE(TAG, "I2S DMA object create failed, preparing to uninstall");
    /* Destroy DMA queue if failed to allocate memory */
    i2s_destroy_dma_object(i2s_num, dma);
    return ESP_ERR_NO_MEM;
}

/*-------------------------------------------------------------
                   I2S clock operation
  -------------------------------------------------------------*/
  // [clk_tree] TODO: replace the following switch table by clk_tree API
static uint32_t i2s_config_source_clock(i2s_port_t i2s_num, bool use_apll, uint32_t mclk)
{
#if SOC_I2S_SUPPORTS_APLL
    if (use_apll) {
        /* Calculate the expected APLL  */
        int div = (int)((CLK_LL_APLL_MIN_HZ / mclk) + 1);
        /* apll_freq = mclk * div
         * when div = 1, hardware will still divide 2
         * when div = 0, the final mclk will be unpredictable
         * So the div here should be at least 2 */
        div = div < 2 ? 2 : div;
        uint32_t expt_freq = mclk * div;
        /* Set APLL coefficients to the given frequency */
        uint32_t real_freq = 0;
        esp_err_t ret = periph_rtc_apll_freq_set(expt_freq, &real_freq);
        if (ret == ESP_ERR_INVALID_ARG) {
            ESP_LOGE(TAG, "set APLL coefficients failed");
            return 0;
        }
        if (ret == ESP_ERR_INVALID_STATE) {
            ESP_LOGW(TAG, "APLL is occupied already, it is working at %"PRIu32" Hz", real_freq);
        }
        ESP_LOGD(TAG, "APLL expected frequency is %"PRIu32" Hz, real frequency is %"PRIu32" Hz", expt_freq, real_freq);
        /* In APLL mode, there is no sclk but only mclk, so return 0 here to indicate APLL mode */
        return real_freq;
    }
    return I2S_LL_DEFAULT_CLK_FREQ;
#else
    if (use_apll) {
        ESP_LOGW(TAG, "APLL not supported on current chip, use I2S_CLK_SRC_DEFAULT as default clock source");
    }
    return I2S_LL_DEFAULT_CLK_FREQ;
#endif
}

#if SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC
static esp_err_t i2s_calculate_adc_dac_clock(int i2s_num, i2s_hal_clock_info_t *clk_info)
{
    /* For ADC/DAC mode, the built-in ADC/DAC is driven by 'mclk' instead of 'bclk'
     * 'bclk' should be fixed to the double of sample rate
     * 'bclk_div' is the real coefficient that affects the slot bit */
    i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg;
    i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg;
    uint32_t slot_bits = slot_cfg->slot_bit_width;
    /* Set I2S bit clock */
    clk_info->bclk = clk_cfg->sample_rate_hz * I2S_LL_AD_BCK_FACTOR;
    /* Set I2S bit clock default division */
    clk_info->bclk_div = slot_bits;
    /* If fixed_mclk and use_apll are set, use fixed_mclk as mclk frequency, otherwise calculate by mclk = bclk * bclk_div */
    clk_info->mclk = (p_i2s[i2s_num]->use_apll && p_i2s[i2s_num]->fixed_mclk) ?
                     p_i2s[i2s_num]->fixed_mclk : clk_info->bclk * clk_info->bclk_div;
    /* Calculate bclk_div = mclk / bclk */
    clk_info->bclk_div = clk_info->mclk / clk_info->bclk;
    /* Get I2S system clock by config source clock */
    clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk);
    /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */
    clk_info->mclk_div = clk_info->sclk / clk_info->mclk;

    /* Check if the configuration is correct */
    ESP_RETURN_ON_FALSE(clk_info->sclk / (float)clk_info->mclk > 1.99, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large, the mclk division is below minimum value 2");
    ESP_RETURN_ON_FALSE(clk_info->mclk_div < 256, ESP_ERR_INVALID_ARG, TAG, "sample rate is too small, the mclk division exceed the maximum value 255");

    return ESP_OK;
}
#endif // SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC

#if SOC_I2S_SUPPORTS_PDM_TX
static esp_err_t i2s_calculate_pdm_tx_clock(int i2s_num, i2s_hal_clock_info_t *clk_info)
{
    i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg;

    int fp = clk_cfg->up_sample_fp;
    int fs = clk_cfg->up_sample_fs;
    /* Set I2S bit clock */
    clk_info->bclk = clk_cfg->sample_rate_hz * I2S_LL_PDM_BCK_FACTOR * fp / fs;
    /* Set I2S bit clock default division */
    clk_info->bclk_div = 8;
    /* If fixed_mclk and use_apll are set, use fixed_mclk as mclk frequency, otherwise calculate by mclk = sample_rate_hz * multiple */
    clk_info->mclk = (p_i2s[i2s_num]->use_apll && p_i2s[i2s_num]->fixed_mclk) ?
                     p_i2s[i2s_num]->fixed_mclk : clk_info->bclk * clk_info->bclk_div;
    /* Calculate bclk_div = mclk / bclk */
    clk_info->bclk_div = clk_info->mclk / clk_info->bclk;
    /* Get I2S system clock by config source clock */
    clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk);
    /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */
    clk_info->mclk_div = clk_info->sclk / clk_info->mclk;

    /* Check if the configuration is correct */
    ESP_RETURN_ON_FALSE(clk_info->sclk / (float)clk_info->mclk > 1.99, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large, the mclk division is below minimum value 2");
    ESP_RETURN_ON_FALSE(clk_info->mclk_div < 256, ESP_ERR_INVALID_ARG, TAG, "sample rate is too small, the mclk division exceed the maximum value 255");

    return ESP_OK;
}
#endif  // SOC_I2S_SUPPORTS_PDM_TX

#if SOC_I2S_SUPPORTS_PDM_RX
static esp_err_t i2s_calculate_pdm_rx_clock(int i2s_num, i2s_hal_clock_info_t *clk_info)
{
    i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg;
    i2s_pdm_dsr_t dsr = clk_cfg->dn_sample_mode;
    /* Set I2S bit clock */
    clk_info->bclk = clk_cfg->sample_rate_hz * I2S_LL_PDM_BCK_FACTOR * (dsr == I2S_PDM_DSR_16S ? 2 : 1);
    /* Set I2S bit clock default division */
    clk_info->bclk_div = 8;
    /* If fixed_mclk and use_apll are set, use fixed_mclk as mclk frequency, otherwise calculate by mclk = sample_rate_hz * multiple */
    clk_info->mclk = (p_i2s[i2s_num]->use_apll && p_i2s[i2s_num]->fixed_mclk) ?
                     p_i2s[i2s_num]->fixed_mclk : clk_info->bclk * clk_info->bclk_div;
    /* Calculate bclk_div = mclk / bclk */
    clk_info->bclk_div = clk_info->mclk / clk_info->bclk;
    /* Get I2S system clock by config source clock */
    clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk);
    /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */
    clk_info->mclk_div = clk_info->sclk / clk_info->mclk;

    /* Check if the configuration is correct */
    ESP_RETURN_ON_FALSE(clk_info->sclk / (float)clk_info->mclk > 1.99, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large, the mclk division is below minimum value 2");
    ESP_RETURN_ON_FALSE(clk_info->mclk_div < 256, ESP_ERR_INVALID_ARG, TAG, "sample rate is too small, the mclk division exceed the maximum value 255");

    return ESP_OK;
}
#endif // SOC_I2S_SUPPORTS_PDM_RX
static esp_err_t i2s_calculate_common_clock(int i2s_num, i2s_hal_clock_info_t *clk_info)
{
    i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg;
    i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg;
    uint32_t rate     = clk_cfg->sample_rate_hz;
    uint32_t slot_num = p_i2s[i2s_num]->total_slot < 2 ? 2 : p_i2s[i2s_num]->total_slot;
    uint32_t slot_bits = slot_cfg->slot_bit_width;
    /* Calculate multiple */
    if (p_i2s[i2s_num]->role == I2S_ROLE_MASTER) {
        clk_info->bclk = rate * slot_num * slot_bits;
        clk_info->mclk = rate * clk_cfg->mclk_multiple;
        clk_info->bclk_div = clk_info->mclk / clk_info->bclk;
    } else {
        /* For slave mode, mclk >= bclk * 8, so fix bclk_div to 8 first */
        clk_info->bclk_div = 8;
        clk_info->bclk = rate * slot_num * slot_bits;
        clk_info->mclk = clk_info->bclk * clk_info->bclk_div;
    }
    /* Get I2S system clock by config source clock */
    clk_info->sclk = i2s_config_source_clock(i2s_num, p_i2s[i2s_num]->use_apll, clk_info->mclk);
    /* Get I2S master clock rough division, later will calculate the fine division parameters in HAL */
    clk_info->mclk_div = clk_info->sclk / clk_info->mclk;

