/*
 * FreeRTOS SMP Kernel V202110.00
 * Copyright (C) 2020 Amazon.com, Inc. or its affiliates.  All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy of
 * this software and associated documentation files (the "Software"), to deal in
 * the Software without restriction, including without limitation the rights to
 * use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
 * the Software, and to permit persons to whom the Software is furnished to do so,
 * subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in all
 * copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
 * FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
 * COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
 * IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 * https://www.FreeRTOS.org
 * https://github.com/FreeRTOS
 *
 */

/* Standard includes. */
#include <stdlib.h>
#include <string.h>

/* Defining MPU_WRAPPERS_INCLUDED_FROM_API_FILE prevents task.h from redefining
 * all the API functions to use the MPU wrappers.  That should only be done when
 * task.h is included from an application file. */
#define MPU_WRAPPERS_INCLUDED_FROM_API_FILE

/* FreeRTOS includes. */
#include "FreeRTOS.h"
#include "task.h"
#include "timers.h"
#include "stack_macros.h"

#ifdef ESP_PLATFORM
#include "esp_newlib.h"             /* required for esp_reent_init() in tasks.c */
#undef _REENT_INIT_PTR
#define _REENT_INIT_PTR                 esp_reent_init
#endif

/* Lint e9021, e961 and e750 are suppressed as a MISRA exception justified
 * because the MPU ports require MPU_WRAPPERS_INCLUDED_FROM_API_FILE to be defined
 * for the header files above, but not in this file, in order to generate the
 * correct privileged Vs unprivileged linkage and placement. */
#undef MPU_WRAPPERS_INCLUDED_FROM_API_FILE /*lint !e961 !e750 !e9021. */

/* Set configUSE_STATS_FORMATTING_FUNCTIONS to 2 to include the stats formatting
 * functions but without including stdio.h here. */
#if ( configUSE_STATS_FORMATTING_FUNCTIONS == 1 )

/* At the bottom of this file are two optional functions that can be used
 * to generate human readable text from the raw data generated by the
 * uxTaskGetSystemState() function.  Note the formatting functions are provided
 * for convenience only, and are NOT considered part of the kernel. */
    #include <stdio.h>
#endif /* configUSE_STATS_FORMATTING_FUNCTIONS == 1 ) */

#if ( configUSE_PREEMPTION == 0 )

/* If the cooperative scheduler is being used then a yield should not be
 * performed just because a higher priority task has been woken. */
    #define taskYIELD_IF_USING_PREEMPTION()
#else
    #define taskYIELD_IF_USING_PREEMPTION()    vTaskYieldWithinAPI()
#endif

/* Values that can be assigned to the ucNotifyState member of the TCB. */
#define taskNOT_WAITING_NOTIFICATION              ( ( uint8_t ) 0 ) /* Must be zero as it is the initialised value. */
#define taskWAITING_NOTIFICATION                  ( ( uint8_t ) 1 )
#define taskNOTIFICATION_RECEIVED                 ( ( uint8_t ) 2 )

/*
 * The value used to fill the stack of a task when the task is created.  This
 * is used purely for checking the high water mark for tasks.
 */
#define tskSTACK_FILL_BYTE                        ( 0xa5U )

/* Bits used to record how a task's stack and TCB were allocated. */
#define tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB    ( ( uint8_t ) 0 )
#define tskSTATICALLY_ALLOCATED_STACK_ONLY        ( ( uint8_t ) 1 )
#define tskSTATICALLY_ALLOCATED_STACK_AND_TCB     ( ( uint8_t ) 2 )

/* If any of the following are set then task stacks are filled with a known
 * value so the high water mark can be determined.  If none of the following are
 * set then don't fill the stack so there is no unnecessary dependency on memset. */
#if ( ( configCHECK_FOR_STACK_OVERFLOW > 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )
    #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    1
#else
    #define tskSET_NEW_STACKS_TO_KNOWN_VALUE    0
#endif

/*
 * Macros used by vListTask to indicate which state a task is in.
 */
#define tskRUNNING_CHAR      ( 'X' )
#define tskBLOCKED_CHAR      ( 'B' )
#define tskREADY_CHAR        ( 'R' )
#define tskDELETED_CHAR      ( 'D' )
#define tskSUSPENDED_CHAR    ( 'S' )

/*
 * Some kernel aware debuggers require the data the debugger needs access to to
 * be global, rather than file scope.
 */
#ifdef portREMOVE_STATIC_QUALIFIER
    #define static
#endif

/* The name allocated to the Idle task.  This can be overridden by defining
 * configIDLE_TASK_NAME in FreeRTOSConfig.h. */
#ifndef configIDLE_TASK_NAME
    #define configIDLE_TASK_NAME    "IDLE"
#endif

#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )

/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 0 then task selection is
 * performed in a generic way that is not optimised to any particular
 * microcontroller architecture. */

/* uxTopReadyPriority holds the priority of the highest priority ready
 * state task. */
    #define taskRECORD_READY_PRIORITY( uxPriority ) \
    {                                               \
        if( ( uxPriority ) > uxTopReadyPriority )   \
        {                                           \
            uxTopReadyPriority = ( uxPriority );    \
        }                                           \
    } /* taskRECORD_READY_PRIORITY */

    /*-----------------------------------------------------------*/

/* Define away taskRESET_READY_PRIORITY() and portRESET_READY_PRIORITY() as
 * they are only required when a port optimised method of task selection is
 * being used. */
    #define taskRESET_READY_PRIORITY( uxPriority )
    #define portRESET_READY_PRIORITY( uxPriority, uxTopReadyPriority )

#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

    #error configUSE_PORT_OPTIMISED_TASK_SELECTION not yet supported in SMP

/* If configUSE_PORT_OPTIMISED_TASK_SELECTION is 1 then task selection is
 * performed in a way that is tailored to the particular microcontroller
 * architecture being used. */

/* A port optimised version is provided.  Call the port defined macros. */
    #define taskRECORD_READY_PRIORITY( uxPriority )    portRECORD_READY_PRIORITY( uxPriority, uxTopReadyPriority )

    /*-----------------------------------------------------------*/

/* A port optimised version is provided, call it only if the TCB being reset
 * is being referenced from a ready list.  If it is referenced from a delayed
 * or suspended list then it won't be in a ready list. */
    #define taskRESET_READY_PRIORITY( uxPriority )                                                     \
    {                                                                                                  \
        if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ ( uxPriority ) ] ) ) == ( UBaseType_t ) 0 ) \
        {                                                                                              \
            portRESET_READY_PRIORITY( ( uxPriority ), ( uxTopReadyPriority ) );                        \
        }                                                                                              \
    }

#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

/*-----------------------------------------------------------*/

/* pxDelayedTaskList and pxOverflowDelayedTaskList are switched when the tick
 * count overflows. */
#define taskSWITCH_DELAYED_LISTS()                                                \
    {                                                                             \
        List_t * pxTemp;                                                          \
                                                                                  \
        /* The delayed tasks list should be empty when the lists are switched. */ \
        configASSERT( ( listLIST_IS_EMPTY( pxDelayedTaskList ) ) );               \
                                                                                  \
        pxTemp = pxDelayedTaskList;                                               \
        pxDelayedTaskList = pxOverflowDelayedTaskList;                            \
        pxOverflowDelayedTaskList = pxTemp;                                       \
        xNumOfOverflows++;                                                        \
        prvResetNextTaskUnblockTime();                                            \
    }

/*-----------------------------------------------------------*/

/*
 * Place the task represented by pxTCB into the appropriate ready list for
 * the task.  It is inserted at the end of the list.
 */
#define prvAddTaskToReadyList( pxTCB )                                                                 \
    traceMOVED_TASK_TO_READY_STATE( pxTCB );                                                           \
    taskRECORD_READY_PRIORITY( ( pxTCB )->uxPriority );                                                \
    vListInsertEnd( &( pxReadyTasksLists[ ( pxTCB )->uxPriority ] ), &( ( pxTCB )->xStateListItem ) ); \
    tracePOST_MOVED_TASK_TO_READY_STATE( pxTCB )
/*-----------------------------------------------------------*/

/*
 * Several functions take a TaskHandle_t parameter that can optionally be NULL,
 * where NULL is used to indicate that the handle of the currently executing
 * task should be used in place of the parameter.  This macro simply checks to
 * see if the parameter is NULL and returns a pointer to the appropriate TCB.
 */
#define prvGetTCBFromHandle( pxHandle )    ( ( ( pxHandle ) == NULL ) ? pxCurrentTCB : ( pxHandle ) )

/* The item value of the event list item is normally used to hold the priority
 * of the task to which it belongs (coded to allow it to be held in reverse
 * priority order).  However, it is occasionally borrowed for other purposes.  It
 * is important its value is not updated due to a task priority change while it is
 * being used for another purpose.  The following bit definition is used to inform
 * the scheduler that the value should not be changed - in which case it is the
 * responsibility of whichever module is using the value to ensure it gets set back
 * to its original value when it is released. */
#if ( configUSE_16_BIT_TICKS == 1 )
    #define taskEVENT_LIST_ITEM_VALUE_IN_USE    0x8000U
#else
    #define taskEVENT_LIST_ITEM_VALUE_IN_USE    0x80000000UL
#endif

/* Indicates that the task is not actively running on any core. */
#define taskTASK_NOT_RUNNING    ( TaskRunning_t ) ( -1 )

/* Indicates that the task is actively running but scheduled to yield. */
#define taskTASK_YIELDING       ( TaskRunning_t ) ( -2 )

/* Returns pdTRUE if the task is actively running and not scheduled to yield. */
#define taskTASK_IS_RUNNING( xTaskRunState )    ( ( 0 <= xTaskRunState ) && ( xTaskRunState < configNUM_CORES ) )

typedef BaseType_t TaskRunning_t;

/*
 * Task control block.  A task control block (TCB) is allocated for each task,
 * and stores task state information, including a pointer to the task's context
 * (the task's run time environment, including register values)
 */
typedef struct tskTaskControlBlock       /* The old naming convention is used to prevent breaking kernel aware debuggers. */
{
    volatile StackType_t * pxTopOfStack; /*< Points to the location of the last item placed on the tasks stack.  THIS MUST BE THE FIRST MEMBER OF THE TCB STRUCT. */

    #if ( portUSING_MPU_WRAPPERS == 1 )
        xMPU_SETTINGS xMPUSettings; /*< The MPU settings are defined as part of the port layer.  THIS MUST BE THE SECOND MEMBER OF THE TCB STRUCT. */
    #endif

    #if ( configUSE_CORE_AFFINITY == 1 && configNUM_CORES > 1 )
        UBaseType_t uxCoreAffinityMask; /*< Used to link the task to certain cores.  UBaseType_t must have >= the same number of bits as SMP confNUM_CORES */
    #endif

    ListItem_t xStateListItem;                  /*< The list that the state list item of a task is reference from denotes the state of that task (Ready, Blocked, Suspended ). */
    ListItem_t xEventListItem;                  /*< Used to reference a task from an event list. */
    UBaseType_t uxPriority;                     /*< The priority of the task.  0 is the lowest priority. */
    StackType_t * pxStack;                      /*< Points to the start of the stack. */
    volatile TaskRunning_t xTaskRunState;       /*< Used to identify the core the task is running on, if any. */
    BaseType_t xIsIdle;                         /*< Used to identify the idle tasks. */
    char pcTaskName[ configMAX_TASK_NAME_LEN ]; /*< Descriptive name given to the task when created.  Facilitates debugging only. */ /*lint !e971 Unqualified char types are allowed for strings and single characters only. */

    #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
        BaseType_t xPreemptionDisable; /*< Used to prevent the task from being preempted */
    #endif

    #if ( ( portSTACK_GROWTH > 0 ) || ( configRECORD_STACK_HIGH_ADDRESS == 1 ) )
        StackType_t * pxEndOfStack; /*< Points to the highest valid address for the stack. */
    #endif

    #if ( portCRITICAL_NESTING_IN_TCB == 1 )
        UBaseType_t uxCriticalNesting; /*< Holds the critical section nesting depth for ports that do not maintain their own count in the port layer. */
    #endif

    #if ( configUSE_TRACE_FACILITY == 1 )
        UBaseType_t uxTCBNumber;  /*< Stores a number that increments each time a TCB is created.  It allows debuggers to determine when a task has been deleted and then recreated. */
        UBaseType_t uxTaskNumber; /*< Stores a number specifically for use by third party trace code. */
    #endif

    #if ( configUSE_MUTEXES == 1 )
        UBaseType_t uxBasePriority; /*< The priority last assigned to the task - used by the priority inheritance mechanism. */
        UBaseType_t uxMutexesHeld;
    #endif

    #if ( configUSE_APPLICATION_TASK_TAG == 1 )
        TaskHookFunction_t pxTaskTag;
    #endif

    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS > 0 )
        void * pvThreadLocalStoragePointers[ configNUM_THREAD_LOCAL_STORAGE_POINTERS ];
    #endif

    #if ( configGENERATE_RUN_TIME_STATS == 1 )
        uint32_t ulRunTimeCounter; /*< Stores the amount of time the task has spent in the Running state. */
    #endif

    #if ( configUSE_NEWLIB_REENTRANT == 1 )
        /* Allocate a Newlib reent structure that is specific to this task.
         * Note Newlib support has been included by popular demand, but is not
         * used by the FreeRTOS maintainers themselves.  FreeRTOS is not
         * responsible for resulting newlib operation.  User must be familiar with
         * newlib and must provide system-wide implementations of the necessary
         * stubs. Be warned that (at the time of writing) the current newlib design
         * implements a system-wide malloc() that must be provided with locks.
         *
         * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
         * for additional information. */
        struct  _reent xNewLib_reent;
    #endif

    #if ( configUSE_TASK_NOTIFICATIONS == 1 )
        volatile uint32_t ulNotifiedValue[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
        volatile uint8_t ucNotifyState[ configTASK_NOTIFICATION_ARRAY_ENTRIES ];
    #endif

    /* See the comments in FreeRTOS.h with the definition of
     * tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE. */
    #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
        uint8_t ucStaticallyAllocated;                     /*< Set to pdTRUE if the task is a statically allocated to ensure no attempt is made to free the memory. */
    #endif

    #if ( INCLUDE_xTaskAbortDelay == 1 )
        uint8_t ucDelayAborted;
    #endif

    #if ( configUSE_POSIX_ERRNO == 1 )
        int iTaskErrno;
    #endif
} tskTCB;

/* The old tskTCB name is maintained above then typedefed to the new TCB_t name
 * below to enable the use of older kernel aware debuggers. */
typedef tskTCB TCB_t;

/*lint -save -e956 A manual analysis and inspection has been used to determine
 * which static variables must be declared volatile. */
PRIVILEGED_DATA TCB_t * volatile pxCurrentTCBs[ configNUM_CORES ] = { NULL };
#define pxCurrentTCB    xTaskGetCurrentTaskHandle()

/* Lists for ready and blocked tasks. --------------------
 * xDelayedTaskList1 and xDelayedTaskList2 could be moved to function scope but
 * doing so breaks some kernel aware debuggers and debuggers that rely on removing
 * the static qualifier. */
PRIVILEGED_DATA static List_t pxReadyTasksLists[ configMAX_PRIORITIES ]; /*< Prioritised ready tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList1;                         /*< Delayed tasks. */
PRIVILEGED_DATA static List_t xDelayedTaskList2;                         /*< Delayed tasks (two lists are used - one for delays that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t * volatile pxDelayedTaskList;              /*< Points to the delayed task list currently being used. */
PRIVILEGED_DATA static List_t * volatile pxOverflowDelayedTaskList;      /*< Points to the delayed task list currently being used to hold tasks that have overflowed the current tick count. */
PRIVILEGED_DATA static List_t xPendingReadyList;                         /*< Tasks that have been readied while the scheduler was suspended.  They will be moved to the ready list when the scheduler is resumed. */

#if ( INCLUDE_vTaskDelete == 1 )

    PRIVILEGED_DATA static List_t xTasksWaitingTermination; /*< Tasks that have been deleted - but their memory not yet freed. */
    PRIVILEGED_DATA static volatile UBaseType_t uxDeletedTasksWaitingCleanUp = ( UBaseType_t ) 0U;

#endif

#if ( INCLUDE_vTaskSuspend == 1 )

    PRIVILEGED_DATA static List_t xSuspendedTaskList; /*< Tasks that are currently suspended. */

#endif

/* Global POSIX errno. Its value is changed upon context switching to match
 * the errno of the currently running task. */
#if ( configUSE_POSIX_ERRNO == 1 )
    int FreeRTOS_errno = 0;
#endif

/* Other file private variables. --------------------------------*/
PRIVILEGED_DATA static volatile UBaseType_t uxCurrentNumberOfTasks = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;
PRIVILEGED_DATA static volatile UBaseType_t uxTopReadyPriority = tskIDLE_PRIORITY;
PRIVILEGED_DATA static volatile BaseType_t xSchedulerRunning = pdFALSE;
PRIVILEGED_DATA static volatile TickType_t xPendedTicks = ( TickType_t ) 0U;
PRIVILEGED_DATA static volatile BaseType_t xYieldPendings[ configNUM_CORES ] = { pdFALSE };
PRIVILEGED_DATA static volatile BaseType_t xNumOfOverflows = ( BaseType_t ) 0;
PRIVILEGED_DATA static UBaseType_t uxTaskNumber = ( UBaseType_t ) 0U;
PRIVILEGED_DATA static volatile TickType_t xNextTaskUnblockTime = ( TickType_t ) 0U; /* Initialised to portMAX_DELAY before the scheduler starts. */
PRIVILEGED_DATA static TaskHandle_t xIdleTaskHandle[ configNUM_CORES ] = { NULL };   /*< Holds the handle of the idle task.  The idle task is created automatically when the scheduler is started. */

