/*
 * SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include "hal/hal_utils.h"
#include "hal/assert.h"

#ifndef BIT
#define BIT(n)          (1UL << (n))
#endif

#ifndef BIT_MASK
#define BIT_MASK(n)     (BIT(n) - 1)
#endif

__attribute__((always_inline))
static inline uint32_t _sub_abs(uint32_t a, uint32_t b)
{
    return a > b ? a - b : b - a;
}

uint32_t hal_utils_calc_clk_div_frac_fast(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
{
    HAL_ASSERT(clk_info->max_fract > 2);
    uint32_t div_denom = 2;
    uint32_t div_numer = 0;
    uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
    uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;

    // fractional divider
    if (freq_error) {
        // Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
        if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
            // Calculate the Greatest Common Divisor, time complexity O(log n)
            uint32_t gcd = hal_utils_gcd(clk_info->exp_freq_hz, freq_error);
            // divide by the Greatest Common Divisor to get the accurate fraction before normalization
            div_denom = clk_info->exp_freq_hz / gcd;
            div_numer = freq_error / gcd;
            // normalize div_denom and div_numer
            uint32_t d = div_denom / clk_info->max_fract + 1;
            // divide by the normalization coefficient to get the denominator and numerator within range of clk_info->max_fract
            div_denom /= d;
            div_numer /= d;
        } else {
            div_integ++;
        }
    }

    // If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
    if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
        return 0;
    }

    // Assign result
    clk_div->integer     = div_integ;
    clk_div->denominator = div_denom;
    clk_div->numerator   = div_numer;

    // Return the actual frequency
    if (div_numer) {
        uint32_t temp = div_integ * div_denom + div_numer;
        return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp);
    }
    return clk_info->src_freq_hz / div_integ;
}

uint32_t hal_utils_calc_clk_div_frac_accurate(const hal_utils_clk_info_t *clk_info, hal_utils_clk_div_t *clk_div)
{
    HAL_ASSERT(clk_info->max_fract > 2);
    uint32_t div_denom = 2;
    uint32_t div_numer = 0;
    uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
    uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;

    if (freq_error) {
        // Carry bit if the decimal is greater than 1.0 - 1.0 / ((max_fract - 1) * 2)
        if (freq_error < clk_info->exp_freq_hz - clk_info->exp_freq_hz / (clk_info->max_fract - 1) * 2) {
            // Search the closest fraction, time complexity O(n)
            for (uint32_t sub = 0, a = 2, b = 0, min = UINT32_MAX; min && a < clk_info->max_fract; a++) {
                b = (a * freq_error + clk_info->exp_freq_hz / 2) / clk_info->exp_freq_hz;
                sub = _sub_abs(clk_info->exp_freq_hz * b, freq_error * a);
                if (sub < min) {
                    div_denom = a;
                    div_numer = b;
                    min = sub;
                }
            }
        } else {
            div_integ++;
        }
    }

    // If the expect frequency is too high or too low to satisfy the integral division range, failed and return 0
    if (div_integ < clk_info->min_integ || div_integ >= clk_info->max_integ || div_integ == 0) {
        return 0;
    }

    // Assign result
    clk_div->integer     = div_integ;
    clk_div->denominator = div_denom;
    clk_div->numerator   = div_numer;

    // Return the actual frequency
    if (div_numer) {
        uint32_t temp = div_integ * div_denom + div_numer;
        return (uint32_t)(((uint64_t)clk_info->src_freq_hz * div_denom + temp / 2) / temp);
    }
    return clk_info->src_freq_hz / div_integ;
}

uint32_t hal_utils_calc_clk_div_integer(const hal_utils_clk_info_t *clk_info, uint32_t *int_div)
{
    uint32_t div_integ = clk_info->src_freq_hz / clk_info->exp_freq_hz;
    uint32_t freq_error = clk_info->src_freq_hz % clk_info->exp_freq_hz;

    /* If there is error and always round up,
       Or, do the normal rounding and error >= (src/n + src/(n+1)) / 2,
       then carry the bit */
    if ((freq_error && clk_info->round_opt == HAL_DIV_ROUND_UP) || (clk_info->round_opt == HAL_DIV_ROUND &&
        (freq_error >= clk_info->src_freq_hz / (2 * div_integ * (div_integ + 1))))) {
        div_integ++;
    }
    /* Check the integral division whether in range [min_integ, max_integ)  */
    /* If the result is less than the minimum, set the division to the minimum but return 0 */
    if (div_integ < clk_info->min_integ) {
        *int_div = clk_info->min_integ;
        return 0;
    }
    /* if the result is greater or equal to the maximum , set the division to the maximum but return 0 */
    if (div_integ >= clk_info->max_integ) {
        *int_div = clk_info->max_integ - 1;
        return 0;
    }

    // Assign result
    *int_div = div_integ;
    // Return the actual frequency
    return clk_info->src_freq_hz / div_integ;
}

typedef union {
    struct {
        uint32_t mantissa: 23;
        uint32_t exponent: 8;
        uint32_t sign: 1;
    };
    uint32_t val;
} hal_utils_ieee754_float_t;

int hal_utils_float_to_fixed_point_32b(float flt, const hal_utils_fixed_point_t *fp_cfg, uint32_t *fp_out)
{
    int ret = 0;
    uint32_t output = 0;
    const hal_utils_ieee754_float_t *f = (const hal_utils_ieee754_float_t *)&flt;
    if (fp_cfg->int_bit + fp_cfg->frac_bit > 31) {
        // Not supported
        return -3;
    }

    if (f->val == 0) {  // Zero case
        *fp_out = 0;
        return 0;
    }
    if (f->exponent != 0xFF) {  // Normal case
        int real_exp = (int)f->exponent - 127;
        uint32_t real_mant = f->mantissa | BIT(23);  // Add the hidden bit
        // Overflow check
        if (real_exp >= (int)fp_cfg->int_bit) {
            ret = -1;
        }
        // Determine sign
        output |= f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit);
        // Determine integer and fraction part
        int shift = 23 - fp_cfg->frac_bit - real_exp;
        output |= shift >= 0 ? real_mant >> shift : real_mant << -shift;
    } else {
        if (f->mantissa && f->mantissa < BIT(23) - 1) {  // NaN (Not-a-Number) case
            return -2;
        } else {  // Infinity or Largest Number case
            output = f->sign ? ~(uint32_t)0 : BIT(31) - 1;
            ret = -1;
        }
    }

    if (ret != 0 && fp_cfg->saturation) {
        *fp_out = (f->sign << (fp_cfg->int_bit + fp_cfg->frac_bit)) |
                (BIT_MASK(fp_cfg->int_bit + fp_cfg->frac_bit));
    } else {
        *fp_out = output;
    }
    return ret;
}