    /* Check if the configuration is correct */
    ESP_RETURN_ON_FALSE(clk_info->mclk <= clk_info->sclk, ESP_ERR_INVALID_ARG, TAG, "sample rate is too large");

    return ESP_OK;
}


static esp_err_t i2s_calculate_clock(i2s_port_t i2s_num, i2s_hal_clock_info_t *clk_info)
{
    /* Calculate clock for ADC/DAC mode */
#if SOC_I2S_SUPPORTS_ADC_DAC
    if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) {
        ESP_RETURN_ON_ERROR(i2s_calculate_adc_dac_clock(i2s_num, clk_info), TAG, "ADC/DAC clock calculate failed");
        return ESP_OK;
    }
#endif // SOC_I2S_SUPPORTS_ADC

    /* Calculate clock for PDM mode */
#if SOC_I2S_SUPPORTS_PDM
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) {
#if SOC_I2S_SUPPORTS_PDM_TX
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            ESP_RETURN_ON_ERROR(i2s_calculate_pdm_tx_clock(i2s_num, clk_info), TAG, "PDM TX clock calculate failed");
        }
#endif // SOC_I2S_SUPPORTS_PDM_TX
#if SOC_I2S_SUPPORTS_PDM_RX
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            ESP_RETURN_ON_ERROR(i2s_calculate_pdm_rx_clock(i2s_num, clk_info), TAG, "PDM RX clock calculate failed");
        }
#endif // SOC_I2S_SUPPORTS_PDM_RX
        return ESP_OK;
    }
#endif // SOC_I2S_SUPPORTS_PDM_TX || SOC_I2S_SUPPORTS_PDM_RX

    /* Calculate clock for common mode */
    ESP_RETURN_ON_ERROR(i2s_calculate_common_clock(i2s_num, clk_info), TAG, "Common clock calculate failed");
    ESP_LOGD(TAG, "[sclk] %"PRIu32" [mclk] %"PRIu32" [mclk_div] %d [bclk] %"PRIu32" [bclk_div] %d",
             clk_info->sclk, clk_info->mclk, clk_info->mclk_div, clk_info->bclk, clk_info->bclk_div);
    return ESP_OK;
}

/*-------------------------------------------------------------
                   I2S configuration
  -------------------------------------------------------------*/
#if SOC_I2S_SUPPORTS_ADC_DAC
static void i2s_dac_set_slot_legacy(void)
{
    i2s_dev_t *dev = p_i2s[0]->hal.dev;
    i2s_hal_slot_config_t *slot_cfg = &p_i2s[0]->slot_cfg;

    i2s_ll_tx_reset(dev);
    i2s_ll_tx_set_slave_mod(dev, false);
    i2s_ll_tx_set_sample_bit(dev, slot_cfg->slot_bit_width, slot_cfg->data_bit_width);
    i2s_ll_tx_enable_mono_mode(dev, slot_cfg->slot_mode == I2S_SLOT_MODE_MONO);
    i2s_ll_tx_enable_msb_shift(dev, false);
    i2s_ll_tx_set_ws_width(dev, slot_cfg->slot_bit_width);
    i2s_ll_tx_enable_msb_right(dev, false);
    i2s_ll_tx_enable_right_first(dev, true);
    /* Should always enable fifo */
    i2s_ll_tx_force_enable_fifo_mod(dev, true);
}

esp_err_t i2s_set_dac_mode(i2s_dac_mode_t dac_mode)
{
    ESP_RETURN_ON_FALSE((dac_mode < I2S_DAC_CHANNEL_MAX), ESP_ERR_INVALID_ARG, TAG, "i2s dac mode error");
    if (dac_mode == I2S_DAC_CHANNEL_DISABLE) {
        dac_ll_power_down(DAC_CHAN_0);
        dac_ll_power_down(DAC_CHAN_1);
        dac_ll_digi_enable_dma(false);
    } else {
        dac_ll_digi_enable_dma(true);
    }

    if (dac_mode & I2S_DAC_CHANNEL_RIGHT_EN) {
        //DAC1, right channel
        dac_ll_power_on(DAC_CHAN_0);
        dac_ll_rtc_sync_by_adc(false);
    }
    if (dac_mode & I2S_DAC_CHANNEL_LEFT_EN) {
        //DAC2, left channel
        dac_ll_power_on(DAC_CHAN_1);
        dac_ll_rtc_sync_by_adc(false);
    }
    return ESP_OK;
}

static void i2s_adc_set_slot_legacy(void)
{
    i2s_dev_t *dev = p_i2s[0]->hal.dev;
    i2s_hal_slot_config_t *slot_cfg = &p_i2s[0]->slot_cfg;
    // When ADC/DAC are installed as duplex mode, ADC will share the WS and BCLK clock by working in slave mode
    i2s_ll_rx_set_slave_mod(dev, false);
    i2s_ll_rx_set_sample_bit(dev, slot_cfg->slot_bit_width, slot_cfg->data_bit_width);
    i2s_ll_rx_enable_mono_mode(dev, true); // ADC should use mono mode to meet the sample rate
    i2s_ll_rx_enable_msb_shift(dev, false);
    i2s_ll_rx_set_ws_width(dev, slot_cfg->slot_bit_width);
    i2s_ll_rx_enable_msb_right(dev, false);
    i2s_ll_rx_enable_right_first(dev, false);
    /* Should always enable fifo */
    i2s_ll_rx_force_enable_fifo_mod(dev, true);
}

static int _i2s_adc_unit = -1;
static int _i2s_adc_channel = -1;

static esp_err_t _i2s_adc_mode_recover(void)
{
    ESP_RETURN_ON_FALSE(((_i2s_adc_unit != -1) && (_i2s_adc_channel != -1)), ESP_ERR_INVALID_ARG, TAG, "i2s ADC recover error, not initialized...");
    return adc_i2s_mode_init(_i2s_adc_unit, _i2s_adc_channel);
}

esp_err_t i2s_set_adc_mode(adc_unit_t adc_unit, adc1_channel_t adc_channel)
{
    ESP_RETURN_ON_FALSE((adc_unit < ADC_UNIT_2), ESP_ERR_INVALID_ARG, TAG, "i2s ADC unit error, only support ADC1 for now");
    // For now, we only support SAR ADC1.
    _i2s_adc_unit = adc_unit;
    _i2s_adc_channel = adc_channel;
    return adc_i2s_mode_init(adc_unit, adc_channel);
}

esp_err_t i2s_adc_enable(i2s_port_t i2s_num)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE((p_i2s[i2s_num] != NULL), ESP_ERR_INVALID_STATE, TAG, "Not initialized yet");
    ESP_RETURN_ON_FALSE(((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) && (p_i2s[i2s_num]->dir & I2S_DIR_RX),
                        ESP_ERR_INVALID_STATE, TAG, "i2s built-in adc not enabled");

    adc1_dma_mode_acquire();
    _i2s_adc_mode_recover();
    i2s_rx_reset(i2s_num);
    return i2s_start(i2s_num);
}

esp_err_t i2s_adc_disable(i2s_port_t i2s_num)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE((p_i2s[i2s_num] != NULL), ESP_ERR_INVALID_STATE, TAG, "Not initialized yet");
    ESP_RETURN_ON_FALSE(((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) && (p_i2s[i2s_num]->dir & I2S_DIR_RX),
                        ESP_ERR_INVALID_STATE, TAG, "i2s built-in adc not enabled");

    i2s_hal_rx_stop(&(p_i2s[i2s_num]->hal));
    adc1_lock_release();
    return ESP_OK;
}
#endif

static esp_err_t i2s_check_cfg_validity(i2s_port_t i2s_num, const i2s_config_t *cfg)
{
    /* Step 1: Check the validity of input parameters */
    /* Check the validity of i2s device number */
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE(p_i2s[i2s_num] == NULL, ESP_ERR_INVALID_STATE, TAG, "this i2s port is in use");
    ESP_RETURN_ON_FALSE(cfg, ESP_ERR_INVALID_ARG, TAG, "I2S configuration must not be NULL");
    /* Check the size of DMA buffer */
    ESP_RETURN_ON_FALSE((cfg->dma_desc_num >= 2 && cfg->dma_desc_num <= 128), ESP_ERR_INVALID_ARG, TAG, "I2S buffer count less than 128 and more than 2");
    ESP_RETURN_ON_FALSE((cfg->dma_frame_num >= 8 && cfg->dma_frame_num <= 1024), ESP_ERR_INVALID_ARG, TAG, "I2S buffer length at most 1024 and more than 8");