#define xYieldPending    prvGetCurrentYieldPending()

/* Improve support for OpenOCD. The kernel tracks Ready tasks via priority lists.
 * For tracking the state of remote threads, OpenOCD uses uxTopUsedPriority
 * to determine the number of priority lists to read back from the remote target. */
const volatile UBaseType_t uxTopUsedPriority = configMAX_PRIORITIES - 1U;

/* Context switches are held pending while the scheduler is suspended.  Also,
 * interrupts must not manipulate the xStateListItem of a TCB, or any of the
 * lists the xStateListItem can be referenced from, if the scheduler is suspended.
 * If an interrupt needs to unblock a task while the scheduler is suspended then it
 * moves the task's event list item into the xPendingReadyList, ready for the
 * kernel to move the task from the pending ready list into the real ready list
 * when the scheduler is unsuspended.  The pending ready list itself can only be
 * accessed from a critical section.
 *
 * Updates to uxSchedulerSuspended must be protected by both the task and ISR locks and
 * must not be done by an ISR. Reads must be protected by either lock and may be done by
 * either an ISR or a task. */
PRIVILEGED_DATA static volatile UBaseType_t uxSchedulerSuspended = ( UBaseType_t ) pdFALSE;

#if ( configGENERATE_RUN_TIME_STATS == 1 )

/* Do not move these variables to function scope as doing so prevents the
 * code working with debuggers that need to remove the static qualifier. */
    PRIVILEGED_DATA static uint32_t ulTaskSwitchedInTime = 0UL;    /*< Holds the value of a timer/counter the last time a task was switched in. */
    PRIVILEGED_DATA static volatile uint32_t ulTotalRunTime = 0UL; /*< Holds the total amount of execution time as defined by the run time counter clock. */

#endif

/*lint -restore */

/*-----------------------------------------------------------*/

/* File private functions. --------------------------------*/

/*
 * Creates the idle tasks during scheduler start
 */
static BaseType_t prvCreateIdleTasks( void );

/*
 * Returns the yield pending count for the calling core.
 */
static BaseType_t prvGetCurrentYieldPending( void );

/*
 * Checks to see if another task moved the current task out of the ready
 * list while it was waiting to enter a critical section and yields if so.
 */
static void prvCheckForRunStateChange( void );

/*
 * Yields the given core.
 */
static void prvYieldCore( BaseType_t xCoreID );

/*
 * Yields a core, or cores if multiple priorities are not allowed to run
 * simultaneously, to allow the task pxTCB to run.
 */
static void prvYieldForTask( TCB_t * pxTCB,
                             const BaseType_t xPreemptEqualPriority );

/*
 * Selects the highest priority available task
 */
static BaseType_t prvSelectHighestPriorityTask( const BaseType_t xCoreID );

/**
 * Utility task that simply returns pdTRUE if the task referenced by xTask is
 * currently in the Suspended state, or pdFALSE if the task referenced by xTask
 * is in any other state.
 */
#if ( INCLUDE_vTaskSuspend == 1 )

    static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask ) PRIVILEGED_FUNCTION;

#endif /* INCLUDE_vTaskSuspend */

/*
 * Utility to ready all the lists used by the scheduler.  This is called
 * automatically upon the creation of the first task.
 */
static void prvInitialiseTaskLists( void ) PRIVILEGED_FUNCTION;

/*
 * The idle task, which as all tasks is implemented as a never ending loop.
 * The idle task is automatically created and added to the ready lists upon
 * creation of the first user task.
 *
 */
static portTASK_FUNCTION_PROTO( prvIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
#if ( configNUM_CORES > 1 )
    static portTASK_FUNCTION_PROTO( prvMinimalIdleTask, pvParameters ) PRIVILEGED_FUNCTION;
#endif

/*
 * Utility to free all memory allocated by the scheduler to hold a TCB,
 * including the stack pointed to by the TCB.
 *
 * This does not free memory allocated by the task itself (i.e. memory
 * allocated by calls to pvPortMalloc from within the tasks application code).
 */
#if ( INCLUDE_vTaskDelete == 1 )

    static void prvDeleteTCB( TCB_t * pxTCB ) PRIVILEGED_FUNCTION;

#endif

/*
 * Used only by the idle task.  This checks to see if anything has been placed
 * in the list of tasks waiting to be deleted.  If so the task is cleaned up
 * and its TCB deleted.
 */
static void prvCheckTasksWaitingTermination( void ) PRIVILEGED_FUNCTION;

/*
 * The currently executing task is entering the Blocked state.  Add the task to
 * either the current or the overflow delayed task list.
 */
static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
                                            const BaseType_t xCanBlockIndefinitely ) PRIVILEGED_FUNCTION;

/*
 * Fills an TaskStatus_t structure with information on each task that is
 * referenced from the pxList list (which may be a ready list, a delayed list,
 * a suspended list, etc.).
 *
 * THIS FUNCTION IS INTENDED FOR DEBUGGING ONLY, AND SHOULD NOT BE CALLED FROM
 * NORMAL APPLICATION CODE.
 */
#if ( configUSE_TRACE_FACILITY == 1 )

    static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
                                                     List_t * pxList,
                                                     eTaskState eState ) PRIVILEGED_FUNCTION;

#endif

/*
 * Searches pxList for a task with name pcNameToQuery - returning a handle to
 * the task if it is found, or NULL if the task is not found.
 */
#if ( INCLUDE_xTaskGetHandle == 1 )

    static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
                                                     const char pcNameToQuery[] ) PRIVILEGED_FUNCTION;

#endif

/*
 * When a task is created, the stack of the task is filled with a known value.
 * This function determines the 'high water mark' of the task stack by
 * determining how much of the stack remains at the original preset value.
 */
#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )

    static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte ) PRIVILEGED_FUNCTION;

#endif

/*
 * Return the amount of time, in ticks, that will pass before the kernel will
 * next move a task from the Blocked state to the Running state.
 *
 * This conditional compilation should use inequality to 0, not equality to 1.
 * This is to ensure portSUPPRESS_TICKS_AND_SLEEP() can be called when user
 * defined low power mode implementations require configUSE_TICKLESS_IDLE to be
 * set to a value other than 1.
 */
#if ( configUSE_TICKLESS_IDLE != 0 )

    static TickType_t prvGetExpectedIdleTime( void ) PRIVILEGED_FUNCTION;

#endif

/*
 * Set xNextTaskUnblockTime to the time at which the next Blocked state task
 * will exit the Blocked state.
 */
static void prvResetNextTaskUnblockTime( void ) PRIVILEGED_FUNCTION;

#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )

/*
 * Helper function used to pad task names with spaces when printing out
 * human readable tables of task information.
 */
    static char * prvWriteNameToBuffer( char * pcBuffer,
                                        const char * pcTaskName ) PRIVILEGED_FUNCTION;

#endif

/*
 * Called after a Task_t structure has been allocated either statically or
 * dynamically to fill in the structure's members.
 */
static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
                                  const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                                  const uint32_t ulStackDepth,
                                  void * const pvParameters,
                                  UBaseType_t uxPriority,
                                  TaskHandle_t * const pxCreatedTask,
                                  TCB_t * pxNewTCB,
                                  const MemoryRegion_t * const xRegions ) PRIVILEGED_FUNCTION;

/*
 * Called after a new task has been created and initialised to place the task
 * under the control of the scheduler.
 */
static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB ) PRIVILEGED_FUNCTION;

/*
 * freertos_tasks_c_additions_init() should only be called if the user definable
 * macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is the only macro
 * called by the function.
 */
#ifdef FREERTOS_TASKS_C_ADDITIONS_INIT

    static void freertos_tasks_c_additions_init( void ) PRIVILEGED_FUNCTION;

#endif

/*-----------------------------------------------------------*/

static BaseType_t prvGetCurrentYieldPending( void )
{
    BaseType_t xReturn;
    UBaseType_t ulState;

    ulState = portDISABLE_INTERRUPTS();
    xReturn = xYieldPendings[ portGET_CORE_ID() ];
    portRESTORE_INTERRUPTS( ulState );

    return xReturn;
}

/*-----------------------------------------------------------*/

static void prvCheckForRunStateChange( void )
{
    UBaseType_t uxPrevCriticalNesting;
    UBaseType_t uxPrevSchedulerSuspended;
    TCB_t * pxThisTCB;

    /* This should be skipped when entering a critical section within
     * an ISR. If the task on the current core is no longer running, then
     * vTaskSwitchContext() probably should be run before returning, but
     * we don't have a way to force that to happen from here. */
    if( portCHECK_IF_IN_ISR() == pdFALSE )
    {
        /* This function is always called with interrupts disabled
         * so this is safe. */
        pxThisTCB = pxCurrentTCBs[ portGET_CORE_ID() ];

        while( pxThisTCB->xTaskRunState == taskTASK_YIELDING )
        {
            /* We are only here if we just entered a critical section
            * or if we just suspended the scheduler, and another task
            * has requested that we yield.
            *
            * This is slightly complicated since we need to save and restore
            * the suspension and critical nesting counts, as well as release
            * and reacquire the correct locks. And then do it all over again
            * if our state changed again during the reacquisition. */

            uxPrevCriticalNesting = pxThisTCB->uxCriticalNesting;
            uxPrevSchedulerSuspended = uxSchedulerSuspended;

            /* this must only be called the first time we enter into a critical
             * section, otherwise it could context switch in the middle of a
             * critical section. */
            configASSERT( uxPrevCriticalNesting + uxPrevSchedulerSuspended == 1U );

            uxSchedulerSuspended = 0U;

            if( uxPrevCriticalNesting > 0U )
            {
                pxThisTCB->uxCriticalNesting = 0U;
                portRELEASE_ISR_LOCK();
                portRELEASE_TASK_LOCK();
            }
            else
            {
                /* uxPrevSchedulerSuspended must be 1 */
                portRELEASE_TASK_LOCK();
            }

            portMEMORY_BARRIER();
            configASSERT( pxThisTCB->xTaskRunState == taskTASK_YIELDING );

            portENABLE_INTERRUPTS();

            /* Enabling interrupts should cause this core to immediately
             * service the pending interrupt and yield. If the run state is still
             * yielding here then that is a problem. */
            configASSERT( pxThisTCB->xTaskRunState != taskTASK_YIELDING );

            portDISABLE_INTERRUPTS();
            portGET_TASK_LOCK();
            portGET_ISR_LOCK();
            pxCurrentTCB->uxCriticalNesting = uxPrevCriticalNesting;
            uxSchedulerSuspended = uxPrevSchedulerSuspended;

            if( uxPrevCriticalNesting == 0U )
            {
                /* uxPrevSchedulerSuspended must be 1 */
                configASSERT( uxPrevSchedulerSuspended != ( UBaseType_t ) pdFALSE );
                portRELEASE_ISR_LOCK();
            }
        }
    }
}

/*-----------------------------------------------------------*/

static void prvYieldCore( BaseType_t xCoreID )
{
    /* This must be called from a critical section and
     * xCoreID must be valid. */

    if( portCHECK_IF_IN_ISR() && ( xCoreID == portGET_CORE_ID() ) )
    {
        xYieldPendings[ xCoreID ] = pdTRUE;
    }
    else if( pxCurrentTCBs[ xCoreID ]->xTaskRunState != taskTASK_YIELDING )
    {
        if( xCoreID == portGET_CORE_ID() )
        {
            xYieldPendings[ xCoreID ] = pdTRUE;
        }

#ifdef ESP_PLATFORM
// TODO: IDF-5256
        #if ( configNUM_CORES > 1 )
            else
            {
                portYIELD_CORE( xCoreID );
                pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_YIELDING;
            }
        #endif /* ( configNUM_CORES > 1 ) */
#endif /* ESP_PLATFORM */
    }
}

/*-----------------------------------------------------------*/

static void prvYieldForTask( TCB_t * pxTCB,
                             const BaseType_t xPreemptEqualPriority )
{
    BaseType_t xLowestPriority;
    BaseType_t xTaskPriority;
    BaseType_t xLowestPriorityCore = -1;
    BaseType_t xYieldCount = 0;
    BaseType_t x;
    TaskRunning_t xTaskRunState;

    /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION */

    configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );

    #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) )
        {
            /* No task should yield for this one if it is a lower priority
             * than priority level of currently ready tasks. */
            if( pxTCB->uxPriority < uxTopReadyPriority )
            {
                return;
            }
        }
    #endif

    xLowestPriority = ( BaseType_t ) pxTCB->uxPriority;

    if( xPreemptEqualPriority == pdFALSE )
    {
        /* xLowestPriority will be decremented to -1 if the priority of pxTCB
         * is 0. This is ok as we will give system idle tasks a priority of -1 below. */
        --xLowestPriority;
    }

    for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUM_CORES; x++ )
    {
        /* System idle tasks are being assigned a priority of tskIDLE_PRIORITY - 1 here */
        xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ x ]->uxPriority - pxCurrentTCBs[ x ]->xIsIdle;
        xTaskRunState = pxCurrentTCBs[ x ]->xTaskRunState;

        if( ( taskTASK_IS_RUNNING( xTaskRunState ) != pdFALSE ) && ( xYieldPendings[ x ] == pdFALSE ) )
        {
            if( xTaskPriority <= xLowestPriority )
            {
                #if ( configNUM_CORES > 1 )
                    #if ( configUSE_CORE_AFFINITY == 1 )
                        if( ( pxTCB->uxCoreAffinityMask & ( 1 << x ) ) != 0 )
                    #endif
                #endif
                {
                    #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
                        if( pxCurrentTCBs[ x ]->xPreemptionDisable == pdFALSE )
                    #endif
                    {
                        xLowestPriority = xTaskPriority;
                        xLowestPriorityCore = x;
                    }
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) ) && 1
                {
                    /* Yield all currently running non-idle tasks with a priority lower than
                     * the task that needs to run. */
                    if( ( ( BaseType_t ) tskIDLE_PRIORITY - 1 < xTaskPriority ) && ( xTaskPriority < ( BaseType_t ) pxTCB->uxPriority ) )
                    {
                        prvYieldCore( x );
                        xYieldCount++;
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }
                }
            #endif /* if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) ) && 1 */
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

    if( ( xYieldCount == 0 ) && taskVALID_CORE_ID( xLowestPriorityCore ) )
    {
        prvYieldCore( xLowestPriorityCore );
        xYieldCount++;
    }

    #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) )
        /* Verify that the calling core always yields to higher priority tasks */
        if( !pxCurrentTCBs[ portGET_CORE_ID() ]->xIsIdle && ( pxTCB->uxPriority > pxCurrentTCBs[ portGET_CORE_ID() ]->uxPriority ) )
        {
            configASSERT( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE || taskTASK_IS_RUNNING( pxCurrentTCBs[ portGET_CORE_ID() ]->xTaskRunState ) == pdFALSE );
        }
    #endif
}
/*-----------------------------------------------------------*/

#if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )

    static BaseType_t prvSelectHighestPriorityTask( const BaseType_t xCoreID )
    {
        UBaseType_t uxCurrentPriority = uxTopReadyPriority;
        BaseType_t xTaskScheduled = pdFALSE;
        BaseType_t xDecrementTopPriority = pdTRUE;

        #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
            TCB_t * pxPreviousTCB = NULL;
        #endif
        #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) )
            BaseType_t xPriorityDropped = pdFALSE;
        #endif

        while( xTaskScheduled == pdFALSE )
        {
            #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) )
                {
                    if( uxCurrentPriority < uxTopReadyPriority )
                    {
                        /* We can't schedule any tasks, other than idle, that have a
                         * priority lower than the priority of a task currently running
                         * on another core. */
                        uxCurrentPriority = tskIDLE_PRIORITY;
                    }
                }
            #endif

            if( listLIST_IS_EMPTY( &( pxReadyTasksLists[ uxCurrentPriority ] ) ) == pdFALSE )
            {
                List_t * const pxReadyList = &( pxReadyTasksLists[ uxCurrentPriority ] );
                ListItem_t * pxLastTaskItem = pxReadyList->pxIndex->pxPrevious;
                ListItem_t * pxTaskItem = pxLastTaskItem;

                if( ( void * ) pxLastTaskItem == ( void * ) &( pxReadyList->xListEnd ) )
                {
                    pxLastTaskItem = pxLastTaskItem->pxPrevious;
                }

                /* The ready task list for uxCurrentPriority is not empty, so uxTopReadyPriority
                 * must not be decremented any further */
                xDecrementTopPriority = pdFALSE;

                do
                {
                    TCB_t * pxTCB;

                    pxTaskItem = pxTaskItem->pxNext;

                    if( ( void * ) pxTaskItem == ( void * ) &( pxReadyList->xListEnd ) )
                    {
                        pxTaskItem = pxTaskItem->pxNext;
                    }

                    pxTCB = pxTaskItem->pvOwner;

