/* * SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #include #include #include #include "sdkconfig.h" #include "esp_check.h" #include "esp_log.h" #include "esp_heap_caps.h" #include "esp_memory_utils.h" #include "esp_dma_utils.h" #include "esp_private/esp_dma_utils.h" #include "esp_private/esp_cache_private.h" #include "soc/soc_caps.h" #include "hal/hal_utils.h" #include "hal/cache_hal.h" #include "hal/cache_ll.h" #include "esp_cache.h" static const char *TAG = "dma_utils"; #define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1)) esp_err_t esp_dma_split_rx_buffer_to_cache_aligned(void *rx_buffer, size_t buffer_len, dma_buffer_split_array_t *align_buf_array, uint8_t** ret_stash_buffer) { esp_err_t ret = ESP_OK; uint8_t* stash_buffer = NULL; ESP_RETURN_ON_FALSE(rx_buffer && buffer_len && align_buf_array, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // read the cache line size of internal and external memory, we also use this information to check if a given memory is behind the cache size_t int_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA); size_t ext_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA); size_t split_line_size = 0; if (esp_ptr_external_ram(rx_buffer)) { split_line_size = ext_mem_cache_line_size; } else if (esp_ptr_internal(rx_buffer)) { split_line_size = int_mem_cache_line_size; } ESP_LOGV(TAG, "split_line_size:%zu", split_line_size); // allocate the stash buffer from internal RAM // Note, the split_line_size can be 0, in this case, the stash_buffer is also NULL, which is fine stash_buffer = heap_caps_calloc(2, split_line_size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); ESP_RETURN_ON_FALSE(!(split_line_size && !stash_buffer), ESP_ERR_NO_MEM, TAG, "no mem for stash buffer"); // clear align_array to avoid garbage data memset(align_buf_array, 0, sizeof(dma_buffer_split_array_t)); bool need_cache_sync[3] = {false}; // if split_line_size is non-zero, split the buffer into head, body and tail if (split_line_size > 0) { // calculate head_overflow_len size_t head_overflow_len = (uintptr_t)rx_buffer % split_line_size; head_overflow_len = head_overflow_len ? split_line_size - head_overflow_len : 0; ESP_LOGV(TAG, "head_addr:%p head_overflow_len:%zu", rx_buffer, head_overflow_len); // calculate tail_overflow_len size_t tail_overflow_len = ((uintptr_t)rx_buffer + buffer_len) % split_line_size; ESP_LOGV(TAG, "tail_addr:%p tail_overflow_len:%zu", rx_buffer + buffer_len - tail_overflow_len, tail_overflow_len); uint8_t extra_buf_count = 0; uint8_t* input_buffer = (uint8_t*)rx_buffer; align_buf_array->buf.head.recovery_address = input_buffer; align_buf_array->buf.head.aligned_buffer = stash_buffer + split_line_size * extra_buf_count++; align_buf_array->buf.head.length = head_overflow_len; need_cache_sync[0] = int_mem_cache_line_size > 0; align_buf_array->buf.body.recovery_address = input_buffer + head_overflow_len; align_buf_array->buf.body.aligned_buffer = input_buffer + head_overflow_len; align_buf_array->buf.body.length = buffer_len - head_overflow_len - tail_overflow_len; need_cache_sync[1] = true; align_buf_array->buf.tail.recovery_address = input_buffer + buffer_len - tail_overflow_len; align_buf_array->buf.tail.aligned_buffer = stash_buffer + split_line_size * extra_buf_count++; align_buf_array->buf.tail.length = tail_overflow_len; need_cache_sync[2] = int_mem_cache_line_size > 0; // special handling when input_buffer length is no more than buffer alignment if (head_overflow_len >= buffer_len || tail_overflow_len >= buffer_len) { align_buf_array->buf.head.length = buffer_len ; align_buf_array->buf.body.length = 0 ; align_buf_array->buf.tail.length = 0 ; } } else { align_buf_array->buf.body.aligned_buffer = rx_buffer; align_buf_array->buf.body.recovery_address = rx_buffer; align_buf_array->buf.body.length = buffer_len; need_cache_sync[1] = false; } for (int i = 0; i < 3; i++) { if (align_buf_array->aligned_buffer[i].length == 0) { align_buf_array->aligned_buffer[i].aligned_buffer = NULL; align_buf_array->aligned_buffer[i].recovery_address = NULL; need_cache_sync[i] = false; } } // invalidate the aligned buffer if necessary for (int i = 0; i < 3; i++) { if (need_cache_sync[i]) { size_t sync_size = align_buf_array->aligned_buffer[i].length; if (sync_size < split_line_size) { // If the buffer is smaller than the cache line size, we need to sync the whole buffer sync_size = split_line_size; } esp_err_t res = esp_cache_msync(align_buf_array->aligned_buffer[i].aligned_buffer, sync_size, ESP_CACHE_MSYNC_FLAG_DIR_M2C); ESP_GOTO_ON_ERROR(res, err, TAG, "failed to do cache sync"); } } *ret_stash_buffer = stash_buffer; return ESP_OK; err: if (stash_buffer) { free(stash_buffer); } return ret; } esp_err_t esp_dma_merge_aligned_rx_buffers(dma_buffer_split_array_t *align_array) { ESP_RETURN_ON_FALSE_ISR(align_array, ESP_ERR_INVALID_ARG, TAG, "invalid argument"); // only need to copy the head and tail buffer if (align_array->buf.head.length) { memcpy(align_array->buf.head.recovery_address, align_array->buf.head.aligned_buffer, align_array->buf.head.length); } if (align_array->buf.tail.length) { memcpy(align_array->buf.tail.recovery_address, align_array->buf.tail.aligned_buffer, align_array->buf.tail.length); } return ESP_OK; } size_t esp_dma_calculate_node_count(size_t buffer_size, size_t buffer_alignment, size_t max_buffer_size_per_node) { // buffer_alignment should be power of 2 ESP_RETURN_ON_FALSE(buffer_alignment && ((buffer_alignment & (buffer_alignment - 1)) == 0), 0, TAG, "invalid buffer alignment"); // align down the max_buffer_size_per_node max_buffer_size_per_node = max_buffer_size_per_node & ~(buffer_alignment - 1); // calculate the number of nodes return (buffer_size + max_buffer_size_per_node - 1) / max_buffer_size_per_node; } esp_err_t esp_dma_capable_malloc(size_t size, const esp_dma_mem_info_t *dma_mem_info, void **out_ptr, size_t *actual_size) { ESP_RETURN_ON_FALSE_ISR(dma_mem_info && out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer"); size_t alignment_bytes = 0; //dma align size_t dma_alignment_bytes = dma_mem_info->dma_alignment_bytes; //cache align int cache_flags = 0; size_t cache_alignment_bytes = 0; int heap_caps = dma_mem_info->extra_heap_caps | MALLOC_CAP_DMA; if (dma_mem_info->extra_heap_caps & MALLOC_CAP_SPIRAM) { cache_flags |= MALLOC_CAP_SPIRAM; heap_caps = dma_mem_info->extra_heap_caps | MALLOC_CAP_SPIRAM; /** * This is a workaround because we don't have `MALLOC_CAP_DMA | MALLOC_CAP_SPIRAM` * match when using heap_cap related allocations. */ heap_caps &= ~MALLOC_CAP_DMA; } // Return value unused if asserts are disabled esp_err_t __attribute((unused)) ret = esp_cache_get_alignment(cache_flags, &cache_alignment_bytes); assert(ret == ESP_OK); //Get the least common multiple of two alignment alignment_bytes = hal_utils_calc_lcm(dma_alignment_bytes, cache_alignment_bytes); //malloc size = ALIGN_UP_BY(size, alignment_bytes); void *ptr = heap_caps_aligned_alloc(alignment_bytes, size, heap_caps); ESP_RETURN_ON_FALSE_ISR(ptr, ESP_ERR_NO_MEM, TAG, "Not enough heap memory"); *out_ptr = ptr; if (actual_size) { *actual_size = size; } return ESP_OK; } esp_err_t esp_dma_capable_calloc(size_t calloc_num, size_t size, const esp_dma_mem_info_t *dma_mem_info, void **out_ptr, size_t *actual_size) { esp_err_t ret = ESP_FAIL; size_t size_bytes = 0; bool ovf = false; ovf = __builtin_mul_overflow(calloc_num, size, &size_bytes); ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow"); void *ptr = NULL; ret = esp_dma_capable_malloc(size_bytes, dma_mem_info, &ptr, actual_size); if (ret == ESP_OK) { memset(ptr, 0, size_bytes); *out_ptr = ptr; } return ret; } static bool s_buf_in_region(const void *ptr, size_t size, esp_dma_buf_location_t location) { bool found = false; if (location == ESP_DMA_BUF_LOCATION_INTERNAL) { if (esp_ptr_dma_capable(ptr) && esp_ptr_dma_capable(ptr + size - 1)) { found = true; } } else if (location == ESP_DMA_BUF_LOCATION_PSRAM) { #if SOC_PSRAM_DMA_CAPABLE