#if SOC_I2S_SUPPORTS_PDM_TX || SOC_I2S_SUPPORTS_PDM_RX
    /* Check PDM mode */
    if (cfg->mode & I2S_MODE_PDM) {
        ESP_RETURN_ON_FALSE(i2s_num == I2S_NUM_0, ESP_ERR_INVALID_ARG, TAG, "I2S PDM mode only support on I2S0");
#if !SOC_I2S_SUPPORTS_PDM_TX
        ESP_RETURN_ON_FALSE(!(cfg->mode & I2S_MODE_TX), ESP_ERR_INVALID_ARG, TAG, "PDM does not support TX on this chip");
#endif // SOC_I2S_SUPPORTS_PDM_TX
#if !SOC_I2S_SUPPORTS_PDM_RX
        ESP_RETURN_ON_FALSE(!(cfg->mode & I2S_MODE_RX), ESP_ERR_INVALID_ARG, TAG, "PDM does not support RX on this chip");
#endif // SOC_I2S_SUPPORTS_PDM_RX
    }
#else
    ESP_RETURN_ON_FALSE(!(cfg->mode & I2S_MODE_PDM), ESP_ERR_INVALID_ARG, TAG, "I2S PDM mode not supported on current chip");
#endif // SOC_I2S_SUPPORTS_PDM_TX || SOC_I2S_SUPPORTS_PDM_RX

#if SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC
    /* Check built-in ADC/DAC mode */
    if (cfg->mode & (I2S_MODE_ADC_BUILT_IN | I2S_MODE_DAC_BUILT_IN)) {
        ESP_RETURN_ON_FALSE(i2s_num == I2S_NUM_0, ESP_ERR_INVALID_ARG, TAG, "I2S built-in ADC/DAC only support on I2S0");
    }
#else
    /* Check the transmit/receive mode */
    ESP_RETURN_ON_FALSE((cfg->mode & I2S_MODE_TX) || (cfg->mode & I2S_MODE_RX), ESP_ERR_INVALID_ARG, TAG, "I2S no TX/RX mode selected");
    /* Check communication format */
    ESP_RETURN_ON_FALSE(cfg->communication_format && (cfg->communication_format < I2S_COMM_FORMAT_STAND_MAX), ESP_ERR_INVALID_ARG, TAG, "invalid communication formats");
#endif // SOC_I2S_SUPPORTS_ADC || SOC_I2S_SUPPORTS_DAC

    return ESP_OK;
}

static void i2s_set_slot_legacy(i2s_port_t i2s_num)
{
    bool is_tx_slave = p_i2s[i2s_num]->role == I2S_ROLE_SLAVE;
    bool is_rx_slave = is_tx_slave;
    if (p_i2s[i2s_num]->dir == (I2S_DIR_TX | I2S_DIR_RX)) {
        i2s_ll_share_bck_ws(p_i2s[i2s_num]->hal.dev, true);
        /* Since bck and ws are shared, only tx or rx can be master
           Force to set rx as slave to avoid conflict of clock signal */
        is_rx_slave = true;
    } else {
        i2s_ll_share_bck_ws(p_i2s[i2s_num]->hal.dev, false);
    }
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) {
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_hal_std_set_tx_slot(&(p_i2s[i2s_num]->hal), is_tx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) );
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_hal_std_set_rx_slot(&(p_i2s[i2s_num]->hal), is_rx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) );
        }
    }
#if SOC_I2S_SUPPORTS_PDM
    else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) {
#if SOC_I2S_SUPPORTS_PDM_TX
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_hal_pdm_set_tx_slot(&(p_i2s[i2s_num]->hal), is_tx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) );
        }
#endif
#if SOC_I2S_SUPPORTS_PDM_RX
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_hal_pdm_set_rx_slot(&(p_i2s[i2s_num]->hal), is_rx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) );
        }
#endif
    }
#endif
#if SOC_I2S_SUPPORTS_TDM
    else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) {
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_hal_tdm_set_tx_slot(&(p_i2s[i2s_num]->hal), is_tx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) );
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_hal_tdm_set_rx_slot(&(p_i2s[i2s_num]->hal), is_rx_slave, (i2s_hal_slot_config_t *)(&p_i2s[i2s_num]->slot_cfg) );
        }
    }
#endif
#if SOC_I2S_SUPPORTS_ADC_DAC
    else if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) {
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_dac_set_slot_legacy();
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_adc_set_slot_legacy();
        }
    }
#endif
}

static void i2s_set_clock_legacy(i2s_port_t i2s_num)
{
    i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg;
    i2s_hal_clock_info_t clk_info;
    i2s_calculate_clock(i2s_num, &clk_info);
    I2S_CLOCK_SRC_ATOMIC() {
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_hal_set_tx_clock(&(p_i2s[i2s_num]->hal), &clk_info, clk_cfg->clk_src);
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_hal_set_rx_clock(&(p_i2s[i2s_num]->hal), &clk_info, clk_cfg->clk_src);
        }
    }
}

float i2s_get_clk(i2s_port_t i2s_num)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg;
    return (float)clk_cfg->sample_rate_hz;
}

esp_err_t i2s_set_clk(i2s_port_t i2s_num, uint32_t rate, uint32_t bits_cfg, i2s_channel_t ch)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_ERR_INVALID_ARG, TAG, "I2S%d has not installed yet", i2s_num);

    /* Acquire the lock before stop i2s, otherwise reading/writing operation will stuck on receiving the message queue from interrupt */
    if (p_i2s[i2s_num]->dir & I2S_MODE_TX) {
        xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY);
    }
    if (p_i2s[i2s_num]->dir & I2S_MODE_RX) {
        xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY);
    }

    /* Stop I2S */
    i2s_stop(i2s_num);

    i2s_clk_config_t *clk_cfg = &p_i2s[i2s_num]->clk_cfg;
    i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg;

    clk_cfg->sample_rate_hz = rate;
    slot_cfg->data_bit_width = bits_cfg & 0xFFFF;
    ESP_RETURN_ON_FALSE((slot_cfg->data_bit_width % 8 == 0), ESP_ERR_INVALID_ARG, TAG, "Invalid bits per sample");
    slot_cfg->slot_bit_width = (bits_cfg >> 16) > slot_cfg->data_bit_width ?
                               (bits_cfg >> 16) : slot_cfg->data_bit_width;
    ESP_RETURN_ON_FALSE((slot_cfg->slot_bit_width % 8 == 0), ESP_ERR_INVALID_ARG, TAG, "Invalid bits per channel");
    ESP_RETURN_ON_FALSE(((int)slot_cfg->slot_bit_width <= (int)I2S_BITS_PER_SAMPLE_32BIT), ESP_ERR_INVALID_ARG, TAG, "Invalid bits per sample");
    slot_cfg->slot_mode = ((ch & 0xFFFF) == I2S_CHANNEL_MONO) ? I2S_SLOT_MODE_MONO : I2S_SLOT_MODE_STEREO;
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) {
        if (slot_cfg->slot_mode == I2S_SLOT_MODE_MONO) {
            if (slot_cfg->std.slot_mask == I2S_STD_SLOT_BOTH) {
                slot_cfg->std.slot_mask = I2S_STD_SLOT_LEFT;
#if SOC_I2S_HW_VERSION_1
                // Enable right first to get correct data sequence
                slot_cfg->std.ws_pol = !slot_cfg->std.ws_pol;
#endif
            }
        } else {
            slot_cfg->std.slot_mask = I2S_STD_SLOT_BOTH;
        }
    }
#if SOC_I2S_SUPPORTS_TDM
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) {
        uint32_t slot_mask = ch >> 16;
        if (slot_mask == 0) {
            slot_mask = (slot_cfg->slot_mode == I2S_SLOT_MODE_MONO) ? 1 : 2;
        }
        ESP_RETURN_ON_FALSE(p_i2s[i2s_num]->total_slot >= (32 - __builtin_clz(slot_mask)), ESP_ERR_INVALID_ARG, TAG,
                            "The max channel number can't be greater than CH%"PRIu32, p_i2s[i2s_num]->total_slot);
        p_i2s[i2s_num]->active_slot = __builtin_popcount(slot_mask);
    } else
#endif
    {
        p_i2s[i2s_num]->active_slot = (slot_cfg->slot_mode == I2S_SLOT_MODE_MONO) ? 1 : 2;
    }