                    /*debug_printf("Attempting to schedule %s on core %d\n", pxTCB->pcTaskName, portGET_CORE_ID() ); */

                    #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) )
                        {
                            /* When falling back to the idle priority because only one priority
                             * level is allowed to run at a time, we should ONLY schedule the true
                             * idle tasks, not user tasks at the idle priority. */
                            if( uxCurrentPriority < uxTopReadyPriority )
                            {
                                if( pxTCB->xIsIdle == pdFALSE )
                                {
                                    continue;
                                }
                            }
                        }
                    #endif /* if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) ) */

                    if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
                    {
                        #if ( configNUM_CORES > 1 )
                            #if ( configUSE_CORE_AFFINITY == 1 )
                                if( ( pxTCB->uxCoreAffinityMask & ( 1 << xCoreID ) ) != 0 )
                            #endif
                        #endif
                        {
                            /* If the task is not being executed by any core swap it in */
                            pxCurrentTCBs[ xCoreID ]->xTaskRunState = taskTASK_NOT_RUNNING;
                            #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
                                pxPreviousTCB = pxCurrentTCBs[ xCoreID ];
                            #endif
                            pxTCB->xTaskRunState = ( TaskRunning_t ) xCoreID;
                            pxCurrentTCBs[ xCoreID ] = pxTCB;
                            xTaskScheduled = pdTRUE;
                        }
                    }
                    else if( pxTCB == pxCurrentTCBs[ xCoreID ] )
                    {
                        configASSERT( ( pxTCB->xTaskRunState == xCoreID ) || ( pxTCB->xTaskRunState == taskTASK_YIELDING ) );
                        #if ( configNUM_CORES > 1 )
                            #if ( configUSE_CORE_AFFINITY == 1 )
                                if( ( pxTCB->uxCoreAffinityMask & ( 1 << xCoreID ) ) != 0 )
                            #endif
                        #endif
                        {
                            /* The task is already running on this core, mark it as scheduled */
                            pxTCB->xTaskRunState = ( TaskRunning_t ) xCoreID;
                            xTaskScheduled = pdTRUE;
                        }
                    }

                    if( xTaskScheduled != pdFALSE )
                    {
                        /* Once a task has been selected to run on this core,
                         * move it to the end of the ready task list. */
                        uxListRemove( pxTaskItem );
                        vListInsertEnd( pxReadyList, pxTaskItem );
                        break;
                    }
                } while( pxTaskItem != pxLastTaskItem );
            }
            else
            {
                if( xDecrementTopPriority != pdFALSE )
                {
                    uxTopReadyPriority--;
                    #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) )
                        {
                            xPriorityDropped = pdTRUE;
                        }
                    #endif
                }
            }

            /* This function can get called by vTaskSuspend() before the scheduler is started.
             * In that case, since the idle tasks have not yet been created it is possible that we
             * won't find a new task to schedule. Return pdFALSE in this case. */
            if( ( xSchedulerRunning == pdFALSE ) && ( uxCurrentPriority == tskIDLE_PRIORITY ) && ( xTaskScheduled == pdFALSE ) )
            {
                return pdFALSE;
            }

            configASSERT( ( uxCurrentPriority > tskIDLE_PRIORITY ) || ( xTaskScheduled == pdTRUE ) );
            uxCurrentPriority--;
        }

        configASSERT( taskTASK_IS_RUNNING( pxCurrentTCBs[ xCoreID ]->xTaskRunState ) );

        #if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) )
            if( xPriorityDropped != pdFALSE )
            {
                /* There may be several ready tasks that were being prevented from running because there was
                 * a higher priority task running. Now that the last of the higher priority tasks is no longer
                 * running, make sure all the other idle tasks yield. */
                UBaseType_t x;

                for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configNUM_CORES; x++ )
                {
                    if( pxCurrentTCBs[ x ]->xIsIdle != pdFALSE )
                    {
                        prvYieldCore( x );
                    }
                }
            }
        #endif /* if ( ( configRUN_MULTIPLE_PRIORITIES == 0 ) && ( configNUM_CORES > 1 ) ) */

        #if ( configNUM_CORES > 1 )
            #if ( configUSE_CORE_AFFINITY == 1 )
                if( ( pxPreviousTCB != NULL ) && ( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxPreviousTCB->uxPriority ] ), &( pxPreviousTCB->xStateListItem ) ) != pdFALSE ) )
                {
                    /* A ready task was just bumped off this core. Look at the cores it can run from
                     * from to see if it is able to run on any of them */
                    UBaseType_t uxCoreMap = pxPreviousTCB->uxCoreAffinityMask;
                    BaseType_t xLowestPriority = pxPreviousTCB->uxPriority - pxPreviousTCB->xIsIdle;
                    BaseType_t xLowestPriorityCore = -1;

                    if( ( uxCoreMap & ( 1 << xCoreID ) ) != 0 )
                    {
                        /* The ready task that was removed from this core is not excluded from it.
                         * Only look at the intersection of the cores the removed task is allowed to run
                         * on with the cores that the new task is excluded from. It is possible that the
                         * new task was only placed onto this core because it is excluded from another.
                         * Check to see if the previous task could run on one of those cores. */
                        uxCoreMap &= ~( pxCurrentTCBs[ xCoreID ]->uxCoreAffinityMask );
                    }
                    else
                    {
                        /* The ready task that was removed from this core is excluded from it. */
                    }

                    uxCoreMap &= ( ( 1 << configNUM_CORES ) - 1 );

                    while( uxCoreMap != 0 )
                    {
                        int uxCore = 31UL - ( uint32_t ) __builtin_clz( uxCoreMap );

                        configASSERT( taskVALID_CORE_ID( uxCore ) );

                        uxCoreMap &= ~( 1 << uxCore );

                        BaseType_t xTaskPriority = ( BaseType_t ) pxCurrentTCBs[ uxCore ]->uxPriority - pxCurrentTCBs[ uxCore ]->xIsIdle;

                        if( ( xTaskPriority < xLowestPriority ) && ( taskTASK_IS_RUNNING( pxCurrentTCBs[ uxCore ]->xTaskRunState ) != pdFALSE ) && ( xYieldPendings[ uxCore ] == pdFALSE ) )
                        {
                            #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
                                if( pxCurrentTCBs[ uxCore ]->xPreemptionDisable == pdFALSE )
                            #endif
                            {
                                xLowestPriority = xTaskPriority;
                                xLowestPriorityCore = uxCore;
                            }
                        }
                    }

                    if( taskVALID_CORE_ID( xLowestPriorityCore ) )
                    {
                        prvYieldCore( xLowestPriorityCore );
                    }
                }
            #endif /* if ( configUSE_CORE_AFFINITY == 1 ) */
        #endif /* if ( configNUM_CORES > 1 ) */

        return pdTRUE;
    }

#else /* configUSE_PORT_OPTIMISED_TASK_SELECTION */

    static void prvSelectHighestPriorityTask( BaseType_t xCoreID )
    {
        UBaseType_t uxTopPriority;

        /* Find the highest priority list that contains ready tasks. */
        portGET_HIGHEST_PRIORITY( uxTopPriority, uxTopReadyPriority );
        configASSERT( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ uxTopPriority ] ) ) > 0 );
        listGET_OWNER_OF_NEXT_ENTRY( pxCurrentTCB, &( pxReadyTasksLists[ uxTopPriority ] ) );
    }

#endif /* configUSE_PORT_OPTIMISED_TASK_SELECTION */
/*-----------------------------------------------------------*/

#if ( configSUPPORT_STATIC_ALLOCATION == 1 )

    TaskHandle_t xTaskCreateStatic( TaskFunction_t pxTaskCode,
                                    const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                                    const uint32_t ulStackDepth,
                                    void * const pvParameters,
                                    UBaseType_t uxPriority,
                                    StackType_t * const puxStackBuffer,
                                    StaticTask_t * const pxTaskBuffer )
    #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
        {
            return xTaskCreateStaticAffinitySet(pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, puxStackBuffer, pxTaskBuffer, tskNO_AFFINITY);
        }

        TaskHandle_t xTaskCreateStaticAffinitySet( TaskFunction_t pxTaskCode,
                                                   const char * const pcName,   /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                                                   const uint32_t ulStackDepth,
                                                   void * const pvParameters,
                                                   UBaseType_t uxPriority,
                                                   StackType_t * const puxStackBuffer,
                                                   StaticTask_t * const pxTaskBuffer,
                                                   UBaseType_t uxCoreAffinityMask )
    #endif /* ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) */
    {
        TCB_t * pxNewTCB;
        TaskHandle_t xReturn;

        configASSERT( puxStackBuffer != NULL );
        configASSERT( pxTaskBuffer != NULL );

        #if ( configASSERT_DEFINED == 1 )
            {
                /* Sanity check that the size of the structure used to declare a
                 * variable of type StaticTask_t equals the size of the real task
                 * structure. */
                volatile size_t xSize = sizeof( StaticTask_t );
                configASSERT( xSize == sizeof( TCB_t ) );
                ( void ) xSize; /* Prevent lint warning when configASSERT() is not used. */
            }
        #endif /* configASSERT_DEFINED */

        if( ( pxTaskBuffer != NULL ) && ( puxStackBuffer != NULL ) )
        {
            /* The memory used for the task's TCB and stack are passed into this
             * function - use them. */
            pxNewTCB = ( TCB_t * ) pxTaskBuffer; /*lint !e740 !e9087 Unusual cast is ok as the structures are designed to have the same alignment, and the size is checked by an assert. */
            pxNewTCB->pxStack = ( StackType_t * ) puxStackBuffer;

            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
                {
                    /* Tasks can be created statically or dynamically, so note this
                     * task was created statically in case the task is later deleted. */
                    pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
                }
            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */

            prvInitialiseNewTask( pxTaskCode, pcName, ulStackDepth, pvParameters, uxPriority, &xReturn, pxNewTCB, NULL );

            #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
                {
                    /* Set the task's affinity before scheduling it */
                    pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
                }
            #endif

            prvAddNewTaskToReadyList( pxNewTCB );
        }
        else
        {
            xReturn = NULL;
        }

        return xReturn;
    }

#endif /* SUPPORT_STATIC_ALLOCATION */
/*-----------------------------------------------------------*/

#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) )

    BaseType_t xTaskCreateRestrictedStatic( const TaskParameters_t * const pxTaskDefinition,
                                            TaskHandle_t * pxCreatedTask )
    #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
        {
            return xTaskCreateRestrictedStaticAffinitySet( pxTaskDefinition, tskNO_AFFINITY, pxCreatedTask );
        }

        BaseType_t xTaskCreateRestrictedStaticAffinitySet( const TaskParameters_t * const pxTaskDefinition,
                                                           UBaseType_t uxCoreAffinityMask,
                                                           TaskHandle_t * pxCreatedTask )
    #endif /* ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) */
    {
        TCB_t * pxNewTCB;
        BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;

        configASSERT( pxTaskDefinition->puxStackBuffer != NULL );
        configASSERT( pxTaskDefinition->pxTaskBuffer != NULL );

        if( ( pxTaskDefinition->puxStackBuffer != NULL ) && ( pxTaskDefinition->pxTaskBuffer != NULL ) )
        {
            /* Allocate space for the TCB.  Where the memory comes from depends
             * on the implementation of the port malloc function and whether or
             * not static allocation is being used. */
            pxNewTCB = ( TCB_t * ) pxTaskDefinition->pxTaskBuffer;

            /* Store the stack location in the TCB. */
            pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;

            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
                {
                    /* Tasks can be created statically or dynamically, so note this
                     * task was created statically in case the task is later deleted. */
                    pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_AND_TCB;
                }
            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */

            prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
                                  pxTaskDefinition->pcName,
                                  ( uint32_t ) pxTaskDefinition->usStackDepth,
                                  pxTaskDefinition->pvParameters,
                                  pxTaskDefinition->uxPriority,
                                  pxCreatedTask, pxNewTCB,
                                  pxTaskDefinition->xRegions );

            #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
                {
                    /* Set the task's affinity before scheduling it */
                    pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
                }
            #endif

            prvAddNewTaskToReadyList( pxNewTCB );
            xReturn = pdPASS;
        }

        return xReturn;
    }

#endif /* ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
/*-----------------------------------------------------------*/

#if ( ( portUSING_MPU_WRAPPERS == 1 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )

    BaseType_t xTaskCreateRestricted( const TaskParameters_t * const pxTaskDefinition,
                                      TaskHandle_t * pxCreatedTask )
    #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
        {
            return xTaskCreateRestrictedAffinitySet( pxTaskDefinition, tskNO_AFFINITY, pxCreatedTask );
        }

        BaseType_t xTaskCreateRestrictedAffinitySet( const TaskParameters_t * const pxTaskDefinition,
                                                     UBaseType_t uxCoreAffinityMask,
                                                     TaskHandle_t * pxCreatedTask )
    #endif /* ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) */
    {
        TCB_t * pxNewTCB;
        BaseType_t xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;

        configASSERT( pxTaskDefinition->puxStackBuffer );

        if( pxTaskDefinition->puxStackBuffer != NULL )
        {
            /* Allocate space for the TCB.  Where the memory comes from depends
             * on the implementation of the port malloc function and whether or
             * not static allocation is being used. */
            pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );

            if( pxNewTCB != NULL )
            {
                /* Store the stack location in the TCB. */
                pxNewTCB->pxStack = pxTaskDefinition->puxStackBuffer;

                #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 )
                    {
                        /* Tasks can be created statically or dynamically, so note
                         * this task had a statically allocated stack in case it is
                         * later deleted.  The TCB was allocated dynamically. */
                        pxNewTCB->ucStaticallyAllocated = tskSTATICALLY_ALLOCATED_STACK_ONLY;
                    }
                #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */

                prvInitialiseNewTask( pxTaskDefinition->pvTaskCode,
                                      pxTaskDefinition->pcName,
                                      ( uint32_t ) pxTaskDefinition->usStackDepth,
                                      pxTaskDefinition->pvParameters,
                                      pxTaskDefinition->uxPriority,
                                      pxCreatedTask, pxNewTCB,
                                      pxTaskDefinition->xRegions );

                #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
                    {
                        /* Set the task's affinity before scheduling it */
                        pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
                    }
                #endif

                prvAddNewTaskToReadyList( pxNewTCB );
                xReturn = pdPASS;
            }
        }

        return xReturn;
    }

#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/

#if ( configSUPPORT_DYNAMIC_ALLOCATION == 1 )

    BaseType_t xTaskCreate( TaskFunction_t pxTaskCode,
                            const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                            const configSTACK_DEPTH_TYPE usStackDepth,
                            void * const pvParameters,
                            UBaseType_t uxPriority,
                            TaskHandle_t * const pxCreatedTask )
    #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
        {
            return xTaskCreateAffinitySet(pxTaskCode, pcName, usStackDepth, pvParameters, uxPriority, tskNO_AFFINITY, pxCreatedTask);
        }

        BaseType_t xTaskCreateAffinitySet( TaskFunction_t pxTaskCode,
                                           const char * const pcName,     /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                                           const configSTACK_DEPTH_TYPE usStackDepth,
                                           void * const pvParameters,
                                           UBaseType_t uxPriority,
                                           UBaseType_t uxCoreAffinityMask,
                                           TaskHandle_t * const pxCreatedTask )
    #endif /* ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) */
    {
        TCB_t * pxNewTCB;
        BaseType_t xReturn;

        /* If the stack grows down then allocate the stack then the TCB so the stack
         * does not grow into the TCB.  Likewise if the stack grows up then allocate
         * the TCB then the stack. */
        #if ( portSTACK_GROWTH > 0 )
            {
                /* Allocate space for the TCB.  Where the memory comes from depends on
                 * the implementation of the port malloc function and whether or not static
                 * allocation is being used. */
                pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) );

                if( pxNewTCB != NULL )
                {
                    /* Allocate space for the stack used by the task being created.
                     * The base of the stack memory stored in the TCB so the task can
                     * be deleted later if required. */
                    pxNewTCB->pxStack = ( StackType_t * ) pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

                    if( pxNewTCB->pxStack == NULL )
                    {
                        /* Could not allocate the stack.  Delete the allocated TCB. */
                        vPortFree( pxNewTCB );
                        pxNewTCB = NULL;
                    }
                }
            }
        #else /* portSTACK_GROWTH */
            {
                StackType_t * pxStack;

                /* Allocate space for the stack used by the task being created. */
                pxStack = pvPortMallocStack( ( ( ( size_t ) usStackDepth ) * sizeof( StackType_t ) ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation is the stack. */

                if( pxStack != NULL )
                {
                    /* Allocate space for the TCB. */
                    pxNewTCB = ( TCB_t * ) pvPortMalloc( sizeof( TCB_t ) ); /*lint !e9087 !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack, and the first member of TCB_t is always a pointer to the task's stack. */

                    if( pxNewTCB != NULL )
                    {
                        /* Store the stack location in the TCB. */
                        pxNewTCB->pxStack = pxStack;
                    }
                    else
                    {
                        /* The stack cannot be used as the TCB was not created.  Free
                         * it again. */
                        vPortFreeStack( pxStack );
                    }
                }
                else
                {
                    pxNewTCB = NULL;
                }
            }
        #endif /* portSTACK_GROWTH */

        if( pxNewTCB != NULL )
        {
            #if ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e9029 !e731 Macro has been consolidated for readability reasons. */
                {
                    /* Tasks can be created statically or dynamically, so note this
                     * task was created dynamically in case it is later deleted. */
                    pxNewTCB->ucStaticallyAllocated = tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB;
                }
            #endif /* tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE */

            prvInitialiseNewTask( pxTaskCode, pcName, ( uint32_t ) usStackDepth, pvParameters, uxPriority, pxCreatedTask, pxNewTCB, NULL );

