/* * SPDX-FileCopyrightText: 2020-2023 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include #include #include #include "soc/hwcrypto_reg.h" #include "soc/soc_caps.h" #include "soc/system_struct.h" #include "hal/ds_types.h" #ifdef __cplusplus extern "C" { #endif /** * @brief Enable the bus clock for Digital Signature peripheral module * * @param true to enable the module, false to disable the module */ static inline void ds_ll_enable_bus_clock(bool enable) { SYSTEM.perip_clk_en1.crypto_ds_clk_en = enable; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define ds_ll_enable_bus_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; ds_ll_enable_bus_clock(__VA_ARGS__) /** * @brief Reset the Digital Signature peripheral module */ static inline void ds_ll_reset_register(void) { SYSTEM.perip_rst_en1.crypto_ds_rst = 1; SYSTEM.perip_rst_en1.crypto_ds_rst = 0; } /// use a macro to wrap the function, force the caller to use it in a critical section /// the critical section needs to declare the __DECLARE_RCC_ATOMIC_ENV variable in advance #define ds_ll_reset_register(...) (void)__DECLARE_RCC_ATOMIC_ENV; ds_ll_reset_register(__VA_ARGS__) static inline void ds_ll_start(void) { REG_WRITE(DS_SET_START_REG, 1); } /** * @brief Wait until DS peripheral has finished any outstanding operation. */ static inline bool ds_ll_busy(void) { return (REG_READ(DS_QUERY_BUSY_REG) > 0) ? true : false; } /** * @brief Busy wait until the hardware is ready. */ static inline void ds_ll_wait_busy(void) { while (ds_ll_busy()); } /** * @brief In case of a key error, check what caused it. */ static inline ds_key_check_t ds_ll_key_error_source(void) { uint32_t key_error = REG_READ(DS_QUERY_KEY_WRONG_REG); if (key_error == 0) { return DS_NO_KEY_INPUT; } else { return DS_OTHER_WRONG; } } /** * @brief Write the initialization vector to the corresponding register field. */ static inline void ds_ll_configure_iv(const uint32_t *iv) { for (size_t i = 0; i < (SOC_DS_KEY_PARAM_MD_IV_LENGTH / sizeof(uint32_t)); i++) { REG_WRITE(DS_IV_BASE + (i * 4), iv[i]); } } /** * @brief Write the message which should be signed. * * @param msg Pointer to the message. * @param size Length of msg in bytes. It is the RSA signature length in bytes. */ static inline void ds_ll_write_message(const uint8_t *msg, size_t size) { memcpy((uint8_t *) DS_X_BASE, msg, size); } /** * @brief Write the encrypted private key parameters. */ static inline void ds_ll_write_private_key_params(const uint8_t *encrypted_key_params) { /* Note: as the internal peripheral still has RSA 4096 structure, but C is encrypted based on the actual max RSA length (ETS_DS_MAX_BITS), need to fragment it when copying to hardware... (note if ETS_DS_MAX_BITS == 4096, this should be the same as copying data->c to hardware in one fragment) */ typedef struct { uint32_t addr; size_t len; } frag_t; const frag_t frags[] = { {DS_C_Y_BASE, SOC_DS_SIGNATURE_MAX_BIT_LEN / 8}, {DS_C_M_BASE, SOC_DS_SIGNATURE_MAX_BIT_LEN / 8}, {DS_C_RB_BASE, SOC_DS_SIGNATURE_MAX_BIT_LEN / 8}, {DS_C_BOX_BASE, DS_IV_BASE - DS_C_BOX_BASE}, }; const size_t NUM_FRAGS = sizeof(frags) / sizeof(frag_t); const uint8_t *from = encrypted_key_params; for (int i = 0; i < NUM_FRAGS; i++) { memcpy((uint8_t *)frags[i].addr, from, frags[i].len); from += frags[i].len; } } /** * @brief Begin signing procedure. */ static inline void ds_ll_start_sign(void) { REG_WRITE(DS_SET_ME_REG, 1); } /** * @brief check the calculated signature. * * @return * - DS_SIGNATURE_OK if no issue is detected with the signature. * - DS_SIGNATURE_PADDING_FAIL if the padding of the private key parameters is wrong. * - DS_SIGNATURE_MD_FAIL if the message digest check failed. This means that the message digest calculated using * the private key parameters fails, i.e., the integrity of the private key parameters is not protected. * - DS_SIGNATURE_PADDING_AND_MD_FAIL if both padding and message digest check fail. */ static inline ds_signature_check_t ds_ll_check_signature(void) { uint32_t result = REG_READ(DS_QUERY_CHECK_REG); switch (result) { case 0: return DS_SIGNATURE_OK; case 1: return DS_SIGNATURE_MD_FAIL; case 2: return DS_SIGNATURE_PADDING_FAIL; default: return DS_SIGNATURE_PADDING_AND_MD_FAIL; } } /** * @brief Read the signature from the hardware. * * @param result The signature result. * @param size Length of signature result in bytes. It is the RSA signature length in bytes. */ static inline void ds_ll_read_result(uint8_t *result, size_t size) { memcpy(result, (uint8_t *) DS_Z_BASE, size); } /** * @brief Exit the signature operation. * * @note This does not deactivate the module. Corresponding clock/reset bits have to be triggered for deactivation. */ static inline void ds_ll_finish(void) { REG_WRITE(DS_SET_FINISH_REG, 1); ds_ll_wait_busy(); } #ifdef __cplusplus } #endif