    i2s_set_slot_legacy(i2s_num);
    i2s_set_clock_legacy(i2s_num);

    uint32_t buf_size = i2s_get_buf_size(i2s_num);
    bool need_realloc = buf_size != p_i2s[i2s_num]->last_buf_size;

    if (need_realloc) {
        esp_err_t ret = ESP_OK;
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            p_i2s[i2s_num]->tx->buf_size = buf_size;
            ret = i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->tx);
            xQueueReset(p_i2s[i2s_num]->tx->queue);
            ESP_RETURN_ON_ERROR(ret, TAG, "I2S%d tx DMA buffer malloc failed", i2s_num);
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            p_i2s[i2s_num]->rx->buf_size = buf_size;
            ret = i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->rx);
            xQueueReset(p_i2s[i2s_num]->rx->queue);
            ESP_RETURN_ON_ERROR(ret, TAG, "I2S%d rx DMA buffer malloc failed", i2s_num);
        }
    }
    /* Update last buffer size */
    p_i2s[i2s_num]->last_buf_size = buf_size;

    /* I2S start */
    i2s_start(i2s_num);

    if (p_i2s[i2s_num]->dir & I2S_MODE_TX) {
        xSemaphoreGive(p_i2s[i2s_num]->tx->mux);
    }
    if (p_i2s[i2s_num]->dir & I2S_MODE_RX) {
        xSemaphoreGive(p_i2s[i2s_num]->rx->mux);
    }

    return ESP_OK;
}

esp_err_t i2s_set_sample_rates(i2s_port_t i2s_num, uint32_t rate)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    i2s_hal_slot_config_t *slot_cfg = &p_i2s[i2s_num]->slot_cfg;
    uint32_t mask = 0;
#if SOC_I2S_SUPPORTS_TDM
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) {
        mask = slot_cfg->tdm.slot_mask;
    }
#endif
    return i2s_set_clk(i2s_num, rate, slot_cfg->data_bit_width, slot_cfg->slot_mode | (mask << 16));
}

#if SOC_I2S_SUPPORTS_PCM

esp_err_t i2s_pcm_config(i2s_port_t i2s_num, const i2s_pcm_cfg_t *pcm_cfg)
{
    ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_FAIL, TAG, "i2s has not installed yet");

    if (p_i2s[i2s_num]->dir & I2S_MODE_TX) {
        xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY);
    }
    if (p_i2s[i2s_num]->dir & I2S_MODE_RX) {
        xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY);
    }

    i2s_stop(i2s_num);
    I2S_ENTER_CRITICAL(i2s_num);
    if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
        i2s_ll_tx_set_pcm_type(p_i2s[i2s_num]->hal.dev, pcm_cfg->pcm_type);
    }
    if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
        i2s_ll_rx_set_pcm_type(p_i2s[i2s_num]->hal.dev, pcm_cfg->pcm_type);
    }
    I2S_EXIT_CRITICAL(i2s_num);
    i2s_start(i2s_num);

    if (p_i2s[i2s_num]->dir & I2S_MODE_TX) {
        xSemaphoreGive(p_i2s[i2s_num]->tx->mux);
    }
    if (p_i2s[i2s_num]->dir & I2S_MODE_RX) {
        xSemaphoreGive(p_i2s[i2s_num]->rx->mux);
    }

    return ESP_OK;
}
#endif

#if SOC_I2S_SUPPORTS_PDM_RX
esp_err_t i2s_set_pdm_rx_down_sample(i2s_port_t i2s_num, i2s_pdm_dsr_t downsample)
{
    ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_FAIL, TAG, "i2s has not installed yet");
    ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM), ESP_ERR_INVALID_ARG, TAG, "i2s mode is not PDM mode");
    xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY);
    i2s_stop(i2s_num);
    p_i2s[i2s_num]->clk_cfg.dn_sample_mode = downsample;
    i2s_ll_rx_set_pdm_dsr(p_i2s[i2s_num]->hal.dev, downsample);
    i2s_start(i2s_num);
    xSemaphoreGive(p_i2s[i2s_num]->rx->mux);
    return i2s_set_clk(i2s_num, p_i2s[i2s_num]->clk_cfg.sample_rate_hz, p_i2s[i2s_num]->slot_cfg.data_bit_width, p_i2s[i2s_num]->slot_cfg.slot_mode);
}
#endif

#if SOC_I2S_SUPPORTS_PDM_TX
esp_err_t i2s_set_pdm_tx_up_sample(i2s_port_t i2s_num, const i2s_pdm_tx_upsample_cfg_t *upsample_cfg)
{
    ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_FAIL, TAG, "i2s has not installed yet");
    ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) && (p_i2s[i2s_num]->dir & I2S_DIR_TX),
                        ESP_ERR_INVALID_ARG, TAG, "i2s mode is not PDM mode");
    xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY);
    i2s_stop(i2s_num);
    p_i2s[i2s_num]->clk_cfg.up_sample_fp = upsample_cfg->fp;
    p_i2s[i2s_num]->clk_cfg.up_sample_fs = upsample_cfg->fs;
    i2s_ll_tx_set_pdm_fpfs(p_i2s[i2s_num]->hal.dev, upsample_cfg->fp, upsample_cfg->fs);
    i2s_ll_tx_set_pdm_over_sample_ratio(p_i2s[i2s_num]->hal.dev, upsample_cfg->fp / upsample_cfg->fs);
    i2s_start(i2s_num);
    xSemaphoreGive(p_i2s[i2s_num]->tx->mux);
    return i2s_set_clk(i2s_num, p_i2s[i2s_num]->clk_cfg.sample_rate_hz, p_i2s[i2s_num]->slot_cfg.data_bit_width, p_i2s[i2s_num]->slot_cfg.slot_mode);
}
#endif

static esp_err_t i2s_dma_object_init(i2s_port_t i2s_num)
{
    uint32_t buf_size = i2s_get_buf_size(i2s_num);
    p_i2s[i2s_num]->last_buf_size = buf_size;
    /* Create DMA object */
    if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
        ESP_RETURN_ON_ERROR(i2s_create_dma_object(i2s_num, &p_i2s[i2s_num]->tx), TAG, "I2S TX DMA object create failed");
        p_i2s[i2s_num]->tx->buf_size = buf_size;
    }
    if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
        ESP_RETURN_ON_ERROR(i2s_create_dma_object(i2s_num, &p_i2s[i2s_num]->rx), TAG, "I2S RX DMA object create failed");
        p_i2s[i2s_num]->rx->buf_size = buf_size;
    }
    return ESP_OK;
}

static void i2s_mode_identify(i2s_port_t i2s_num, const i2s_config_t *i2s_config)
{

    p_i2s[i2s_num]->mode = I2S_COMM_MODE_STD;

    if (i2s_config->mode & I2S_MODE_MASTER) {
        p_i2s[i2s_num]->role = I2S_ROLE_MASTER;
    } else if (i2s_config->mode & I2S_MODE_SLAVE) {
        p_i2s[i2s_num]->role = I2S_ROLE_SLAVE;
    }
    if (i2s_config->mode & I2S_MODE_TX) {
        p_i2s[i2s_num]->dir |= I2S_DIR_TX;
    }
    if (i2s_config->mode & I2S_MODE_RX) {
        p_i2s[i2s_num]->dir |= I2S_DIR_RX;
    }
#if SOC_I2S_SUPPORTS_PDM
    if (i2s_config->mode & I2S_MODE_PDM) {
        p_i2s[i2s_num]->mode = I2S_COMM_MODE_PDM;
    }
#endif // SOC_I2S_SUPPORTS_PDM

#if SOC_I2S_SUPPORTS_TDM
    if (i2s_config->channel_format == I2S_CHANNEL_FMT_MULTIPLE) {
        p_i2s[i2s_num]->mode = I2S_COMM_MODE_TDM;
    }
#endif // SOC_I2S_SUPPORTS_TDM