            #if ( ( configNUM_CORES > 1 ) && ( configUSE_CORE_AFFINITY == 1 ) )
                {
                    /* Set the task's affinity before scheduling it */
                    pxNewTCB->uxCoreAffinityMask = uxCoreAffinityMask;
                }
            #endif

            prvAddNewTaskToReadyList( pxNewTCB );
            xReturn = pdPASS;
        }
        else
        {
            xReturn = errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY;
        }

        return xReturn;
    }

#endif /* configSUPPORT_DYNAMIC_ALLOCATION */
/*-----------------------------------------------------------*/

static void prvInitialiseNewTask( TaskFunction_t pxTaskCode,
                                  const char * const pcName, /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
                                  const uint32_t ulStackDepth,
                                  void * const pvParameters,
                                  UBaseType_t uxPriority,
                                  TaskHandle_t * const pxCreatedTask,
                                  TCB_t * pxNewTCB,
                                  const MemoryRegion_t * const xRegions )
{
    StackType_t * pxTopOfStack;
    UBaseType_t x;

    #if ( portUSING_MPU_WRAPPERS == 1 )
        /* Should the task be created in privileged mode? */
        BaseType_t xRunPrivileged;

        if( ( uxPriority & portPRIVILEGE_BIT ) != 0U )
        {
            xRunPrivileged = pdTRUE;
        }
        else
        {
            xRunPrivileged = pdFALSE;
        }
        uxPriority &= ~portPRIVILEGE_BIT;
    #endif /* portUSING_MPU_WRAPPERS == 1 */

    /* Avoid dependency on memset() if it is not required. */
    #if ( tskSET_NEW_STACKS_TO_KNOWN_VALUE == 1 )
        {
            /* Fill the stack with a known value to assist debugging. */
            ( void ) memset( pxNewTCB->pxStack, ( int ) tskSTACK_FILL_BYTE, ( size_t ) ulStackDepth * sizeof( StackType_t ) );
        }
    #endif /* tskSET_NEW_STACKS_TO_KNOWN_VALUE */

    /* Calculate the top of stack address.  This depends on whether the stack
     * grows from high memory to low (as per the 80x86) or vice versa.
     * portSTACK_GROWTH is used to make the result positive or negative as required
     * by the port. */
    #if ( portSTACK_GROWTH < 0 )
        {
            pxTopOfStack = &( pxNewTCB->pxStack[ ulStackDepth - ( uint32_t ) 1 ] );
            pxTopOfStack = ( StackType_t * ) ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack ) & ( ~( ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) ) ); /*lint !e923 !e9033 !e9078 MISRA exception.  Avoiding casts between pointers and integers is not practical.  Size differences accounted for using portPOINTER_SIZE_TYPE type.  Checked by assert(). */

            /* Check the alignment of the calculated top of stack is correct. */
            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxTopOfStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );

            #if ( configRECORD_STACK_HIGH_ADDRESS == 1 )
                {
                    /* Also record the stack's high address, which may assist
                     * debugging. */
                    pxNewTCB->pxEndOfStack = pxTopOfStack;
                }
            #endif /* configRECORD_STACK_HIGH_ADDRESS */
        }
    #else /* portSTACK_GROWTH */
        {
            pxTopOfStack = pxNewTCB->pxStack;

            /* Check the alignment of the stack buffer is correct. */
            configASSERT( ( ( ( portPOINTER_SIZE_TYPE ) pxNewTCB->pxStack & ( portPOINTER_SIZE_TYPE ) portBYTE_ALIGNMENT_MASK ) == 0UL ) );

            /* The other extreme of the stack space is required if stack checking is
             * performed. */
            pxNewTCB->pxEndOfStack = pxNewTCB->pxStack + ( ulStackDepth - ( uint32_t ) 1 );
        }
    #endif /* portSTACK_GROWTH */

    /* Store the task name in the TCB. */
    if( pcName != NULL )
    {
        for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
        {
            pxNewTCB->pcTaskName[ x ] = pcName[ x ];

            /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
             * configMAX_TASK_NAME_LEN characters just in case the memory after the
             * string is not accessible (extremely unlikely). */
            if( pcName[ x ] == ( char ) 0x00 )
            {
                break;
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }

        /* Ensure the name string is terminated in the case that the string length
         * was greater or equal to configMAX_TASK_NAME_LEN. */
        pxNewTCB->pcTaskName[ configMAX_TASK_NAME_LEN - 1 ] = '\0';
    }
    else
    {
        /* The task has not been given a name, so just ensure there is a NULL
         * terminator when it is read out. */
        pxNewTCB->pcTaskName[ 0 ] = 0x00;
    }

    /* This is used as an array index so must ensure it's not too large.  First
     * remove the privilege bit if one is present. */
    if( uxPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
    {
        uxPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }

    pxNewTCB->uxPriority = uxPriority;
    #if ( configUSE_MUTEXES == 1 )
        {
            pxNewTCB->uxBasePriority = uxPriority;
            pxNewTCB->uxMutexesHeld = 0;
        }
    #endif /* configUSE_MUTEXES */

    vListInitialiseItem( &( pxNewTCB->xStateListItem ) );
    vListInitialiseItem( &( pxNewTCB->xEventListItem ) );

    /* Set the pxNewTCB as a link back from the ListItem_t.  This is so we can get
     * back to  the containing TCB from a generic item in a list. */
    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xStateListItem ), pxNewTCB );

    /* Event lists are always in priority order. */
    listSET_LIST_ITEM_VALUE( &( pxNewTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
    listSET_LIST_ITEM_OWNER( &( pxNewTCB->xEventListItem ), pxNewTCB );

    #if ( portCRITICAL_NESTING_IN_TCB == 1 )
        {
            pxNewTCB->uxCriticalNesting = ( UBaseType_t ) 0U;
        }
    #endif /* portCRITICAL_NESTING_IN_TCB */

    #if ( configUSE_APPLICATION_TASK_TAG == 1 )
        {
            pxNewTCB->pxTaskTag = NULL;
        }
    #endif /* configUSE_APPLICATION_TASK_TAG */

    #if ( configGENERATE_RUN_TIME_STATS == 1 )
        {
            pxNewTCB->ulRunTimeCounter = 0UL;
        }
    #endif /* configGENERATE_RUN_TIME_STATS */

    #if ( portUSING_MPU_WRAPPERS == 1 )
        {
            vPortStoreTaskMPUSettings( &( pxNewTCB->xMPUSettings ), xRegions, pxNewTCB->pxStack, ulStackDepth );
        }
    #else
        {
            /* Avoid compiler warning about unreferenced parameter. */
            ( void ) xRegions;
        }
    #endif

    #if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )
        {
            memset( ( void * ) &( pxNewTCB->pvThreadLocalStoragePointers[ 0 ] ), 0x00, sizeof( pxNewTCB->pvThreadLocalStoragePointers ) );
        }
    #endif

    #if ( configUSE_TASK_NOTIFICATIONS == 1 )
        {
            memset( ( void * ) &( pxNewTCB->ulNotifiedValue[ 0 ] ), 0x00, sizeof( pxNewTCB->ulNotifiedValue ) );
            memset( ( void * ) &( pxNewTCB->ucNotifyState[ 0 ] ), 0x00, sizeof( pxNewTCB->ucNotifyState ) );
        }
    #endif

    #if ( configUSE_NEWLIB_REENTRANT == 1 )
        {
            /* Initialise this task's Newlib reent structure.
             * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
             * for additional information. */
            _REENT_INIT_PTR( ( &( pxNewTCB->xNewLib_reent ) ) );
        }
    #endif

    #if ( INCLUDE_xTaskAbortDelay == 1 )
        {
            pxNewTCB->ucDelayAborted = pdFALSE;
        }
    #endif

    #if ( configNUM_CORES > 1 )
        #if ( configUSE_CORE_AFFINITY == 1 )
            {
                pxNewTCB->uxCoreAffinityMask = tskNO_AFFINITY;
            }
        #endif
    #endif
    #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
        {
            pxNewTCB->xPreemptionDisable = 0;
        }
    #endif

    /* Initialize the TCB stack to look as if the task was already running,
     * but had been interrupted by the scheduler.  The return address is set
     * to the start of the task function. Once the stack has been initialised
     * the top of stack variable is updated. */
    #if ( portUSING_MPU_WRAPPERS == 1 )
        {
            /* If the port has capability to detect stack overflow,
             * pass the stack end address to the stack initialization
             * function as well. */
            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
                {
                    #if ( portSTACK_GROWTH < 0 )
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters, xRunPrivileged );
                        }
                    #else /* portSTACK_GROWTH */
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters, xRunPrivileged );
                        }
                    #endif /* portSTACK_GROWTH */
                }
            #else /* portHAS_STACK_OVERFLOW_CHECKING */
                {
                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters, xRunPrivileged );
                }
            #endif /* portHAS_STACK_OVERFLOW_CHECKING */
        }
    #else /* portUSING_MPU_WRAPPERS */
        {
            /* If the port has capability to detect stack overflow,
             * pass the stack end address to the stack initialization
             * function as well. */
            #if ( portHAS_STACK_OVERFLOW_CHECKING == 1 )
                {
                    #if ( portSTACK_GROWTH < 0 )
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxStack, pxTaskCode, pvParameters );
                        }
                    #else /* portSTACK_GROWTH */
                        {
                            pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxNewTCB->pxEndOfStack, pxTaskCode, pvParameters );
                        }
                    #endif /* portSTACK_GROWTH */
                }
            #else /* portHAS_STACK_OVERFLOW_CHECKING */
                {
                    pxNewTCB->pxTopOfStack = pxPortInitialiseStack( pxTopOfStack, pxTaskCode, pvParameters );
                }
            #endif /* portHAS_STACK_OVERFLOW_CHECKING */
        }
    #endif /* portUSING_MPU_WRAPPERS */

    /* Initialize to not running */
    pxNewTCB->xTaskRunState = taskTASK_NOT_RUNNING;

    /* Is this an idle task? */
    if( pxTaskCode == prvIdleTask )
    {
        pxNewTCB->xIsIdle = pdTRUE;
    }

    #if ( configNUM_CORES > 1 )
        else if( pxTaskCode == prvMinimalIdleTask )
        {
            pxNewTCB->xIsIdle = pdTRUE;
        }
    #endif
    else
    {
        pxNewTCB->xIsIdle = pdFALSE;
    }

    if( pxCreatedTask != NULL )
    {
        /* Pass the handle out in an anonymous way.  The handle can be used to
         * change the created task's priority, delete the created task, etc.*/
        *pxCreatedTask = ( TaskHandle_t ) pxNewTCB;
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }
}
/*-----------------------------------------------------------*/

static void prvAddNewTaskToReadyList( TCB_t * pxNewTCB )
{
    /* Ensure interrupts don't access the task lists while the lists are being
     * updated. */
    taskENTER_CRITICAL();
    {
        uxCurrentNumberOfTasks++;

        if( xSchedulerRunning == pdFALSE )
        {
            if( uxCurrentNumberOfTasks == ( UBaseType_t ) 1 )
            {
                /* This is the first task to be created so do the preliminary
                 * initialisation required.  We will not recover if this call
                 * fails, but we will report the failure. */
                prvInitialiseTaskLists();
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            if( pxNewTCB->xIsIdle != pdFALSE )
            {
                BaseType_t xCoreID;

                /* Check if a core is free. */
                for( xCoreID = ( UBaseType_t ) 0; xCoreID < ( UBaseType_t ) configNUM_CORES; xCoreID++ )
                {
                    if( pxCurrentTCBs[ xCoreID ] == NULL )
                    {
                        pxNewTCB->xTaskRunState = xCoreID;
                        pxCurrentTCBs[ xCoreID ] = pxNewTCB;
                        break;
                    }
                }
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        uxTaskNumber++;

        #if ( configUSE_TRACE_FACILITY == 1 )
            {
                /* Add a counter into the TCB for tracing only. */
                pxNewTCB->uxTCBNumber = uxTaskNumber;
            }
        #endif /* configUSE_TRACE_FACILITY */
        traceTASK_CREATE( pxNewTCB );

        prvAddTaskToReadyList( pxNewTCB );

        portSETUP_TCB( pxNewTCB );

        if( xSchedulerRunning != pdFALSE )
        {
            /* If the created task is of a higher priority than another
             * currently running task and preemption is on then it should
             * run now. */
            #if ( configUSE_PREEMPTION == 1 )
                prvYieldForTask( pxNewTCB, pdFALSE );
            #endif
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }
    taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskDelete == 1 )

    void vTaskDelete( TaskHandle_t xTaskToDelete )
    {
        TCB_t * pxTCB;
        TaskRunning_t xTaskRunningOnCore;

        taskENTER_CRITICAL();
        {
            /* If null is passed in here then it is the calling task that is
             * being deleted. */
            pxTCB = prvGetTCBFromHandle( xTaskToDelete );

            xTaskRunningOnCore = pxTCB->xTaskRunState;

            /* Remove task from the ready/delayed list. */
            if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
            {
                taskRESET_READY_PRIORITY( pxTCB->uxPriority );
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            /* Is the task waiting on an event also? */
            if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
            {
                ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            /* Increment the uxTaskNumber also so kernel aware debuggers can
             * detect that the task lists need re-generating.  This is done before
             * portPRE_TASK_DELETE_HOOK() as in the Windows port that macro will
             * not return. */
            uxTaskNumber++;

            /* If the task is running (or yielding), we must add it to the
             * termination list so that an idle task can delete it when it is
             * no longer running. */
            if( xTaskRunningOnCore != taskTASK_NOT_RUNNING )
            {
                /* A running task is being deleted.  This cannot complete within the
                 * task itself, as a context switch to another task is required.
                 * Place the task in the termination list.  The idle task will
                 * check the termination list and free up any memory allocated by
                 * the scheduler for the TCB and stack of the deleted task. */
                vListInsertEnd( &xTasksWaitingTermination, &( pxTCB->xStateListItem ) );

                /* Increment the ucTasksDeleted variable so the idle task knows
                 * there is a task that has been deleted and that it should therefore
                 * check the xTasksWaitingTermination list. */
                ++uxDeletedTasksWaitingCleanUp;

                /* Call the delete hook before portPRE_TASK_DELETE_HOOK() as
                 * portPRE_TASK_DELETE_HOOK() does not return in the Win32 port. */
                traceTASK_DELETE( pxTCB );

                /* The pre-delete hook is primarily for the Windows simulator,
                 * in which Windows specific clean up operations are performed,
                 * after which it is not possible to yield away from this task -
                 * hence xYieldPending is used to latch that a context switch is
                 * required. */
                portPRE_TASK_DELETE_HOOK( pxTCB, &xYieldPendings[ pxTCB->xTaskRunState ] );
            }
            else
            {
                --uxCurrentNumberOfTasks;
                traceTASK_DELETE( pxTCB );
                prvDeleteTCB( pxTCB );

                /* Reset the next expected unblock time in case it referred to
                 * the task that has just been deleted. */
                prvResetNextTaskUnblockTime();
            }

            /* Force a reschedule if the task that has just been deleted was running. */
            if( ( xSchedulerRunning != pdFALSE ) && ( taskTASK_IS_RUNNING( xTaskRunningOnCore ) ) )
            {
                BaseType_t xCoreID;

                xCoreID = portGET_CORE_ID();

                if( xTaskRunningOnCore == xCoreID )
                {
                    configASSERT( uxSchedulerSuspended == 0 );
                    vTaskYieldWithinAPI();
                }
                else
                {
                    prvYieldCore( xTaskRunningOnCore );
                }
            }
        }
        taskEXIT_CRITICAL();
    }

#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/

#if ( INCLUDE_xTaskDelayUntil == 1 )

    BaseType_t xTaskDelayUntil( TickType_t * const pxPreviousWakeTime,
                                const TickType_t xTimeIncrement )
    {
        TickType_t xTimeToWake;
        BaseType_t xAlreadyYielded, xShouldDelay = pdFALSE;

        configASSERT( pxPreviousWakeTime );
        configASSERT( ( xTimeIncrement > 0U ) );

        vTaskSuspendAll();
        {
            configASSERT( uxSchedulerSuspended == 1 );

            /* Minor optimisation.  The tick count cannot change in this
             * block. */
            const TickType_t xConstTickCount = xTickCount;