if (esp_ptr_external_ram(ptr) && esp_ptr_external_ram(ptr + size - 1)) { found = true; } #endif } return found; } static inline bool s_is_buf_aligned(intptr_t ptr, size_t alignment) { return (ptr % alignment == 0); } bool esp_dma_is_buffer_alignment_satisfied(const void *ptr, size_t size, esp_dma_mem_info_t dma_mem_info) { assert(ptr); bool found = false; for (int i = ESP_DMA_BUF_LOCATION_INTERNAL; i < ESP_DMA_BUF_LOCATION_AUTO; i++) { if (s_buf_in_region(ptr, size, i)) { found = true; break; } } if (!found) { return false; } size_t alignment_bytes = 0; //dma align size_t dma_alignment_bytes = dma_mem_info.dma_alignment_bytes; //cache align int cache_flags = 0; size_t cache_alignment_bytes = 0; if (esp_ptr_external_ram(ptr)) { cache_flags |= MALLOC_CAP_SPIRAM; } // Return value unused if asserts are disabled esp_err_t __attribute__((unused)) ret = esp_cache_get_alignment(cache_flags, &cache_alignment_bytes); assert(ret == ESP_OK); //Get the least common multiple of two alignment alignment_bytes = hal_utils_calc_lcm(dma_alignment_bytes, cache_alignment_bytes); bool is_aligned = s_is_buf_aligned((intptr_t)ptr, alignment_bytes) && s_is_buf_aligned((intptr_t)size, alignment_bytes); return is_aligned; } //-----------------------Deprecated APIs-----------------------// esp_err_t s_legacy_malloc(size_t size, uint32_t flags, void **out_ptr, size_t *actual_size) { ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer"); int heap_caps = 0; if (flags & ESP_DMA_MALLOC_FLAG_PSRAM) { heap_caps |= MALLOC_CAP_SPIRAM; } else { heap_caps |= MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL; } esp_dma_mem_info_t dma_mem_info = { .extra_heap_caps = heap_caps, .dma_alignment_bytes = 4, //legacy API behaviour is only check max dma buffer alignment }; ESP_RETURN_ON_ERROR_ISR(esp_dma_capable_malloc(size, &dma_mem_info, out_ptr, actual_size), TAG, "failed to do malloc"); return ESP_OK; } esp_err_t esp_dma_malloc(size_t size, uint32_t flags, void **out_ptr, size_t *actual_size) { return s_legacy_malloc(size, flags, out_ptr, actual_size); } esp_err_t esp_dma_calloc(size_t n, size_t size, uint32_t flags, void **out_ptr, size_t *actual_size) { ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer"); esp_err_t ret = ESP_FAIL; size_t size_bytes = 0; bool ovf = false; ovf = __builtin_mul_overflow(n, size, &size_bytes); ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow"); void *ptr = NULL; ret = s_legacy_malloc(size_bytes, flags, &ptr, actual_size); if (ret == ESP_OK) { memset(ptr, 0, size_bytes); *out_ptr = ptr; } return ret; } static bool s_buf_in_region_legacy(const void *ptr, size_t size, esp_dma_buf_location_t location, int *heap_caps) { bool found = false; if (location == ESP_DMA_BUF_LOCATION_INTERNAL) { if (esp_ptr_dma_capable(ptr) && esp_ptr_dma_capable(ptr + size - 1)) { *heap_caps = MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL; found = true; } } else if (location == ESP_DMA_BUF_LOCATION_PSRAM) { #if SOC_PSRAM_DMA_CAPABLE if (esp_ptr_external_ram(ptr) && esp_ptr_external_ram(ptr + size - 1)) { *heap_caps = MALLOC_CAP_SPIRAM; found = true; } #endif } return found; } bool esp_dma_is_buffer_aligned(const void *ptr, size_t size, esp_dma_buf_location_t location) { assert(ptr); bool found = false; int heap_caps = 0; if (location == ESP_DMA_BUF_LOCATION_AUTO) { for (int i = ESP_DMA_BUF_LOCATION_INTERNAL; i < ESP_DMA_BUF_LOCATION_AUTO; i++) { if (s_buf_in_region_legacy(ptr, size, i, &heap_caps)) { found = true; break; } } } else if (location == ESP_DMA_BUF_LOCATION_INTERNAL) { found = s_buf_in_region_legacy(ptr, size, ESP_DMA_BUF_LOCATION_INTERNAL, &heap_caps); } else { found = s_buf_in_region_legacy(ptr, size, ESP_DMA_BUF_LOCATION_PSRAM, &heap_caps); } if (!found) { return false; } esp_dma_mem_info_t dma_mem_info = { .extra_heap_caps = heap_caps, .dma_alignment_bytes = 4, //legacy API behaviour is only check max dma buffer alignment }; return esp_dma_is_buffer_alignment_satisfied(ptr, size, dma_mem_info); }