#if SOC_I2S_SUPPORTS_ADC_DAC
    if ((i2s_config->mode & I2S_MODE_DAC_BUILT_IN) ||
        (i2s_config->mode & I2S_MODE_ADC_BUILT_IN)) {
        p_i2s[i2s_num]->mode = (i2s_comm_mode_t)I2S_COMM_MODE_ADC_DAC;
    }
#endif // SOC_I2S_SUPPORTS_ADC_DAC
}

static esp_err_t i2s_config_transfer(i2s_port_t i2s_num, const i2s_config_t *i2s_config)
{
#define SLOT_CFG(m)     p_i2s[i2s_num]->slot_cfg.m
#define CLK_CFG()       p_i2s[i2s_num]->clk_cfg
    /* Convert legacy configuration into general part of slot and clock configuration */
    p_i2s[i2s_num]->slot_cfg.data_bit_width = i2s_config->bits_per_sample;
    p_i2s[i2s_num]->slot_cfg.slot_bit_width = (int)i2s_config->bits_per_chan < (int)i2s_config->bits_per_sample ?
            i2s_config->bits_per_sample : i2s_config->bits_per_chan;

    p_i2s[i2s_num]->slot_cfg.slot_mode = i2s_config->channel_format < I2S_CHANNEL_FMT_ONLY_RIGHT ?
                                         I2S_SLOT_MODE_STEREO : I2S_SLOT_MODE_MONO;
    CLK_CFG().sample_rate_hz = i2s_config->sample_rate;
    CLK_CFG().mclk_multiple = i2s_config->mclk_multiple == 0 ? I2S_MCLK_MULTIPLE_256 : i2s_config->mclk_multiple;
    CLK_CFG().clk_src = I2S_CLK_SRC_DEFAULT;
    p_i2s[i2s_num]->fixed_mclk = i2s_config->fixed_mclk;
    p_i2s[i2s_num]->use_apll = false;
#if SOC_I2S_SUPPORTS_APLL
    CLK_CFG().clk_src = i2s_config->use_apll ? I2S_CLK_SRC_APLL : I2S_CLK_SRC_DEFAULT;
    p_i2s[i2s_num]->use_apll = i2s_config->use_apll;
#endif // SOC_I2S_SUPPORTS_APLL

    /* Convert legacy configuration into particular part of slot and clock configuration */
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) {
        /* Generate STD slot configuration */
        SLOT_CFG(std).ws_width = i2s_config->bits_per_sample;
        SLOT_CFG(std).ws_pol = false;
        if (i2s_config->channel_format == I2S_CHANNEL_FMT_RIGHT_LEFT) {
            SLOT_CFG(std).slot_mask = I2S_STD_SLOT_BOTH;
        } else if (i2s_config->channel_format == I2S_CHANNEL_FMT_ALL_LEFT ||
                   i2s_config->channel_format == I2S_CHANNEL_FMT_ONLY_LEFT) {
            SLOT_CFG(std).slot_mask = I2S_STD_SLOT_LEFT;
        } else {
            SLOT_CFG(std).slot_mask = I2S_STD_SLOT_RIGHT;
        }
        if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_I2S) {
            SLOT_CFG(std).bit_shift = true;
        }
        if (i2s_config->communication_format & I2S_COMM_FORMAT_STAND_PCM_SHORT) {
            SLOT_CFG(std).bit_shift = true;
            SLOT_CFG(std).ws_width = 1;
            SLOT_CFG(std).ws_pol = true;
        }
#if SOC_I2S_HW_VERSION_1
        SLOT_CFG(std).msb_right = true;
#elif SOC_I2S_HW_VERSION_2
        SLOT_CFG(std).left_align = i2s_config->left_align;
        SLOT_CFG(std).big_endian = i2s_config->big_edin;
        SLOT_CFG(std).bit_order_lsb = i2s_config->bit_order_msb; // The old name is incorrect
#endif // SOC_I2S_HW_VERSION_1

        p_i2s[i2s_num]->active_slot = (int)p_i2s[i2s_num]->slot_cfg.slot_mode == I2S_SLOT_MODE_MONO ? 1 : 2;
        p_i2s[i2s_num]->total_slot = 2;
        goto finish;
    }
#if SOC_I2S_SUPPORTS_PDM_TX
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) {
        /* Generate PDM TX slot configuration */
        SLOT_CFG(pdm_tx).sd_prescale = 0;
        SLOT_CFG(pdm_tx).sd_scale = I2S_PDM_SIG_SCALING_MUL_1;
        SLOT_CFG(pdm_tx).hp_scale = I2S_PDM_SIG_SCALING_MUL_1;
        SLOT_CFG(pdm_tx).lp_scale = I2S_PDM_SIG_SCALING_MUL_1;
        SLOT_CFG(pdm_tx).sinc_scale = I2S_PDM_SIG_SCALING_MUL_1;
#if SOC_I2S_HW_VERSION_2
        SLOT_CFG(pdm_tx).line_mode = I2S_PDM_TX_ONE_LINE_CODEC;
        SLOT_CFG(pdm_tx).hp_en = true;
        SLOT_CFG(pdm_tx).hp_cut_off_freq_hzx10 = 490;
        SLOT_CFG(pdm_tx).sd_dither = 0;
        SLOT_CFG(pdm_tx).sd_dither2 = 1;
#endif // SOC_I2S_HW_VERSION_2

        /* Generate PDM TX clock configuration */
        CLK_CFG().up_sample_fp = 960;
        CLK_CFG().up_sample_fs = i2s_config->sample_rate / 100;
        p_i2s[i2s_num]->active_slot = (int)p_i2s[i2s_num]->slot_cfg.slot_mode == I2S_SLOT_MODE_MONO ? 1 : 2;
        p_i2s[i2s_num]->total_slot = 2;
        goto finish;
    }
#endif // SOC_I2S_SUPPORTS_PDM_TX

#if SOC_I2S_SUPPORTS_PDM_RX
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) {
        /* Generate PDM RX clock configuration */
        CLK_CFG().dn_sample_mode = I2S_PDM_DSR_8S;
        p_i2s[i2s_num]->active_slot = (int)p_i2s[i2s_num]->slot_cfg.slot_mode == I2S_SLOT_MODE_MONO ? 1 : 2;
        p_i2s[i2s_num]->total_slot = 2;
        goto finish;
    }
#endif // SOC_I2S_SUPPOTYS_PDM_RX

#if SOC_I2S_SUPPORTS_TDM
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) {
        /* Generate TDM slot configuration */
        SLOT_CFG(tdm).slot_mask = i2s_config->chan_mask >> 16;

        SLOT_CFG(tdm).ws_width = 0; // I2S_TDM_AUTO_WS_WIDTH
        p_i2s[i2s_num]->slot_cfg.slot_mode = I2S_SLOT_MODE_STEREO;
        SLOT_CFG(tdm).ws_pol = false;
        if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_I2S) {
            SLOT_CFG(tdm).bit_shift = true;
        } else if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_PCM_SHORT) {
            SLOT_CFG(tdm).bit_shift = true;
            SLOT_CFG(tdm).ws_width = 1;
            SLOT_CFG(tdm).ws_pol = true;
        } else if (i2s_config->communication_format == I2S_COMM_FORMAT_STAND_PCM_LONG) {
            SLOT_CFG(tdm).bit_shift = true;
            SLOT_CFG(tdm).ws_width = p_i2s[i2s_num]->slot_cfg.slot_bit_width;
            SLOT_CFG(tdm).ws_pol = true;
        }
        SLOT_CFG(tdm).left_align = i2s_config->left_align;
        SLOT_CFG(tdm).big_endian = i2s_config->big_edin;
        SLOT_CFG(tdm).bit_order_lsb = i2s_config->bit_order_msb; // The old name is incorrect
        SLOT_CFG(tdm).skip_mask = i2s_config->skip_msk;

        /* Generate TDM clock configuration */
        p_i2s[i2s_num]->active_slot = __builtin_popcount(SLOT_CFG(tdm).slot_mask);
        uint32_t mx_slot = 32 - __builtin_clz(SLOT_CFG(tdm).slot_mask);
        mx_slot = mx_slot < 2 ? 2 : mx_slot;
        p_i2s[i2s_num]->total_slot = mx_slot < i2s_config->total_chan ? mx_slot : i2s_config->total_chan;
        goto finish;
    }
#endif // SOC_I2S_SUPPORTS_TDM

#if SOC_I2S_SUPPORTS_ADC_DAC
    if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) {
        p_i2s[i2s_num]->slot_cfg.slot_mode = (p_i2s[i2s_num]->dir & I2S_DIR_TX) ?
                                             I2S_SLOT_MODE_STEREO : I2S_SLOT_MODE_MONO;
        p_i2s[i2s_num]->active_slot = (p_i2s[i2s_num]->dir & I2S_DIR_TX) ? 2 : 1;
        p_i2s[i2s_num]->total_slot = 2;
    }
#endif // SOC_I2S_SUPPORTS_ADC_DAC