            /* Generate the tick time at which the task wants to wake. */
            xTimeToWake = *pxPreviousWakeTime + xTimeIncrement;

            if( xConstTickCount < *pxPreviousWakeTime )
            {
                /* The tick count has overflowed since this function was
                 * lasted called.  In this case the only time we should ever
                 * actually delay is if the wake time has also  overflowed,
                 * and the wake time is greater than the tick time.  When this
                 * is the case it is as if neither time had overflowed. */
                if( ( xTimeToWake < *pxPreviousWakeTime ) && ( xTimeToWake > xConstTickCount ) )
                {
                    xShouldDelay = pdTRUE;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                /* The tick time has not overflowed.  In this case we will
                 * delay if either the wake time has overflowed, and/or the
                 * tick time is less than the wake time. */
                if( ( xTimeToWake < *pxPreviousWakeTime ) || ( xTimeToWake > xConstTickCount ) )
                {
                    xShouldDelay = pdTRUE;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }

            /* Update the wake time ready for the next call. */
            *pxPreviousWakeTime = xTimeToWake;

            if( xShouldDelay != pdFALSE )
            {
                traceTASK_DELAY_UNTIL( xTimeToWake );

                /* prvAddCurrentTaskToDelayedList() needs the block time, not
                 * the time to wake, so subtract the current tick count. */
                prvAddCurrentTaskToDelayedList( xTimeToWake - xConstTickCount, pdFALSE );
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        xAlreadyYielded = xTaskResumeAll();

        /* Force a reschedule if xTaskResumeAll has not already done so, we may
         * have put ourselves to sleep. */
        if( xAlreadyYielded == pdFALSE )
        {
            vTaskYieldWithinAPI();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        return xShouldDelay;
    }

#endif /* INCLUDE_xTaskDelayUntil */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskDelay == 1 )

    void vTaskDelay( const TickType_t xTicksToDelay )
    {
        BaseType_t xAlreadyYielded = pdFALSE;

        /* A delay time of zero just forces a reschedule. */
        if( xTicksToDelay > ( TickType_t ) 0U )
        {
            vTaskSuspendAll();
            {
                configASSERT( uxSchedulerSuspended == 1 );
                traceTASK_DELAY();

                /* A task that is removed from the event list while the
                 * scheduler is suspended will not get placed in the ready
                 * list or removed from the blocked list until the scheduler
                 * is resumed.
                 *
                 * This task cannot be in an event list as it is the currently
                 * executing task. */
                prvAddCurrentTaskToDelayedList( xTicksToDelay, pdFALSE );
            }
            xAlreadyYielded = xTaskResumeAll();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        /* Force a reschedule if xTaskResumeAll has not already done so, we may
         * have put ourselves to sleep. */
        if( xAlreadyYielded == pdFALSE )
        {
            vTaskYieldWithinAPI();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

#endif /* INCLUDE_vTaskDelay */
/*-----------------------------------------------------------*/

#if ( ( INCLUDE_eTaskGetState == 1 ) || ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_xTaskAbortDelay == 1 ) )

    eTaskState eTaskGetState( TaskHandle_t xTask )
    {
        eTaskState eReturn;
        List_t const * pxStateList, * pxDelayedList, * pxOverflowedDelayedList;
        const TCB_t * const pxTCB = xTask;

        configASSERT( pxTCB );

        taskENTER_CRITICAL();
        {
            pxStateList = listLIST_ITEM_CONTAINER( &( pxTCB->xStateListItem ) );
            pxDelayedList = pxDelayedTaskList;
            pxOverflowedDelayedList = pxOverflowDelayedTaskList;
        }
        taskEXIT_CRITICAL();

        if( ( pxStateList == pxDelayedList ) || ( pxStateList == pxOverflowedDelayedList ) )
        {
            /* The task being queried is referenced from one of the Blocked
             * lists. */
            eReturn = eBlocked;
        }

        #if ( INCLUDE_vTaskSuspend == 1 )
            else if( pxStateList == &xSuspendedTaskList )
            {
                /* The task being queried is referenced from the suspended
                 * list.  Is it genuinely suspended or is it blocked
                 * indefinitely? */
                if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL )
                {
                    #if ( configUSE_TASK_NOTIFICATIONS == 1 )
                        {
                            BaseType_t x;

                            /* The task does not appear on the event list item of
                             * and of the RTOS objects, but could still be in the
                             * blocked state if it is waiting on its notification
                             * rather than waiting on an object.  If not, is
                             * suspended. */
                            eReturn = eSuspended;

                            for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
                            {
                                if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
                                {
                                    eReturn = eBlocked;
                                    break;
                                }
                            }
                        }
                    #else /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
                        {
                            eReturn = eSuspended;
                        }
                    #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */
                }
                else
                {
                    eReturn = eBlocked;
                }
            }
        #endif /* if ( INCLUDE_vTaskSuspend == 1 ) */

        #if ( INCLUDE_vTaskDelete == 1 )
            else if( ( pxStateList == &xTasksWaitingTermination ) || ( pxStateList == NULL ) )
            {
                /* The task being queried is referenced from the deleted
                 * tasks list, or it is not referenced from any lists at
                 * all. */
                eReturn = eDeleted;
            }
        #endif

        else /*lint !e525 Negative indentation is intended to make use of pre-processor clearer. */
        {
            /* If the task is not in any other state, it must be in the
             * Ready (including pending ready) state. */
            if( taskTASK_IS_RUNNING( pxTCB->xTaskRunState ) )
            {
                /* Is it actively running on a core? */
                eReturn = eRunning;
            }
            else
            {
                eReturn = eReady;
            }
        }

        return eReturn;
    } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */

#endif /* INCLUDE_eTaskGetState */
/*-----------------------------------------------------------*/

#if ( INCLUDE_uxTaskPriorityGet == 1 )

    UBaseType_t uxTaskPriorityGet( const TaskHandle_t xTask )
    {
        TCB_t const * pxTCB;
        UBaseType_t uxReturn;

        taskENTER_CRITICAL();
        {
            /* If null is passed in here then it is the priority of the task
             * that called uxTaskPriorityGet() that is being queried. */
            pxTCB = prvGetTCBFromHandle( xTask );
            uxReturn = pxTCB->uxPriority;
        }
        taskEXIT_CRITICAL();

        return uxReturn;
    }

#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/

#if ( INCLUDE_uxTaskPriorityGet == 1 )

    UBaseType_t uxTaskPriorityGetFromISR( const TaskHandle_t xTask )
    {
        TCB_t const * pxTCB;
        UBaseType_t uxReturn, uxSavedInterruptState;

        /* RTOS ports that support interrupt nesting have the concept of a
         * maximum  system call (or maximum API call) interrupt priority.
         * Interrupts that are  above the maximum system call priority are keep
         * permanently enabled, even when the RTOS kernel is in a critical section,
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
         * is defined in FreeRTOSConfig.h then
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
         * failure if a FreeRTOS API function is called from an interrupt that has
         * been assigned a priority above the configured maximum system call
         * priority.  Only FreeRTOS functions that end in FromISR can be called
         * from interrupts  that have been assigned a priority at or (logically)
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
         * separate interrupt safe API to ensure interrupt entry is as fast and as
         * simple as possible.  More information (albeit Cortex-M specific) is
         * provided on the following link:
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();

        uxSavedInterruptState = portSET_INTERRUPT_MASK_FROM_ISR();
        {
            /* If null is passed in here then it is the priority of the calling
             * task that is being queried. */
            pxTCB = prvGetTCBFromHandle( xTask );
            uxReturn = pxTCB->uxPriority;
        }
        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptState );

        return uxReturn;
    }

#endif /* INCLUDE_uxTaskPriorityGet */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskPrioritySet == 1 )

    void vTaskPrioritySet( TaskHandle_t xTask,
                           UBaseType_t uxNewPriority )
    {
        TCB_t * pxTCB;
        UBaseType_t uxCurrentBasePriority, uxPriorityUsedOnEntry;
        BaseType_t xYieldRequired = pdFALSE;
        BaseType_t xYieldForTask = pdFALSE;
        BaseType_t xCoreID;

        configASSERT( ( uxNewPriority < configMAX_PRIORITIES ) );

        /* Ensure the new priority is valid. */
        if( uxNewPriority >= ( UBaseType_t ) configMAX_PRIORITIES )
        {
            uxNewPriority = ( UBaseType_t ) configMAX_PRIORITIES - ( UBaseType_t ) 1U;
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        taskENTER_CRITICAL();
        {
            /* If null is passed in here then it is the priority of the calling
             * task that is being changed. */
            pxTCB = prvGetTCBFromHandle( xTask );

            traceTASK_PRIORITY_SET( pxTCB, uxNewPriority );

            #if ( configUSE_MUTEXES == 1 )
                {
                    uxCurrentBasePriority = pxTCB->uxBasePriority;
                }
            #else
                {
                    uxCurrentBasePriority = pxTCB->uxPriority;
                }
            #endif

            if( uxCurrentBasePriority != uxNewPriority )
            {
                /* The priority change may have readied a task of higher
                 * priority than a running task. */
                if( uxNewPriority > uxCurrentBasePriority )
                {
                    /* The priority of a task is being raised so
                     * perform a yield for this task later. */
                    xYieldForTask = pdTRUE;
                }
                else if( taskTASK_IS_RUNNING( pxTCB->xTaskRunState ) )
                {
                    /* Setting the priority of a running task down means
                     * there may now be another task of higher priority that
                     * is ready to execute. */
                    #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
                        if( pxTCB->xPreemptionDisable == pdFALSE )
                    #endif
                    {
                        xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
                        xYieldRequired = pdTRUE;
                    }
                }
                else
                {
                    /* Setting the priority of any other task down does not
                     * require a yield as the running task must be above the
                     * new priority of the task being modified. */
                }

                /* Remember the ready list the task might be referenced from
                 * before its uxPriority member is changed so the
                 * taskRESET_READY_PRIORITY() macro can function correctly. */
                uxPriorityUsedOnEntry = pxTCB->uxPriority;

                #if ( configUSE_MUTEXES == 1 )
                    {
                        /* Only change the priority being used if the task is not
                         * currently using an inherited priority. */
                        if( pxTCB->uxBasePriority == pxTCB->uxPriority )
                        {
                            pxTCB->uxPriority = uxNewPriority;
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }

                        /* The base priority gets set whatever. */
                        pxTCB->uxBasePriority = uxNewPriority;
                    }
                #else /* if ( configUSE_MUTEXES == 1 ) */
                    {
                        pxTCB->uxPriority = uxNewPriority;
                    }
                #endif /* if ( configUSE_MUTEXES == 1 ) */

                /* Only reset the event list item value if the value is not
                 * being used for anything else. */
                if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
                {
                    listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxNewPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }

                /* If the task is in the blocked or suspended list we need do
                 * nothing more than change its priority variable. However, if
                 * the task is in a ready list it needs to be removed and placed
                 * in the list appropriate to its new priority. */
                if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
                {
                    /* The task is currently in its ready list - remove before
                     * adding it to its new ready list.  As we are in a critical
                     * section we can do this even if the scheduler is suspended. */
                    if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
                    {
                        /* It is known that the task is in its ready list so
                         * there is no need to check again and the port level
                         * reset macro can be called directly. */
                        portRESET_READY_PRIORITY( uxPriorityUsedOnEntry, uxTopReadyPriority );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    prvAddTaskToReadyList( pxTCB );
                }
                else
                {
                    /* It's possible that xYieldForTask was already set to pdTRUE because
                     * its priority is being raised. However, since it is not in a ready list
                     * we don't actually need to yield for it. */
                    xYieldForTask = pdFALSE;
                }

                #if ( configUSE_PREEMPTION == 1 )
                    if( xYieldRequired != pdFALSE )
                    {
                        prvYieldCore( xCoreID );
                    }
                    else if( xYieldForTask != pdFALSE )
                    {
                        prvYieldForTask( pxTCB, pdTRUE );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }
                #endif /* if ( configUSE_PREEMPTION == 1 ) */

                /* Remove compiler warning about unused variables when the port
                 * optimised task selection is not being used. */
                ( void ) uxPriorityUsedOnEntry;
            }
        }
        taskEXIT_CRITICAL();
    }

#endif /* INCLUDE_vTaskPrioritySet */
/*-----------------------------------------------------------*/

#if ( configNUM_CORES > 1 )
    #if ( configUSE_CORE_AFFINITY == 1 )

        void vTaskCoreAffinitySet( const TaskHandle_t xTask,
                                   UBaseType_t uxCoreAffinityMask )
        {
            TCB_t * pxTCB;
            BaseType_t xCoreID;

            taskENTER_CRITICAL();
            {
                pxTCB = prvGetTCBFromHandle( xTask );

                pxTCB->uxCoreAffinityMask = uxCoreAffinityMask;

                if( xSchedulerRunning != pdFALSE )
                {
                    if( taskTASK_IS_RUNNING( pxTCB->xTaskRunState ) )
                    {
                        xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;

                        if( ( uxCoreAffinityMask & ( 1 << xCoreID ) ) == 0 )
                        {
                            prvYieldCore( xCoreID );
                        }
                    }
                }
            }
            taskEXIT_CRITICAL();
        }

    #endif /* configUSE_CORE_AFFINITY */
#endif /* if ( configNUM_CORES > 1 ) */
/*-----------------------------------------------------------*/

#if ( configNUM_CORES > 1 )
    #if ( configUSE_CORE_AFFINITY == 1 )

        UBaseType_t vTaskCoreAffinityGet( const TaskHandle_t xTask )
        {
            TCB_t * pxTCB;
            UBaseType_t uxCoreAffinityMask;

            taskENTER_CRITICAL();
            {
                pxTCB = prvGetTCBFromHandle( xTask );
                uxCoreAffinityMask = pxTCB->uxCoreAffinityMask;
            }
            taskEXIT_CRITICAL();

            return uxCoreAffinityMask;
        }

    #endif /* configUSE_CORE_AFFINITY */
#endif /* if ( configNUM_CORES > 1 ) */

/*-----------------------------------------------------------*/

#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )

    void vTaskPreemptionDisable( const TaskHandle_t xTask )
    {
        TCB_t * pxTCB;

        taskENTER_CRITICAL();
        {
            pxTCB = prvGetTCBFromHandle( xTask );

            pxTCB->xPreemptionDisable = pdTRUE;
        }
        taskEXIT_CRITICAL();
    }

#endif /* configUSE_TASK_PREEMPTION_DISABLE */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )

    void vTaskPreemptionEnable( const TaskHandle_t xTask )
    {
        TCB_t * pxTCB;
        BaseType_t xCoreID;

        taskENTER_CRITICAL();
        {
            pxTCB = prvGetTCBFromHandle( xTask );

            pxTCB->xPreemptionDisable = pdFALSE;

            if( xSchedulerRunning != pdFALSE )
            {
                if( taskTASK_IS_RUNNING( pxTCB->xTaskRunState ) )
                {
                    xCoreID = ( BaseType_t ) pxTCB->xTaskRunState;
                    prvYieldCore( xCoreID );
                }
            }
        }
        taskEXIT_CRITICAL();
    }

#endif /* configUSE_TASK_PREEMPTION_DISABLE */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskSuspend == 1 )

    void vTaskSuspend( TaskHandle_t xTaskToSuspend )
    {
        TCB_t * pxTCB;
        TaskRunning_t xTaskRunningOnCore;

        taskENTER_CRITICAL();
        {
            /* If null is passed in here then it is the running task that is
             * being suspended. */
            pxTCB = prvGetTCBFromHandle( xTaskToSuspend );

            traceTASK_SUSPEND( pxTCB );

            xTaskRunningOnCore = pxTCB->xTaskRunState;

            /* Remove task from the ready/delayed list and place in the
             * suspended list. */
            if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
            {
                taskRESET_READY_PRIORITY( pxTCB->uxPriority );
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            /* Is the task waiting on an event also? */
            if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
            {
                ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            vListInsertEnd( &xSuspendedTaskList, &( pxTCB->xStateListItem ) );

            #if ( configUSE_TASK_NOTIFICATIONS == 1 )
                {
                    BaseType_t x;

                    for( x = 0; x < configTASK_NOTIFICATION_ARRAY_ENTRIES; x++ )
                    {
                        if( pxTCB->ucNotifyState[ x ] == taskWAITING_NOTIFICATION )
                        {
                            /* The task was blocked to wait for a notification, but is
                             * now suspended, so no notification was received. */
                            pxTCB->ucNotifyState[ x ] = taskNOT_WAITING_NOTIFICATION;
                        }
                    }
                }
            #endif /* if ( configUSE_TASK_NOTIFICATIONS == 1 ) */

            if( xSchedulerRunning != pdFALSE )
            {
                /* Reset the next expected unblock time in case it referred to the
                 * task that is now in the Suspended state. */
                prvResetNextTaskUnblockTime();
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            if( taskTASK_IS_RUNNING( xTaskRunningOnCore ) )
            {
                if( xSchedulerRunning != pdFALSE )
                {
                    if( xTaskRunningOnCore == portGET_CORE_ID() )
                    {
                        /* The current task has just been suspended. */
                        configASSERT( uxSchedulerSuspended == 0 );
                        vTaskYieldWithinAPI();
                    }
                    else
                    {
                        prvYieldCore( xTaskRunningOnCore );
                    }

                    taskEXIT_CRITICAL();
                }
                else
                {
                    taskEXIT_CRITICAL();

                    configASSERT( pxTCB == pxCurrentTCBs[ xTaskRunningOnCore ] );