#undef SLOT_CFG
#undef CLK_CFG

finish:
    return ESP_OK;
}

static esp_err_t i2s_init_legacy(i2s_port_t i2s_num, int intr_alloc_flag)
{
    /* Create power management lock */
#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_type_t pm_lock = ESP_PM_APB_FREQ_MAX;
#if SOC_I2S_SUPPORTS_APLL
    if (p_i2s[i2s_num]->use_apll) {
        pm_lock = ESP_PM_NO_LIGHT_SLEEP;
    }
#endif // SOC_I2S_SUPPORTS_APLL
    ESP_RETURN_ON_ERROR(esp_pm_lock_create(pm_lock, 0, "i2s_driver", &p_i2s[i2s_num]->pm_lock), TAG, "I2S pm lock error");
#endif //CONFIG_PM_ENABLE

#if SOC_I2S_SUPPORTS_APLL
    if (p_i2s[i2s_num]->use_apll) {
        periph_rtc_apll_acquire();
    }
#endif

    /* Enable communicaiton mode */
    if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_STD) {
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_hal_std_enable_tx_channel(&(p_i2s[i2s_num]->hal));
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_hal_std_enable_rx_channel(&(p_i2s[i2s_num]->hal));
        }
    }
#if SOC_I2S_SUPPORTS_PDM
    else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_PDM) {
#if SOC_I2S_SUPPORTS_PDM_TX
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_hal_pdm_enable_tx_channel(&(p_i2s[i2s_num]->hal));
        }
#endif
#if SOC_I2S_SUPPORTS_PDM_RX
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_hal_pdm_enable_rx_channel(&(p_i2s[i2s_num]->hal));
        }
#endif
    }
#endif
#if SOC_I2S_SUPPORTS_TDM
    else if (p_i2s[i2s_num]->mode == I2S_COMM_MODE_TDM) {
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_hal_tdm_enable_tx_channel(&(p_i2s[i2s_num]->hal));
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            i2s_hal_tdm_enable_rx_channel(&(p_i2s[i2s_num]->hal));
        }
    }
#endif
#if SOC_I2S_SUPPORTS_ADC_DAC
    if ((int)p_i2s[i2s_num]->mode == I2S_COMM_MODE_ADC_DAC) {
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            sar_periph_ctrl_adc_continuous_power_acquire();
            adc_set_i2s_data_source(ADC_I2S_DATA_SRC_ADC);
            i2s_ll_enable_builtin_adc(p_i2s[i2s_num]->hal.dev, true);
        }
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            i2s_ll_enable_builtin_dac(p_i2s[i2s_num]->hal.dev, true);
        }
    } else {
        adc_set_i2s_data_source(ADC_I2S_DATA_SRC_IO_SIG);
        i2s_ll_enable_builtin_adc(p_i2s[i2s_num]->hal.dev, false);
        i2s_ll_enable_builtin_dac(p_i2s[i2s_num]->hal.dev, false);
    }
#endif

    i2s_set_slot_legacy(i2s_num);
    i2s_set_clock_legacy(i2s_num);
    ESP_RETURN_ON_ERROR(i2s_dma_intr_init(i2s_num, intr_alloc_flag), TAG, "I2S interrupt initailze failed");
    ESP_RETURN_ON_ERROR(i2s_dma_object_init(i2s_num), TAG, "I2S dma object create failed");
    if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
        ESP_RETURN_ON_ERROR(i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->tx), TAG, "Allocate I2S dma tx buffer failed");
    }
    if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
        ESP_RETURN_ON_ERROR(i2s_realloc_dma_buffer(i2s_num, p_i2s[i2s_num]->rx), TAG, "Allocate I2S dma rx buffer failed");
    }

    return ESP_OK;
}

esp_err_t i2s_driver_uninstall(i2s_port_t i2s_num)
{
    ESP_RETURN_ON_FALSE(i2s_num < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE(p_i2s[i2s_num], ESP_ERR_INVALID_STATE, TAG, "I2S port %d has not installed", i2s_num);
    i2s_obj_t *obj = p_i2s[i2s_num];
    i2s_stop(i2s_num);

#if CONFIG_IDF_TARGET_ESP32
    if (obj->mclk_out_hdl) {
        esp_clock_output_stop(obj->mclk_out_hdl);
    }
#endif

#if SOC_I2S_SUPPORTS_ADC_DAC
    if ((int)(obj->mode) == I2S_COMM_MODE_ADC_DAC) {
        if (obj->dir & I2S_DIR_TX) {
            // Deinit DAC
            i2s_set_dac_mode(I2S_DAC_CHANNEL_DISABLE);
        }
        if (obj->dir & I2S_DIR_RX) {
            // Deinit ADC
            adc_set_i2s_data_source(ADC_I2S_DATA_SRC_IO_SIG);
            sar_periph_ctrl_adc_continuous_power_release();
        }
    }
#endif
#if SOC_GDMA_SUPPORTED
    if (obj->tx_dma_chan) {
        gdma_disconnect(obj->tx_dma_chan);
        gdma_del_channel(obj->tx_dma_chan);
    }
    if (obj->rx_dma_chan) {
        gdma_disconnect(obj->rx_dma_chan);
        gdma_del_channel(obj->rx_dma_chan);
    }
#else
    if (obj->i2s_isr_handle) {
        esp_intr_free(obj->i2s_isr_handle);
    }
#endif
    /* Destroy dma object if exist */
    i2s_destroy_dma_object(i2s_num, &obj->tx);
    i2s_destroy_dma_object(i2s_num, &obj->rx);

    if (obj->i2s_queue) {
        vQueueDelete(obj->i2s_queue);
        obj->i2s_queue = NULL;
    }

#if SOC_I2S_SUPPORTS_APLL
    if (obj->use_apll) {
        I2S_CLOCK_SRC_ATOMIC() {
            // switch back to PLL clock source
            if (obj->dir & I2S_DIR_TX) {
                i2s_hal_set_tx_clock(&obj->hal, NULL, I2S_CLK_SRC_DEFAULT);
            }
            if (obj->dir & I2S_DIR_RX) {
                i2s_hal_set_rx_clock(&obj->hal, NULL, I2S_CLK_SRC_DEFAULT);
            }
        }
        periph_rtc_apll_release();
    }
#endif

#ifdef CONFIG_PM_ENABLE
    if (obj->pm_lock) {
        esp_pm_lock_delete(obj->pm_lock);
        obj->pm_lock = NULL;
    }
#endif
#if SOC_I2S_HW_VERSION_2
    I2S_CLOCK_SRC_ATOMIC() {
        if (obj->dir & I2S_DIR_TX) {
            i2s_ll_tx_disable_clock(obj->hal.dev);
        }
        if (obj->dir & I2S_DIR_RX) {
            i2s_ll_rx_disable_clock(obj->hal.dev);
        }
    }
#endif
    /* Disable module clock */
    i2s_platform_release_occupation(i2s_num);
    free(obj);
    p_i2s[i2s_num] = NULL;
    return ESP_OK;
}


esp_err_t i2s_driver_install(i2s_port_t i2s_num, const i2s_config_t *i2s_config, int queue_size, void *i2s_queue)
{
#if CONFIG_I2S_ENABLE_DEBUG_LOG
    esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
    esp_err_t ret = ESP_OK;

    /* Step 1: Check the validity of input parameters */
    ESP_RETURN_ON_ERROR(i2s_check_cfg_validity(i2s_num, i2s_config), TAG, "I2S configuration is invalid");

    /* Step 2: Allocate driver object and register to platform */
    i2s_obj_t *i2s_obj = calloc(1, sizeof(i2s_obj_t));
    ESP_RETURN_ON_FALSE(i2s_obj, ESP_ERR_NO_MEM, TAG, "no mem for I2S driver");
    if (i2s_platform_acquire_occupation(i2s_num, "i2s_legacy") != ESP_OK) {
        free(i2s_obj);
        ESP_LOGE(TAG, "register I2S object to platform failed");
        return ESP_ERR_INVALID_STATE;
    }
    p_i2s[i2s_num] = i2s_obj;
    i2s_hal_init(&i2s_obj->hal, i2s_num);