                    /* The scheduler is not running, but the task that was pointed
                     * to by pxCurrentTCB has just been suspended and pxCurrentTCB
                     * must be adjusted to point to a different task. */
                    if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == uxCurrentNumberOfTasks ) /*lint !e931 Right has no side effect, just volatile. */
                    {
                        /* No other tasks are ready, so set the core's TCB back to
                         * NULL so when the next task is created the core's TCB will
                         * be able to be set to point to it no matter what its relative
                         * priority is. */
                        pxTCB->xTaskRunState = taskTASK_NOT_RUNNING;
                        pxCurrentTCBs[ xTaskRunningOnCore ] = NULL;
                    }
                    else
                    {
                        /* Attempt to switch in a new task. This could fail since the idle tasks
                         * haven't been created yet. If it does then set the core's TCB back to
                         * NULL. */
                        if( prvSelectHighestPriorityTask( xTaskRunningOnCore ) == pdFALSE )
                        {
                            pxTCB->xTaskRunState = taskTASK_NOT_RUNNING;
                            pxCurrentTCBs[ xTaskRunningOnCore ] = NULL;
                        }
                    }
                }
            }
            else
            {
                taskEXIT_CRITICAL();
            }
        } /* taskEXIT_CRITICAL() - already exited in one of three cases above */
    }

#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskSuspend == 1 )

    static BaseType_t prvTaskIsTaskSuspended( const TaskHandle_t xTask )
    {
        BaseType_t xReturn = pdFALSE;
        const TCB_t * const pxTCB = xTask;

        /* Accesses xPendingReadyList so must be called from a critical section. */

        /* It does not make sense to check if the calling task is suspended. */
        configASSERT( xTask );

        /* Is the task being resumed actually in the suspended list? */
        if( listIS_CONTAINED_WITHIN( &xSuspendedTaskList, &( pxTCB->xStateListItem ) ) != pdFALSE )
        {
            /* Has the task already been resumed from within an ISR? */
            if( listIS_CONTAINED_WITHIN( &xPendingReadyList, &( pxTCB->xEventListItem ) ) == pdFALSE )
            {
                /* Is it in the suspended list because it is in the Suspended
                 * state, or because is is blocked with no timeout? */
                if( listIS_CONTAINED_WITHIN( NULL, &( pxTCB->xEventListItem ) ) != pdFALSE ) /*lint !e961.  The cast is only redundant when NULL is used. */
                {
                    xReturn = pdTRUE;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        return xReturn;
    } /*lint !e818 xTask cannot be a pointer to const because it is a typedef. */

#endif /* INCLUDE_vTaskSuspend */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskSuspend == 1 )

    void vTaskResume( TaskHandle_t xTaskToResume )
    {
        TCB_t * const pxTCB = xTaskToResume;

        /* It does not make sense to resume the calling task. */
        configASSERT( xTaskToResume );

        /* The parameter cannot be NULL as it is impossible to resume the
         * currently executing task. It is also impossible to resume a task
         * that is actively running on another core but it is too dangerous
         * to check their run state here. Safer to get into a critical section
         * and check if it is actually suspended or not below. */
        if( pxTCB != NULL )
        {
            taskENTER_CRITICAL();
            {
                if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
                {
                    traceTASK_RESUME( pxTCB );

                    /* The ready list can be accessed even if the scheduler is
                     * suspended because this is inside a critical section. */
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
                    prvAddTaskToReadyList( pxTCB );

                    /* A higher priority task may have just been resumed. */
                    #if ( configUSE_PREEMPTION == 1 )
                        {
                            prvYieldForTask( pxTCB, pdTRUE );
                        }
                    #endif
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            taskEXIT_CRITICAL();
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

#endif /* INCLUDE_vTaskSuspend */

/*-----------------------------------------------------------*/

#if ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) )

    BaseType_t xTaskResumeFromISR( TaskHandle_t xTaskToResume )
    {
        BaseType_t xYieldRequired = pdFALSE;
        TCB_t * const pxTCB = xTaskToResume;
        UBaseType_t uxSavedInterruptStatus;

        configASSERT( xTaskToResume );

        /* RTOS ports that support interrupt nesting have the concept of a
         * maximum  system call (or maximum API call) interrupt priority.
         * Interrupts that are  above the maximum system call priority are keep
         * permanently enabled, even when the RTOS kernel is in a critical section,
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
         * is defined in FreeRTOSConfig.h then
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
         * failure if a FreeRTOS API function is called from an interrupt that has
         * been assigned a priority above the configured maximum system call
         * priority.  Only FreeRTOS functions that end in FromISR can be called
         * from interrupts  that have been assigned a priority at or (logically)
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
         * separate interrupt safe API to ensure interrupt entry is as fast and as
         * simple as possible.  More information (albeit Cortex-M specific) is
         * provided on the following link:
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();

        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
        {
            if( prvTaskIsTaskSuspended( pxTCB ) != pdFALSE )
            {
                traceTASK_RESUME_FROM_ISR( pxTCB );

                /* Check the ready lists can be accessed. */
                if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
                {
                    /* Ready lists can be accessed so move the task from the
                     * suspended list to the ready list directly. */

                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
                    prvAddTaskToReadyList( pxTCB );
                }
                else
                {
                    /* The delayed or ready lists cannot be accessed so the task
                     * is held in the pending ready list until the scheduler is
                     * unsuspended. */
                    vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
                }

                #if ( configUSE_PREEMPTION == 1 )
                    prvYieldForTask( pxTCB, pdTRUE );

                    if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
                    {
                        xYieldRequired = pdTRUE;
                    }
                #endif
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );

        return xYieldRequired;
    }

#endif /* ( ( INCLUDE_xTaskResumeFromISR == 1 ) && ( INCLUDE_vTaskSuspend == 1 ) ) */
/*-----------------------------------------------------------*/

static BaseType_t prvCreateIdleTasks( void )
{
    BaseType_t xReturn = pdPASS;
    BaseType_t xCoreID;
    char cIdleName[ configMAX_TASK_NAME_LEN ];

    /* Add each idle task at the lowest priority. */
    for( xCoreID = ( BaseType_t ) 0; xCoreID < ( BaseType_t ) configNUM_CORES; xCoreID++ )
    {
        BaseType_t x;

        if( xReturn == pdFAIL )
        {
            break;
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        for( x = ( BaseType_t ) 0; x < ( BaseType_t ) configMAX_TASK_NAME_LEN; x++ )
        {
            cIdleName[ x ] = configIDLE_TASK_NAME[ x ];

            /* Don't copy all configMAX_TASK_NAME_LEN if the string is shorter than
             * configMAX_TASK_NAME_LEN characters just in case the memory after the
             * string is not accessible (extremely unlikely). */
            if( cIdleName[ x ] == ( char ) 0x00 )
            {
                break;
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }

        /* Append the idle task number to the end of the name if there is space */
        if( x < configMAX_TASK_NAME_LEN )
        {
            cIdleName[ x++ ] = xCoreID + '0';

            /* And append a null character if there is space */
            if( x < configMAX_TASK_NAME_LEN )
            {
                cIdleName[ x ] = '\0';
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        #if ( configSUPPORT_STATIC_ALLOCATION == 1 )
            {
                if( xCoreID == 0 )
                {
                    StaticTask_t * pxIdleTaskTCBBuffer = NULL;
                    StackType_t * pxIdleTaskStackBuffer = NULL;
                    uint32_t ulIdleTaskStackSize;

                    /* The Idle task is created using user provided RAM - obtain the
                     * address of the RAM then create the idle task. */
                    vApplicationGetIdleTaskMemory( &pxIdleTaskTCBBuffer, &pxIdleTaskStackBuffer, &ulIdleTaskStackSize );
                    xIdleTaskHandle[ xCoreID ] = xTaskCreateStatic( prvIdleTask,
                                                                    cIdleName,
                                                                    ulIdleTaskStackSize,
                                                                    ( void * ) NULL,       /*lint !e961.  The cast is not redundant for all compilers. */
                                                                    portPRIVILEGE_BIT,     /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
                                                                    pxIdleTaskStackBuffer,
                                                                    pxIdleTaskTCBBuffer ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
                }

                #if ( configNUM_CORES > 1 )
                    else
                    {
                        static StaticTask_t xIdleTCBBuffers[ configNUM_CORES - 1 ];
                        static StackType_t xIdleTaskStackBuffers[ configNUM_CORES - 1 ][ configMINIMAL_STACK_SIZE ];

                        xIdleTaskHandle[ xCoreID ] = xTaskCreateStatic( prvMinimalIdleTask,
                                                                        cIdleName,
                                                                        configMINIMAL_STACK_SIZE,
                                                                        ( void * ) NULL,                   /*lint !e961.  The cast is not redundant for all compilers. */
                                                                        portPRIVILEGE_BIT,                 /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
                                                                        xIdleTaskStackBuffers[ xCoreID - 1 ],
                                                                        &xIdleTCBBuffers[ xCoreID - 1 ] ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
                    }
                #endif /* if ( configNUM_CORES > 1 ) */

                if( xIdleTaskHandle[ xCoreID ] != NULL )
                {
                    xReturn = pdPASS;
                }
                else
                {
                    xReturn = pdFAIL;
                }
            }
        #else /* if ( configSUPPORT_STATIC_ALLOCATION == 1 ) */
            {
                if( xCoreID == 0 )
                {
                    /* The Idle task is being created using dynamically allocated RAM. */
                    xReturn = xTaskCreate( prvIdleTask,
                                           cIdleName,
                                           configMINIMAL_STACK_SIZE,
                                           ( void * ) NULL,
                                           portPRIVILEGE_BIT,             /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
                                           &xIdleTaskHandle[ xCoreID ] ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
                }

                #if ( configNUM_CORES > 1 )
                    else
                    {
                        xReturn = xTaskCreate( prvMinimalIdleTask,
                                               cIdleName,
                                               configMINIMAL_STACK_SIZE,
                                               ( void * ) NULL,
                                               portPRIVILEGE_BIT,             /* In effect ( tskIDLE_PRIORITY | portPRIVILEGE_BIT ), but tskIDLE_PRIORITY is zero. */
                                               &xIdleTaskHandle[ xCoreID ] ); /*lint !e961 MISRA exception, justified as it is not a redundant explicit cast to all supported compilers. */
                    }
                #endif
            }
        #endif /* configSUPPORT_STATIC_ALLOCATION */
    }

    return xReturn;
}

void vTaskStartScheduler( void )
{
    BaseType_t xReturn;

    #if ( configUSE_TIMERS == 1 )
        {
            xReturn = xTimerCreateTimerTask();
        }
    #endif /* configUSE_TIMERS */

    xReturn = prvCreateIdleTasks();

    if( xReturn == pdPASS )
    {
        /* freertos_tasks_c_additions_init() should only be called if the user
         * definable macro FREERTOS_TASKS_C_ADDITIONS_INIT() is defined, as that is
         * the only macro called by the function. */
        #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
            {
                freertos_tasks_c_additions_init();
            }
        #endif

        /* Interrupts are turned off here, to ensure a tick does not occur
         * before or during the call to xPortStartScheduler().  The stacks of
         * the created tasks contain a status word with interrupts switched on
         * so interrupts will automatically get re-enabled when the first task
         * starts to run. */
        portDISABLE_INTERRUPTS();

        #if ( ( configUSE_NEWLIB_REENTRANT == 1 ) && ( configNEWLIB_REENTRANT_IS_DYNAMIC == 0 ) )
            {
                /* Switch Newlib's _impure_ptr variable to point to the _reent
                 * structure specific to the task that will run first.
                 * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
                 * for additional information.
                 *
                 * Note: Updating the _impure_ptr is not required when Newlib is compiled with
                 * __DYNAMIC_REENT__ enabled. The port should provide __getreent() instead. */
                _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
            }
        #endif /* ( configUSE_NEWLIB_REENTRANT == 1 ) && ( configNEWLIB_REENTRANT_IS_DYNAMIC == 0 ) */

        xNextTaskUnblockTime = portMAX_DELAY;
        xSchedulerRunning = pdTRUE;
        xTickCount = ( TickType_t ) configINITIAL_TICK_COUNT;

        /* If configGENERATE_RUN_TIME_STATS is defined then the following
         * macro must be defined to configure the timer/counter used to generate
         * the run time counter time base.   NOTE:  If configGENERATE_RUN_TIME_STATS
         * is set to 0 and the following line fails to build then ensure you do not
         * have portCONFIGURE_TIMER_FOR_RUN_TIME_STATS() defined in your
         * FreeRTOSConfig.h file. */
        portCONFIGURE_TIMER_FOR_RUN_TIME_STATS();

        traceTASK_SWITCHED_IN();

        /* Setting up the timer tick is hardware specific and thus in the
         * portable interface. */
        if( xPortStartScheduler() != pdFALSE )
        {
            /* Should not reach here as if the scheduler is running the
             * function will not return. */
        }
        else
        {
            /* Should only reach here if a task calls xTaskEndScheduler(). */
        }
    }
    else
    {
        /* This line will only be reached if the kernel could not be started,
         * because there was not enough FreeRTOS heap to create the idle task
         * or the timer task. */
        configASSERT( xReturn != errCOULD_NOT_ALLOCATE_REQUIRED_MEMORY );
    }

    /* Prevent compiler warnings if INCLUDE_xTaskGetIdleTaskHandle is set to 0,
     * meaning xIdleTaskHandle is not used anywhere else. */
    ( void ) xIdleTaskHandle;

    /* OpenOCD makes use of uxTopUsedPriority for thread debugging. Prevent uxTopUsedPriority
     * from getting optimized out as it is no longer used by the kernel. */
    ( void ) uxTopUsedPriority;
}
/*-----------------------------------------------------------*/

void vTaskEndScheduler( void )
{
    /* Stop the scheduler interrupts and call the portable scheduler end
     * routine so the original ISRs can be restored if necessary.  The port
     * layer must ensure interrupts enable  bit is left in the correct state. */
    portDISABLE_INTERRUPTS();
    xSchedulerRunning = pdFALSE;
    vPortEndScheduler();
}
/*----------------------------------------------------------*/

void vTaskSuspendAll( void )
{
    UBaseType_t ulState;

    /* This must only be called from within a task */
    portASSERT_IF_IN_ISR();

    if( xSchedulerRunning != pdFALSE )
    {
        /* writes to uxSchedulerSuspended must be protected by both the task AND ISR locks.
         * We must disable interrupts before we grab the locks in the event that this task is
         * interrupted and switches context before incrementing uxSchedulerSuspended.
         * It is safe to re-enable interrupts after releasing the ISR lock and incrementing
         * uxSchedulerSuspended since that will prevent context switches. */
        ulState = portDISABLE_INTERRUPTS();

        /* portSOFRWARE_BARRIER() is only implemented for emulated/simulated ports that
         * do not otherwise exhibit real time behaviour. */
        portSOFTWARE_BARRIER();

        portGET_TASK_LOCK();
        portGET_ISR_LOCK();

        /* The scheduler is suspended if uxSchedulerSuspended is non-zero.  An increment
         * is used to allow calls to vTaskSuspendAll() to nest. */
        ++uxSchedulerSuspended;
        portRELEASE_ISR_LOCK();

        if( ( uxSchedulerSuspended == 1U ) && ( pxCurrentTCB->uxCriticalNesting == 0U ) )
        {
            prvCheckForRunStateChange();
        }

        portRESTORE_INTERRUPTS( ulState );
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }
}
/*----------------------------------------------------------*/

#if ( configUSE_TICKLESS_IDLE != 0 )

    static TickType_t prvGetExpectedIdleTime( void )
    {
        TickType_t xReturn;
        UBaseType_t uxHigherPriorityReadyTasks = pdFALSE;

        /* uxHigherPriorityReadyTasks takes care of the case where
         * configUSE_PREEMPTION is 0, so there may be tasks above the idle priority
         * task that are in the Ready state, even though the idle task is
         * running. */
        #if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 )
            {
                if( uxTopReadyPriority > tskIDLE_PRIORITY )
                {
                    uxHigherPriorityReadyTasks = pdTRUE;
                }
            }
        #else
            {
                const UBaseType_t uxLeastSignificantBit = ( UBaseType_t ) 0x01;

                /* When port optimised task selection is used the uxTopReadyPriority
                 * variable is used as a bit map.  If bits other than the least
                 * significant bit are set then there are tasks that have a priority
                 * above the idle priority that are in the Ready state.  This takes
                 * care of the case where the co-operative scheduler is in use. */
                if( uxTopReadyPriority > uxLeastSignificantBit )
                {
                    uxHigherPriorityReadyTasks = pdTRUE;
                }
            }
        #endif /* if ( configUSE_PORT_OPTIMISED_TASK_SELECTION == 0 ) */

        if( pxCurrentTCB->uxPriority > tskIDLE_PRIORITY )
        {
            xReturn = 0;
        }
        else if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > 1 )
        {
            /* There are other idle priority tasks in the ready state.  If
             * time slicing is used then the very next tick interrupt must be
             * processed. */
            xReturn = 0;
        }
        else if( uxHigherPriorityReadyTasks != pdFALSE )
        {
            /* There are tasks in the Ready state that have a priority above the
             * idle priority.  This path can only be reached if
             * configUSE_PREEMPTION is 0. */
            xReturn = 0;
        }
        else
        {
            xReturn = xNextTaskUnblockTime - xTickCount;
        }

        return xReturn;
    }

#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/

BaseType_t xTaskResumeAll( void )
{
    TCB_t * pxTCB = NULL;
    BaseType_t xAlreadyYielded = pdFALSE;

    if( xSchedulerRunning != pdFALSE )
    {
        /* It is possible that an ISR caused a task to be removed from an event
         * list while the scheduler was suspended.  If this was the case then the
         * removed task will have been added to the xPendingReadyList.  Once the
         * scheduler has been resumed it is safe to move all the pending ready
         * tasks from this list into their appropriate ready list. */
        taskENTER_CRITICAL();
        {
            BaseType_t xCoreID;

            xCoreID = portGET_CORE_ID();

            /* If uxSchedulerSuspended is zero then this function does not match a
             * previous call to vTaskSuspendAll(). */
            configASSERT( uxSchedulerSuspended );

            --uxSchedulerSuspended;
            portRELEASE_TASK_LOCK();

            if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
            {
                if( uxCurrentNumberOfTasks > ( UBaseType_t ) 0U )
                {
                    /* Move any readied tasks from the pending list into the
                     * appropriate ready list. */
                    while( listLIST_IS_EMPTY( &xPendingReadyList ) == pdFALSE )
                    {
                        pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xPendingReadyList ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
                        ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
                        ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
                        prvAddTaskToReadyList( pxTCB );

                        /* All appropriate tasks yield at the moment a task is added to xPendingReadyList.
                         * If the current core yielded then vTaskSwitchContext() has already been called
                         * which sets xYieldPendings for the current core to pdTRUE. */
                    }

                    if( pxTCB != NULL )
                    {
                        /* A task was unblocked while the scheduler was suspended,
                         * which may have prevented the next unblock time from being
                         * re-calculated, in which case re-calculate it now.  Mainly
                         * important for low power tickless implementations, where
                         * this can prevent an unnecessary exit from low power
                         * state. */
                        prvResetNextTaskUnblockTime();
                    }

                    /* If any ticks occurred while the scheduler was suspended then
                     * they should be processed now.  This ensures the tick count does
                     * not	slip, and that any delayed tasks are resumed at the correct
                     * time.
                     *
                     * It should be safe to call xTaskIncrementTick here from any core
                     * since we are in a critical section and xTaskIncrementTick itself
                     * protects itself within a critical section. Suspending the scheduler
                     * from any core causes xTaskIncrementTick to increment uxPendedCounts.*/
                    {
                        TickType_t xPendedCounts = xPendedTicks; /* Non-volatile copy. */

                        if( xPendedCounts > ( TickType_t ) 0U )
                        {
                            do
                            {
                                if( xTaskIncrementTick() != pdFALSE )
                                {
                                    /* other cores are interrupted from
                                     * within xTaskIncrementTick(). */
                                    xYieldPendings[ xCoreID ] = pdTRUE;
                                }
                                else
                                {
                                    mtCOVERAGE_TEST_MARKER();
                                }

                                --xPendedCounts;
                            } while( xPendedCounts > ( TickType_t ) 0U );

                            xPendedTicks = 0;
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }
                    }

                    if( xYieldPendings[ xCoreID ] != pdFALSE )
                    {
                        /* If xYieldPendings is true then taskEXIT_CRITICAL()
                         * will yield, so make sure we return true to let the
                         * caller know a yield has already happened. */
                        xAlreadyYielded = pdTRUE;
                    }
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        taskEXIT_CRITICAL();
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }

    return xAlreadyYielded;
}
/*-----------------------------------------------------------*/

TickType_t xTaskGetTickCount( void )
{
    TickType_t xTicks;

    /* Critical section required if running on a 16 bit processor. */
    portTICK_TYPE_ENTER_CRITICAL();
    {
        xTicks = xTickCount;
    }
    portTICK_TYPE_EXIT_CRITICAL();

    return xTicks;
}
/*-----------------------------------------------------------*/

TickType_t xTaskGetTickCountFromISR( void )
{
    TickType_t xReturn;
    UBaseType_t uxSavedInterruptStatus;

    /* RTOS ports that support interrupt nesting have the concept of a maximum
     * system call (or maximum API call) interrupt priority.  Interrupts that are
     * above the maximum system call priority are kept permanently enabled, even
     * when the RTOS kernel is in a critical section, but cannot make any calls to
     * FreeRTOS API functions.  If configASSERT() is defined in FreeRTOSConfig.h
     * then portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
     * failure if a FreeRTOS API function is called from an interrupt that has been
     * assigned a priority above the configured maximum system call priority.
     * Only FreeRTOS functions that end in FromISR can be called from interrupts
     * that have been assigned a priority at or (logically) below the maximum
     * system call  interrupt priority.  FreeRTOS maintains a separate interrupt
     * safe API to ensure interrupt entry is as fast and as simple as possible.
     * More information (albeit Cortex-M specific) is provided on the following
     * link: https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
    portASSERT_IF_INTERRUPT_PRIORITY_INVALID();

    uxSavedInterruptStatus = portTICK_TYPE_SET_INTERRUPT_MASK_FROM_ISR();
    {
        xReturn = xTickCount;
    }
    portTICK_TYPE_CLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );

    return xReturn;
}
/*-----------------------------------------------------------*/

UBaseType_t uxTaskGetNumberOfTasks( void )
{
    /* A critical section is not required because the variables are of type
     * BaseType_t. */
    return uxCurrentNumberOfTasks;
}
/*-----------------------------------------------------------*/

char * pcTaskGetName( TaskHandle_t xTaskToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
{
    TCB_t * pxTCB;

    /* If null is passed in here then the name of the calling task is being
     * queried. */
    pxTCB = prvGetTCBFromHandle( xTaskToQuery );
    configASSERT( pxTCB );
    return &( pxTCB->pcTaskName[ 0 ] );
}
/*-----------------------------------------------------------*/

#if ( INCLUDE_xTaskGetHandle == 1 )

    static TCB_t * prvSearchForNameWithinSingleList( List_t * pxList,
                                                     const char pcNameToQuery[] )
    {
        TCB_t * pxNextTCB, * pxFirstTCB, * pxReturn = NULL;
        UBaseType_t x;
        char cNextChar;
        BaseType_t xBreakLoop;

        /* This function is called with the scheduler suspended. */

        if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
        {
            listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */

            do
            {
                listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */

                /* Check each character in the name looking for a match or
                 * mismatch. */
                xBreakLoop = pdFALSE;

                for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configMAX_TASK_NAME_LEN; x++ )
                {
                    cNextChar = pxNextTCB->pcTaskName[ x ];

                    if( cNextChar != pcNameToQuery[ x ] )
                    {
                        /* Characters didn't match. */
                        xBreakLoop = pdTRUE;
                    }
                    else if( cNextChar == ( char ) 0x00 )
                    {
                        /* Both strings terminated, a match must have been
                         * found. */
                        pxReturn = pxNextTCB;
                        xBreakLoop = pdTRUE;
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    if( xBreakLoop != pdFALSE )
                    {
                        break;
                    }
                }

                if( pxReturn != NULL )
                {
                    /* The handle has been found. */
                    break;
                }
            } while( pxNextTCB != pxFirstTCB );
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        return pxReturn;
    }

#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/

#if ( INCLUDE_xTaskGetHandle == 1 )

    TaskHandle_t xTaskGetHandle( const char * pcNameToQuery ) /*lint !e971 Unqualified char types are allowed for strings and single characters only. */
    {
        UBaseType_t uxQueue = configMAX_PRIORITIES;
        TCB_t * pxTCB;

        /* Task names will be truncated to configMAX_TASK_NAME_LEN - 1 bytes. */
        configASSERT( strlen( pcNameToQuery ) < configMAX_TASK_NAME_LEN );

        vTaskSuspendAll();
        {
            /* Search the ready lists. */
            do
            {
                uxQueue--;
                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) &( pxReadyTasksLists[ uxQueue ] ), pcNameToQuery );

                if( pxTCB != NULL )
                {
                    /* Found the handle. */
                    break;
                }
            } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

            /* Search the delayed lists. */
            if( pxTCB == NULL )
            {
                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxDelayedTaskList, pcNameToQuery );
            }

            if( pxTCB == NULL )
            {
                pxTCB = prvSearchForNameWithinSingleList( ( List_t * ) pxOverflowDelayedTaskList, pcNameToQuery );
            }

            #if ( INCLUDE_vTaskSuspend == 1 )
                {
                    if( pxTCB == NULL )
                    {
                        /* Search the suspended list. */
                        pxTCB = prvSearchForNameWithinSingleList( &xSuspendedTaskList, pcNameToQuery );
                    }
                }
            #endif

            #if ( INCLUDE_vTaskDelete == 1 )
                {
                    if( pxTCB == NULL )
                    {
                        /* Search the deleted list. */
                        pxTCB = prvSearchForNameWithinSingleList( &xTasksWaitingTermination, pcNameToQuery );
                    }
                }
            #endif
        }
        ( void ) xTaskResumeAll();

        return pxTCB;
    }

#endif /* INCLUDE_xTaskGetHandle */
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

    UBaseType_t uxTaskGetSystemState( TaskStatus_t * const pxTaskStatusArray,
                                      const UBaseType_t uxArraySize,
                                      uint32_t * const pulTotalRunTime )
    {
        UBaseType_t uxTask = 0, uxQueue = configMAX_PRIORITIES;

        vTaskSuspendAll();
        {
            /* Is there a space in the array for each task in the system? */
            if( uxArraySize >= uxCurrentNumberOfTasks )
            {
                /* Fill in an TaskStatus_t structure with information on each
                 * task in the Ready state. */
                do
                {
                    uxQueue--;
                    uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &( pxReadyTasksLists[ uxQueue ] ), eReady );
                } while( uxQueue > ( UBaseType_t ) tskIDLE_PRIORITY ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

                /* Fill in an TaskStatus_t structure with information on each
                 * task in the Blocked state. */
                uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxDelayedTaskList, eBlocked );
                uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), ( List_t * ) pxOverflowDelayedTaskList, eBlocked );

                #if ( INCLUDE_vTaskDelete == 1 )
                    {
                        /* Fill in an TaskStatus_t structure with information on
                         * each task that has been deleted but not yet cleaned up. */
                        uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xTasksWaitingTermination, eDeleted );
                    }
                #endif

                #if ( INCLUDE_vTaskSuspend == 1 )
                    {
                        /* Fill in an TaskStatus_t structure with information on
                         * each task in the Suspended state. */
                        uxTask += prvListTasksWithinSingleList( &( pxTaskStatusArray[ uxTask ] ), &xSuspendedTaskList, eSuspended );
                    }
                #endif

                #if ( configGENERATE_RUN_TIME_STATS == 1 )
                    {
                        if( pulTotalRunTime != NULL )
                        {
                            #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
                                portALT_GET_RUN_TIME_COUNTER_VALUE( ( *pulTotalRunTime ) );
                            #else
                                *pulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
                            #endif
                        }
                    }
                #else /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
                    {
                        if( pulTotalRunTime != NULL )
                        {
                            *pulTotalRunTime = 0;
                        }
                    }
                #endif /* if ( configGENERATE_RUN_TIME_STATS == 1 ) */
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        ( void ) xTaskResumeAll();

        return uxTask;
    }

#endif /* configUSE_TRACE_FACILITY */
/*----------------------------------------------------------*/

#if ( INCLUDE_xTaskGetIdleTaskHandle == 1 )

    TaskHandle_t * xTaskGetIdleTaskHandle( void )
    {
        /* If xTaskGetIdleTaskHandle() is called before the scheduler has been
         * started, then xIdleTaskHandle will be NULL. */
        configASSERT( ( xIdleTaskHandle != NULL ) );
        return &( xIdleTaskHandle[ 0 ] );
    }

#endif /* INCLUDE_xTaskGetIdleTaskHandle */
/*----------------------------------------------------------*/

/* This conditional compilation should use inequality to 0, not equality to 1.
 * This is to ensure vTaskStepTick() is available when user defined low power mode
 * implementations require configUSE_TICKLESS_IDLE to be set to a value other than
 * 1. */
#if ( configUSE_TICKLESS_IDLE != 0 )

    void vTaskStepTick( const TickType_t xTicksToJump )
    {
        /* Correct the tick count value after a period during which the tick
         * was suppressed.  Note this does *not* call the tick hook function for
         * each stepped tick. */
        configASSERT( ( xTickCount + xTicksToJump ) <= xNextTaskUnblockTime );
        xTickCount += xTicksToJump;
        traceINCREASE_TICK_COUNT( xTicksToJump );
    }

#endif /* configUSE_TICKLESS_IDLE */
/*----------------------------------------------------------*/

BaseType_t xTaskCatchUpTicks( TickType_t xTicksToCatchUp )
{
    BaseType_t xYieldOccurred;

    /* Must not be called with the scheduler suspended as the implementation
     * relies on xPendedTicks being wound down to 0 in xTaskResumeAll(). */
    configASSERT( uxSchedulerSuspended == 0 );

    /* Use xPendedTicks to mimic xTicksToCatchUp number of ticks occurring when
     * the scheduler is suspended so the ticks are executed in xTaskResumeAll(). */
    vTaskSuspendAll();
    xPendedTicks += xTicksToCatchUp;
    xYieldOccurred = xTaskResumeAll();

    return xYieldOccurred;
}
/*----------------------------------------------------------*/

#if ( INCLUDE_xTaskAbortDelay == 1 )

    BaseType_t xTaskAbortDelay( TaskHandle_t xTask )
    {
        TCB_t * pxTCB = xTask;
        BaseType_t xReturn;

        configASSERT( pxTCB );

        vTaskSuspendAll();
        {
            /* A task can only be prematurely removed from the Blocked state if
             * it is actually in the Blocked state. */
            if( eTaskGetState( xTask ) == eBlocked )
            {
                xReturn = pdPASS;

                /* Remove the reference to the task from the blocked list.  An
                 * interrupt won't touch the xStateListItem because the
                 * scheduler is suspended. */
                ( void ) uxListRemove( &( pxTCB->xStateListItem ) );

                /* Is the task waiting on an event also?  If so remove it from
                 * the event list too.  Interrupts can touch the event list item,
                 * even though the scheduler is suspended, so a critical section
                 * is used. */
                taskENTER_CRITICAL();
                {
                    if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
                    {
                        ( void ) uxListRemove( &( pxTCB->xEventListItem ) );

                        /* This lets the task know it was forcibly removed from the
                         * blocked state so it should not re-evaluate its block time and
                         * then block again. */
                        pxTCB->ucDelayAborted = pdTRUE;
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }
                }
                taskEXIT_CRITICAL();

                /* Place the unblocked task into the appropriate ready list. */
                prvAddTaskToReadyList( pxTCB );

                /* A task being unblocked cannot cause an immediate context
                 * switch if preemption is turned off. */
                #if ( configUSE_PREEMPTION == 1 )
                    {
                        taskENTER_CRITICAL();
                        {
                            prvYieldForTask( pxTCB, pdFALSE );
                        }
                        taskEXIT_CRITICAL();
                    }
                #endif /* configUSE_PREEMPTION */
            }
            else
            {
                xReturn = pdFAIL;
            }
        }
        ( void ) xTaskResumeAll();

        return xReturn;
    }

#endif /* INCLUDE_xTaskAbortDelay */
/*----------------------------------------------------------*/

BaseType_t xTaskIncrementTick( void )
{
    TCB_t * pxTCB;
    TickType_t xItemValue;
    BaseType_t xSwitchRequired = pdFALSE;

    #if ( configUSE_PREEMPTION == 1 )
        UBaseType_t x;
        BaseType_t xCoreYieldList[ configNUM_CORES ] = { pdFALSE };
    #endif /* configUSE_PREEMPTION */

    taskENTER_CRITICAL();
    {
        /* Called by the portable layer each time a tick interrupt occurs.
         * Increments the tick then checks to see if the new tick value will cause any
         * tasks to be unblocked. */
        traceTASK_INCREMENT_TICK( xTickCount );

        /* Tick increment should occur on every kernel timer event. Core 0 has the
         * responsibility to increment the tick, or increment the pended ticks if the
         * scheduler is suspended.  If pended ticks is greater than zero, the core that
         * calls xTaskResumeAll has the responsibility to increment the tick. */
        if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
        {
            /* Minor optimisation.  The tick count cannot change in this
             * block. */
            const TickType_t xConstTickCount = xTickCount + ( TickType_t ) 1;

            /* Increment the RTOS tick, switching the delayed and overflowed
             * delayed lists if it wraps to 0. */
            xTickCount = xConstTickCount;

            if( xConstTickCount == ( TickType_t ) 0U ) /*lint !e774 'if' does not always evaluate to false as it is looking for an overflow. */
            {
                taskSWITCH_DELAYED_LISTS();
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            /* See if this tick has made a timeout expire.  Tasks are stored in
             * the	queue in the order of their wake time - meaning once one task
             * has been found whose block time has not expired there is no need to
             * look any further down the list. */
            if( xConstTickCount >= xNextTaskUnblockTime )
            {
                for( ; ; )
                {
                    if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
                    {
                        /* The delayed list is empty.  Set xNextTaskUnblockTime
                         * to the maximum possible value so it is extremely
                         * unlikely that the
                         * if( xTickCount >= xNextTaskUnblockTime ) test will pass
                         * next time through. */
                        xNextTaskUnblockTime = portMAX_DELAY; /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
                        break;
                    }
                    else
                    {
                        /* The delayed list is not empty, get the value of the
                         * item at the head of the delayed list.  This is the time
                         * at which the task at the head of the delayed list must
                         * be removed from the Blocked state. */
                        pxTCB = listGET_OWNER_OF_HEAD_ENTRY( pxDelayedTaskList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
                        xItemValue = listGET_LIST_ITEM_VALUE( &( pxTCB->xStateListItem ) );