    /* Step 3: Store and assign configarations */
    i2s_mode_identify(i2s_num, i2s_config);
    ESP_GOTO_ON_ERROR(i2s_config_transfer(i2s_num, i2s_config), err, TAG, "I2S install failed");
    i2s_obj->dma_desc_num = i2s_config->dma_desc_num;
    i2s_obj->dma_frame_num = i2s_config->dma_frame_num;
    i2s_obj->tx_desc_auto_clear = i2s_config->tx_desc_auto_clear;

    /* Step 4: Apply configurations and init hardware */
    ESP_GOTO_ON_ERROR(i2s_init_legacy(i2s_num, i2s_config->intr_alloc_flags), err, TAG, "I2S init failed");

    /* Step 5: Initialise i2s event queue if user needs */
    if (i2s_queue) {
        i2s_obj->i2s_queue = xQueueCreate(queue_size, sizeof(i2s_event_t));
        ESP_GOTO_ON_FALSE(i2s_obj->i2s_queue, ESP_ERR_NO_MEM, err, TAG, "I2S queue create failed");
        *((QueueHandle_t *) i2s_queue) = i2s_obj->i2s_queue;
        ESP_LOGD(TAG, "queue free spaces: %" PRIu32, (uint32_t)uxQueueSpacesAvailable(i2s_obj->i2s_queue));
    } else {
        i2s_obj->i2s_queue = NULL;
    }

    /* Step 6: Start I2S for backward compatibility */
    ESP_GOTO_ON_ERROR(i2s_start(i2s_num), err, TAG, "I2S start failed");

    return ESP_OK;

err:
    /* I2S install failed, prepare to uninstall */
    i2s_driver_uninstall(i2s_num);
    return ret;
}

esp_err_t i2s_write(i2s_port_t i2s_num, const void *src, size_t size, size_t *bytes_written, TickType_t ticks_to_wait)
{
    char *data_ptr;
    char *src_byte;
    size_t bytes_can_write;
    *bytes_written = 0;
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->tx), ESP_ERR_INVALID_ARG, TAG, "TX mode is not enabled");
    xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY);
#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_acquire(p_i2s[i2s_num]->pm_lock);
#endif
    src_byte = (char *)src;
    while (size > 0) {
        if (p_i2s[i2s_num]->tx->rw_pos == p_i2s[i2s_num]->tx->buf_size || p_i2s[i2s_num]->tx->curr_ptr == NULL) {
            if (xQueueReceive(p_i2s[i2s_num]->tx->queue, &p_i2s[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) {
                break;
            }
            p_i2s[i2s_num]->tx->rw_pos = 0;
        }
        ESP_LOGD(TAG, "size: %d, rw_pos: %d, buf_size: %d, curr_ptr: %d", size, p_i2s[i2s_num]->tx->rw_pos, p_i2s[i2s_num]->tx->buf_size, (int)p_i2s[i2s_num]->tx->curr_ptr);
        data_ptr = (char *)p_i2s[i2s_num]->tx->curr_ptr;
        data_ptr += p_i2s[i2s_num]->tx->rw_pos;
        bytes_can_write = p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos;
        if (bytes_can_write > size) {
            bytes_can_write = size;
        }
        memcpy(data_ptr, src_byte, bytes_can_write);
        size -= bytes_can_write;
        src_byte += bytes_can_write;
        p_i2s[i2s_num]->tx->rw_pos += bytes_can_write;
        (*bytes_written) += bytes_can_write;
    }
#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_release(p_i2s[i2s_num]->pm_lock);
#endif
    xSemaphoreGive(p_i2s[i2s_num]->tx->mux);
    return ESP_OK;
}

esp_err_t i2s_write_expand(i2s_port_t i2s_num, const void *src, size_t size, size_t src_bits, size_t aim_bits, size_t *bytes_written, TickType_t ticks_to_wait)
{
    char *data_ptr;
    int bytes_can_write;
    int tail;
    int src_bytes;
    int aim_bytes;
    int zero_bytes;
    *bytes_written = 0;
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE((size > 0), ESP_ERR_INVALID_ARG, TAG, "size must greater than zero");
    ESP_RETURN_ON_FALSE((aim_bits >= src_bits), ESP_ERR_INVALID_ARG, TAG, "aim_bits mustn't be less than src_bits");
    ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->tx), ESP_ERR_INVALID_ARG, TAG, "TX mode is not enabled");
    if (src_bits < I2S_BITS_PER_SAMPLE_8BIT || aim_bits < I2S_BITS_PER_SAMPLE_8BIT) {
        ESP_LOGE(TAG, "bits mustn't be less than 8, src_bits %d aim_bits %d", src_bits, aim_bits);
        return ESP_ERR_INVALID_ARG;
    }
    if (src_bits > I2S_BITS_PER_SAMPLE_32BIT || aim_bits > I2S_BITS_PER_SAMPLE_32BIT) {
        ESP_LOGE(TAG, "bits mustn't be greater than 32, src_bits %d aim_bits %d", src_bits, aim_bits);
        return ESP_ERR_INVALID_ARG;
    }
    if ((src_bits == I2S_BITS_PER_SAMPLE_16BIT || src_bits == I2S_BITS_PER_SAMPLE_32BIT) && (size % 2 != 0)) {
        ESP_LOGE(TAG, "size must be a even number while src_bits is even, src_bits %d size %d", src_bits, size);
        return ESP_ERR_INVALID_ARG;
    }
    if (src_bits == I2S_BITS_PER_SAMPLE_24BIT && (size % 3 != 0)) {
        ESP_LOGE(TAG, "size must be a multiple of 3 while src_bits is 24, size %d", size);
        return ESP_ERR_INVALID_ARG;
    }

    src_bytes = src_bits / 8;
    aim_bytes = aim_bits / 8;
    zero_bytes = aim_bytes - src_bytes;
    xSemaphoreTake(p_i2s[i2s_num]->tx->mux, portMAX_DELAY);
    size = size * aim_bytes / src_bytes;
    ESP_LOGD(TAG, "aim_bytes %d src_bytes %d size %d", aim_bytes, src_bytes, size);
    while (size > 0) {
        if (p_i2s[i2s_num]->tx->rw_pos == p_i2s[i2s_num]->tx->buf_size || p_i2s[i2s_num]->tx->curr_ptr == NULL) {
            if (xQueueReceive(p_i2s[i2s_num]->tx->queue, &p_i2s[i2s_num]->tx->curr_ptr, ticks_to_wait) == pdFALSE) {
                break;
            }
            p_i2s[i2s_num]->tx->rw_pos = 0;
        }
        data_ptr = (char *)p_i2s[i2s_num]->tx->curr_ptr;
        data_ptr += p_i2s[i2s_num]->tx->rw_pos;
        bytes_can_write = p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos;
        if (bytes_can_write > (int)size) {
            bytes_can_write = size;
        }
        tail = bytes_can_write % aim_bytes;
        bytes_can_write = bytes_can_write - tail;

        memset(data_ptr, 0, bytes_can_write);
        for (int j = 0; j < bytes_can_write; j += (aim_bytes - zero_bytes)) {
            j += zero_bytes;
            memcpy(&data_ptr[j], (const char *)(src + *bytes_written), aim_bytes - zero_bytes);
            (*bytes_written) += (aim_bytes - zero_bytes);
        }
        size -= bytes_can_write;
        p_i2s[i2s_num]->tx->rw_pos += bytes_can_write;
    }
    xSemaphoreGive(p_i2s[i2s_num]->tx->mux);
    return ESP_OK;
}

esp_err_t i2s_read(i2s_port_t i2s_num, void *dest, size_t size, size_t *bytes_read, TickType_t ticks_to_wait)
{
    char *data_ptr;
    char *dest_byte;
    int bytes_can_read;
    *bytes_read = 0;
    dest_byte = (char *)dest;
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    ESP_RETURN_ON_FALSE((p_i2s[i2s_num]->rx), ESP_ERR_INVALID_ARG, TAG, "RX mode is not enabled");
    xSemaphoreTake(p_i2s[i2s_num]->rx->mux, portMAX_DELAY);
#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_acquire(p_i2s[i2s_num]->pm_lock);
#endif
    while (size > 0) {
        if (p_i2s[i2s_num]->rx->rw_pos == p_i2s[i2s_num]->rx->buf_size || p_i2s[i2s_num]->rx->curr_ptr == NULL) {
            if (xQueueReceive(p_i2s[i2s_num]->rx->queue, &p_i2s[i2s_num]->rx->curr_ptr, ticks_to_wait) == pdFALSE) {
                break;
            }
            p_i2s[i2s_num]->rx->rw_pos = 0;
        }
        data_ptr = (char *)p_i2s[i2s_num]->rx->curr_ptr;
        data_ptr += p_i2s[i2s_num]->rx->rw_pos;
        bytes_can_read = p_i2s[i2s_num]->rx->buf_size - p_i2s[i2s_num]->rx->rw_pos;
        if (bytes_can_read > (int)size) {
            bytes_can_read = size;
        }
        memcpy(dest_byte, data_ptr, bytes_can_read);
        size -= bytes_can_read;
        dest_byte += bytes_can_read;
        p_i2s[i2s_num]->rx->rw_pos += bytes_can_read;
        (*bytes_read) += bytes_can_read;
    }
#ifdef CONFIG_PM_ENABLE
    esp_pm_lock_release(p_i2s[i2s_num]->pm_lock);
#endif
    xSemaphoreGive(p_i2s[i2s_num]->rx->mux);
    return ESP_OK;
}

/*-------------------------------------------------------------
                    I2S GPIO operation
  -------------------------------------------------------------*/
static void gpio_matrix_out_check_and_set(gpio_num_t gpio, uint32_t signal_idx, bool out_inv, bool oen_inv)
{
    //if pin = -1, do not need to configure
    if (gpio != -1) {
        gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
        gpio_set_direction(gpio, GPIO_MODE_OUTPUT);
        esp_rom_gpio_connect_out_signal(gpio, signal_idx, out_inv, oen_inv);
    }
}

static void gpio_matrix_in_check_and_set(gpio_num_t gpio, uint32_t signal_idx, bool inv)
{
    if (gpio != -1) {
        gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
        /* Set direction, for some GPIOs, the input function are not enabled as default */
        gpio_set_direction(gpio, GPIO_MODE_INPUT);
        esp_rom_gpio_connect_in_signal(gpio, signal_idx, inv);
    }
}

static esp_err_t i2s_check_set_mclk(i2s_port_t i2s_num, gpio_num_t gpio_num)
{
    if (gpio_num == -1) {
        return ESP_OK;
    }
#if CONFIG_IDF_TARGET_ESP32
    soc_clkout_sig_id_t clkout_sig = (i2s_num == I2S_NUM_0) ? CLKOUT_SIG_I2S0 : CLKOUT_SIG_I2S1;
    ESP_RETURN_ON_ERROR(esp_clock_output_start(clkout_sig, gpio_num, &p_i2s[i2s_num]->mclk_out_hdl), TAG, "mclk configure failed");
#else
    ESP_RETURN_ON_FALSE(GPIO_IS_VALID_GPIO(gpio_num), ESP_ERR_INVALID_ARG, TAG, "mck_io_num invalid");
    gpio_matrix_out_check_and_set(gpio_num, i2s_periph_signal[i2s_num].mck_out_sig, 0, 0);
#endif
    ESP_LOGD(TAG, "I2S%d, MCLK output by GPIO%d", i2s_num, gpio_num);
    return ESP_OK;
}

esp_err_t i2s_zero_dma_buffer(i2s_port_t i2s_num)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    uint32_t buf_cnt = p_i2s[i2s_num]->dma_desc_num;

    /* Clear I2S RX DMA buffer */
    if (p_i2s[i2s_num]->rx && p_i2s[i2s_num]->rx->buf != NULL && p_i2s[i2s_num]->rx->buf_size != 0) {
        for (int i = 0; i < buf_cnt; i++) {
            memset(p_i2s[i2s_num]->rx->buf[i], 0, p_i2s[i2s_num]->rx->buf_size);
        }
    }

    /* Clear I2S TX DMA buffer */
    if (p_i2s[i2s_num]->tx && p_i2s[i2s_num]->tx->buf != NULL && p_i2s[i2s_num]->tx->buf_size != 0) {
        /* Finish to write all tx data */
        int bytes_left = (p_i2s[i2s_num]->tx->buf_size - p_i2s[i2s_num]->tx->rw_pos) % 4;
        if (bytes_left) {
            size_t zero_bytes = 0;
            size_t bytes_written;
            i2s_write(i2s_num, (void *)&zero_bytes, bytes_left, &bytes_written, portMAX_DELAY);
        }
        for (int i = 0; i < buf_cnt; i++) {
            memset(p_i2s[i2s_num]->tx->buf[i], 0, p_i2s[i2s_num]->tx->buf_size);
        }
    }
    return ESP_OK;
}

esp_err_t i2s_set_pin(i2s_port_t i2s_num, const i2s_pin_config_t *pin)
{
    ESP_RETURN_ON_FALSE((i2s_num < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "i2s_num error");
    if (pin == NULL) {
#if SOC_I2S_SUPPORTS_DAC
        return i2s_set_dac_mode(I2S_DAC_CHANNEL_BOTH_EN);
#else
        return ESP_ERR_INVALID_ARG;
#endif
    }
    /* Check validity of selected pins */
    ESP_RETURN_ON_FALSE((pin->bck_io_num == -1 || GPIO_IS_VALID_GPIO(pin->bck_io_num)),
                        ESP_ERR_INVALID_ARG, TAG, "bck_io_num invalid");
    ESP_RETURN_ON_FALSE((pin->ws_io_num == -1 || GPIO_IS_VALID_GPIO(pin->ws_io_num)),
                        ESP_ERR_INVALID_ARG, TAG, "ws_io_num invalid");
    ESP_RETURN_ON_FALSE((pin->data_out_num == -1 || GPIO_IS_VALID_GPIO(pin->data_out_num)),
                        ESP_ERR_INVALID_ARG, TAG, "data_out_num invalid");
    ESP_RETURN_ON_FALSE((pin->data_in_num == -1 || GPIO_IS_VALID_GPIO(pin->data_in_num)),
                        ESP_ERR_INVALID_ARG, TAG, "data_in_num invalid");

    if (p_i2s[i2s_num]->role == I2S_ROLE_SLAVE) {
        /* For "tx + rx + slave" or "rx + slave" mode, we should select RX signal index for ws and bck */
        if (p_i2s[i2s_num]->dir & I2S_DIR_RX) {
            gpio_matrix_in_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].s_rx_ws_sig, 0);
            gpio_matrix_in_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].s_rx_bck_sig, 0);
            /* For "tx + slave" mode, we should select TX signal index for ws and bck */
        } else {
            gpio_matrix_in_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].s_tx_ws_sig, 0);
            gpio_matrix_in_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].s_tx_bck_sig, 0);
        }
    } else {
        /* mclk only available in master mode */
        ESP_RETURN_ON_ERROR(i2s_check_set_mclk(i2s_num, pin->mck_io_num), TAG, "mclk config failed");
        /* For "tx + rx + master" or "tx + master" mode, we should select TX signal index for ws and bck */
        if (p_i2s[i2s_num]->dir & I2S_DIR_TX) {
            gpio_matrix_out_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].m_tx_ws_sig, 0, 0);
            gpio_matrix_out_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].m_tx_bck_sig, 0, 0);
            /* For "rx + master" mode, we should select RX signal index for ws and bck */
        } else {
            gpio_matrix_out_check_and_set(pin->ws_io_num, i2s_periph_signal[i2s_num].m_rx_ws_sig, 0, 0);
            gpio_matrix_out_check_and_set(pin->bck_io_num, i2s_periph_signal[i2s_num].m_rx_bck_sig, 0, 0);
        }
    }

    /* Set data input/ouput GPIO */
    gpio_matrix_out_check_and_set(pin->data_out_num, i2s_periph_signal[i2s_num].data_out_sig, 0, 0);
    gpio_matrix_in_check_and_set(pin->data_in_num, i2s_periph_signal[i2s_num].data_in_sig, 0);
    return ESP_OK;
}

/**
 * @brief This function will be called during start up, to check that the new i2s driver is not running along with the legacy i2s driver
 */
static __attribute__((constructor)) void check_i2s_driver_conflict(void)
{
    extern __attribute__((weak)) esp_err_t i2s_del_channel(void *handle);
    /* If the new I2S driver is linked, the weak function will point to the actual function in the new driver, otherwise it is NULL*/
    if ((void *)i2s_del_channel != NULL) {
        ESP_EARLY_LOGE(TAG, "CONFLICT! The new i2s driver can't work along with the legacy i2s driver");
        abort();
    }
    ESP_EARLY_LOGW(TAG, "legacy i2s driver is deprecated, please migrate to use driver/i2s_std.h, driver/i2s_pdm.h or driver/i2s_tdm.h");
}