                        if( xConstTickCount < xItemValue )
                        {
                            /* It is not time to unblock this item yet, but the
                             * item value is the time at which the task at the head
                             * of the blocked list must be removed from the Blocked
                             * state -	so record the item value in
                             * xNextTaskUnblockTime. */
                            xNextTaskUnblockTime = xItemValue;
                            break; /*lint !e9011 Code structure here is deemed easier to understand with multiple breaks. */
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }

                        /* It is time to remove the item from the Blocked state. */
                        ( void ) uxListRemove( &( pxTCB->xStateListItem ) );

                        /* Is the task waiting on an event also?  If so remove
                         * it from the event list. */
                        if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
                        {
                            ( void ) uxListRemove( &( pxTCB->xEventListItem ) );
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }

                        /* Place the unblocked task into the appropriate ready
                         * list. */
                        prvAddTaskToReadyList( pxTCB );

                        /* A task being unblocked cannot cause an immediate
                         * context switch if preemption is turned off. */
                        #if ( configUSE_PREEMPTION == 1 )
                            {
                                prvYieldForTask( pxTCB, pdTRUE );
                            }
                        #endif /* configUSE_PREEMPTION */
                    }
                }
            }

            /* Tasks of equal priority to the currently running task will share
             * processing time (time slice) if preemption is on, and the application
             * writer has not explicitly turned time slicing off. */
            #if ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) )
                {
                    /* TODO: If there are fewer "non-IDLE" READY tasks than cores, do not
                     * force a context switch that would just shuffle tasks around cores */
                    /* TODO: There are certainly better ways of doing this that would reduce
                     * the number of interrupts and also potentially help prevent tasks from
                     * moving between cores as often. This, however, works for now. */
                    for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configNUM_CORES; x++ )
                    {
                        if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ pxCurrentTCBs[ x ]->uxPriority ] ) ) > ( UBaseType_t ) 1 )
                        {
                            xCoreYieldList[ x ] = pdTRUE;
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }
                    }
                }
            #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configUSE_TIME_SLICING == 1 ) ) */

            #if ( configUSE_TICK_HOOK == 1 )
                {
                    /* Guard against the tick hook being called when the pended tick
                     * count is being unwound (when the scheduler is being unlocked). */
                    if( xPendedTicks == ( TickType_t ) 0 )
                    {
                        vApplicationTickHook();
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }
                }
            #endif /* configUSE_TICK_HOOK */

            #if ( configUSE_PREEMPTION == 1 )
                {
                    for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configNUM_CORES; x++ )
                    {
                        if( xYieldPendings[ x ] != pdFALSE )
                        {
                            xCoreYieldList[ x ] = pdTRUE;
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }
                    }
                }
            #endif /* configUSE_PREEMPTION */

            #if ( configUSE_PREEMPTION == 1 )
                {
                    BaseType_t xCoreID;

                    xCoreID = portGET_CORE_ID();

                    for( x = ( UBaseType_t ) 0; x < ( UBaseType_t ) configNUM_CORES; x++ )
                    {
                        #if ( configUSE_TASK_PREEMPTION_DISABLE == 1 )
                            if( pxCurrentTCBs[ x ]->xPreemptionDisable == pdFALSE )
                        #endif
                        {
                            if( xCoreYieldList[ x ] != pdFALSE )
                            {
                                if( x == xCoreID )
                                {
                                    xSwitchRequired = pdTRUE;
                                }
                                else
                                {
                                    prvYieldCore( x );
                                }
                            }
                            else
                            {
                                mtCOVERAGE_TEST_MARKER();
                            }
                        }
                    }
                }
            #endif /* configUSE_PREEMPTION */
        }
        else
        {
            ++xPendedTicks;

            /* The tick hook gets called at regular intervals, even if the
             * scheduler is locked. */
            #if ( configUSE_TICK_HOOK == 1 )
                {
                    vApplicationTickHook();
                }
            #endif
        }
    }
    taskEXIT_CRITICAL();

    return xSwitchRequired;
}
/*-----------------------------------------------------------*/

#if ( configUSE_APPLICATION_TASK_TAG == 1 )

    void vTaskSetApplicationTaskTag( TaskHandle_t xTask,
                                     TaskHookFunction_t pxHookFunction )
    {
        TCB_t * xTCB;

        /* If xTask is NULL then it is the task hook of the calling task that is
         * getting set. */
        if( xTask == NULL )
        {
            xTCB = ( TCB_t * ) pxCurrentTCB;
        }
        else
        {
            xTCB = xTask;
        }

        /* Save the hook function in the TCB.  A critical section is required as
         * the value can be accessed from an interrupt. */
        taskENTER_CRITICAL();
        {
            xTCB->pxTaskTag = pxHookFunction;
        }
        taskEXIT_CRITICAL();
    }

#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/

#if ( configUSE_APPLICATION_TASK_TAG == 1 )

    TaskHookFunction_t xTaskGetApplicationTaskTag( TaskHandle_t xTask )
    {
        TCB_t * pxTCB;
        TaskHookFunction_t xReturn;

        /* If xTask is NULL then set the calling task's hook. */
        pxTCB = prvGetTCBFromHandle( xTask );

        /* Save the hook function in the TCB.  A critical section is required as
         * the value can be accessed from an interrupt. */
        taskENTER_CRITICAL();
        {
            xReturn = pxTCB->pxTaskTag;
        }
        taskEXIT_CRITICAL();

        return xReturn;
    }

#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/

#if ( configUSE_APPLICATION_TASK_TAG == 1 )

    TaskHookFunction_t xTaskGetApplicationTaskTagFromISR( TaskHandle_t xTask )
    {
        TCB_t * pxTCB;
        TaskHookFunction_t xReturn;
        UBaseType_t uxSavedInterruptStatus;

        /* If xTask is NULL then set the calling task's hook. */
        pxTCB = prvGetTCBFromHandle( xTask );

        /* Save the hook function in the TCB.  A critical section is required as
         * the value can be accessed from an interrupt. */
        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
        {
            xReturn = pxTCB->pxTaskTag;
        }
        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );

        return xReturn;
    }

#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/

#if ( configUSE_APPLICATION_TASK_TAG == 1 )

    BaseType_t xTaskCallApplicationTaskHook( TaskHandle_t xTask,
                                             void * pvParameter )
    {
        TCB_t * xTCB;
        BaseType_t xReturn;

        /* If xTask is NULL then we are calling our own task hook. */
        if( xTask == NULL )
        {
            xTCB = pxCurrentTCB;
        }
        else
        {
            xTCB = xTask;
        }

        if( xTCB->pxTaskTag != NULL )
        {
            xReturn = xTCB->pxTaskTag( pvParameter );
        }
        else
        {
            xReturn = pdFAIL;
        }

        return xReturn;
    }

#endif /* configUSE_APPLICATION_TASK_TAG */
/*-----------------------------------------------------------*/

void vTaskSwitchContext( BaseType_t xCoreID )
{
    /* Acquire both locks:
     * - The ISR lock protects the ready list from simultaneous access by
     *  both other ISRs and tasks.
     * - We also take the task lock to pause here in case another core has
     *  suspended the scheduler. We don't want to simply set xYieldPending
     *  and move on if another core suspended the scheduler. We should only
     *  do that if the current core has suspended the scheduler. */

    portGET_TASK_LOCK(); /* Must always acquire the task lock first */
    portGET_ISR_LOCK();
    {
        /* vTaskSwitchContext() must never be called from within a critical section.
         * This is not necessarily true for vanilla FreeRTOS, but it is for this SMP port. */
        configASSERT( pxCurrentTCB->uxCriticalNesting == 0 );

        if( uxSchedulerSuspended != ( UBaseType_t ) pdFALSE )
        {
            /* The scheduler is currently suspended - do not allow a context
             * switch. */
            xYieldPendings[ xCoreID ] = pdTRUE;
        }
        else
        {
            xYieldPendings[ xCoreID ] = pdFALSE;
            traceTASK_SWITCHED_OUT();

            #if ( configGENERATE_RUN_TIME_STATS == 1 )
                {
                    #ifdef portALT_GET_RUN_TIME_COUNTER_VALUE
                        portALT_GET_RUN_TIME_COUNTER_VALUE( ulTotalRunTime );
                    #else
                        ulTotalRunTime = portGET_RUN_TIME_COUNTER_VALUE();
                    #endif

                    /* Add the amount of time the task has been running to the
                     * accumulated time so far.  The time the task started running was
                     * stored in ulTaskSwitchedInTime.  Note that there is no overflow
                     * protection here so count values are only valid until the timer
                     * overflows.  The guard against negative values is to protect
                     * against suspect run time stat counter implementations - which
                     * are provided by the application, not the kernel. */
                    if( ulTotalRunTime > ulTaskSwitchedInTime )
                    {
                        pxCurrentTCB->ulRunTimeCounter += ( ulTotalRunTime - ulTaskSwitchedInTime );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    ulTaskSwitchedInTime = ulTotalRunTime;
                }
            #endif /* configGENERATE_RUN_TIME_STATS */

            /* Check for stack overflow, if configured. */
            taskCHECK_FOR_STACK_OVERFLOW();

            /* Before the currently running task is switched out, save its errno. */
            #if ( configUSE_POSIX_ERRNO == 1 )
                {
                    pxCurrentTCB->iTaskErrno = FreeRTOS_errno;
                }
            #endif

            /* Select a new task to run using either the generic C or port
             * optimised asm code. */
            ( void ) prvSelectHighestPriorityTask( xCoreID );
            traceTASK_SWITCHED_IN();

            /* After the new task is switched in, update the global errno. */
            #if ( configUSE_POSIX_ERRNO == 1 )
                {
                    FreeRTOS_errno = pxCurrentTCB->iTaskErrno;
                }
            #endif

            #if ( ( configUSE_NEWLIB_REENTRANT == 1 ) && ( configNEWLIB_REENTRANT_IS_DYNAMIC == 0 ) )
                {
                    /* Switch Newlib's _impure_ptr variable to point to the _reent
                     * structure specific to this task.
                     * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
                     * for additional information.
                     *
                     * Note: Updating the _impure_ptr is not required when Newlib is compiled with
                     * __DYNAMIC_REENT__ enabled. The the port should provide __getreent() instead. */
                    _impure_ptr = &( pxCurrentTCB->xNewLib_reent );
                }
            #endif /* ( configUSE_NEWLIB_REENTRANT == 1 ) && ( configNEWLIB_REENTRANT_IS_DYNAMIC == 0 ) */
        }
    }
    portRELEASE_ISR_LOCK();
    portRELEASE_TASK_LOCK();
}
/*-----------------------------------------------------------*/

void vTaskPlaceOnEventList( List_t * const pxEventList,
                            const TickType_t xTicksToWait )
{
    configASSERT( pxEventList );

    /* THIS FUNCTION MUST BE CALLED WITH EITHER INTERRUPTS DISABLED OR THE
     * SCHEDULER SUSPENDED AND THE QUEUE BEING ACCESSED LOCKED. */

    /* Place the event list item of the TCB in the appropriate event list.
     * This is placed in the list in priority order so the highest priority task
     * is the first to be woken by the event.  The queue that contains the event
     * list is locked, preventing simultaneous access from interrupts. */
    vListInsert( pxEventList, &( pxCurrentTCB->xEventListItem ) );

    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
/*-----------------------------------------------------------*/

void vTaskPlaceOnUnorderedEventList( List_t * pxEventList,
                                     const TickType_t xItemValue,
                                     const TickType_t xTicksToWait )
{
    configASSERT( pxEventList );

    /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
     * the event groups implementation. */
    configASSERT( uxSchedulerSuspended != 0 );

    /* Store the item value in the event list item.  It is safe to access the
     * event list item here as interrupts won't access the event list item of a
     * task that is not in the Blocked state. */
    listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );

    /* Place the event list item of the TCB at the end of the appropriate event
     * list.  It is safe to access the event list here because it is part of an
     * event group implementation - and interrupts don't access event groups
     * directly (instead they access them indirectly by pending function calls to
     * the task level). */
    vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );

    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
}
/*-----------------------------------------------------------*/

#if ( configUSE_TIMERS == 1 )

    void vTaskPlaceOnEventListRestricted( List_t * const pxEventList,
                                          TickType_t xTicksToWait,
                                          const BaseType_t xWaitIndefinitely )
    {
        configASSERT( pxEventList );

        /* This function should not be called by application code hence the
         * 'Restricted' in its name.  It is not part of the public API.  It is
         * designed for use by kernel code, and has special calling requirements -
         * it should be called with the scheduler suspended. */


        /* Place the event list item of the TCB in the appropriate event list.
         * In this case it is assume that this is the only task that is going to
         * be waiting on this event list, so the faster vListInsertEnd() function
         * can be used in place of vListInsert. */
        vListInsertEnd( pxEventList, &( pxCurrentTCB->xEventListItem ) );

        /* If the task should block indefinitely then set the block time to a
         * value that will be recognised as an indefinite delay inside the
         * prvAddCurrentTaskToDelayedList() function. */
        if( xWaitIndefinitely != pdFALSE )
        {
            xTicksToWait = portMAX_DELAY;
        }

        traceTASK_DELAY_UNTIL( ( xTickCount + xTicksToWait ) );
        prvAddCurrentTaskToDelayedList( xTicksToWait, xWaitIndefinitely );
    }

#endif /* configUSE_TIMERS */
/*-----------------------------------------------------------*/

BaseType_t xTaskRemoveFromEventList( const List_t * const pxEventList )
{
    TCB_t * pxUnblockedTCB;
    BaseType_t xReturn;

    /* THIS FUNCTION MUST BE CALLED FROM A CRITICAL SECTION.  It can also be
     * called from a critical section within an ISR. */

    /* The event list is sorted in priority order, so the first in the list can
     * be removed as it is known to be the highest priority.  Remove the TCB from
     * the delayed list, and add it to the ready list.
     *
     * If an event is for a queue that is locked then this function will never
     * get called - the lock count on the queue will get modified instead.  This
     * means exclusive access to the event list is guaranteed here.
     *
     * This function assumes that a check has already been made to ensure that
     * pxEventList is not empty. */
    pxUnblockedTCB = listGET_OWNER_OF_HEAD_ENTRY( pxEventList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
    configASSERT( pxUnblockedTCB );
    ( void ) uxListRemove( &( pxUnblockedTCB->xEventListItem ) );

    if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
    {
        ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
        prvAddTaskToReadyList( pxUnblockedTCB );

        #if ( configUSE_TICKLESS_IDLE != 0 )
            {
                /* If a task is blocked on a kernel object then xNextTaskUnblockTime
                 * might be set to the blocked task's time out time.  If the task is
                 * unblocked for a reason other than a timeout xNextTaskUnblockTime is
                 * normally left unchanged, because it is automatically reset to a new
                 * value when the tick count equals xNextTaskUnblockTime.  However if
                 * tickless idling is used it might be more important to enter sleep mode
                 * at the earliest possible time - so reset xNextTaskUnblockTime here to
                 * ensure it is updated at the earliest possible time. */
                prvResetNextTaskUnblockTime();
            }
        #endif
    }
    else
    {
        /* The delayed and ready lists cannot be accessed, so hold this task
         * pending until the scheduler is resumed. */
        vListInsertEnd( &( xPendingReadyList ), &( pxUnblockedTCB->xEventListItem ) );
    }

    xReturn = pdFALSE;
    #if ( configUSE_PREEMPTION == 1 )
        prvYieldForTask( pxUnblockedTCB, pdFALSE );

        if( xYieldPendings[ portGET_CORE_ID() ] != pdFALSE )
        {
            xReturn = pdTRUE;
        }
    #endif

    return xReturn;
}
/*-----------------------------------------------------------*/

void vTaskRemoveFromUnorderedEventList( ListItem_t * pxEventListItem,
                                        const TickType_t xItemValue )
{
    TCB_t * pxUnblockedTCB;

    /* THIS FUNCTION MUST BE CALLED WITH THE SCHEDULER SUSPENDED.  It is used by
     * the event flags implementation. */
    configASSERT( uxSchedulerSuspended != pdFALSE );

    /* Store the new item value in the event list. */
    listSET_LIST_ITEM_VALUE( pxEventListItem, xItemValue | taskEVENT_LIST_ITEM_VALUE_IN_USE );

    /* Remove the event list form the event flag.  Interrupts do not access
     * event flags. */
    pxUnblockedTCB = listGET_LIST_ITEM_OWNER( pxEventListItem ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
    configASSERT( pxUnblockedTCB );
    ( void ) uxListRemove( pxEventListItem );

    #if ( configUSE_TICKLESS_IDLE != 0 )
        {
            /* If a task is blocked on a kernel object then xNextTaskUnblockTime
             * might be set to the blocked task's time out time.  If the task is
             * unblocked for a reason other than a timeout xNextTaskUnblockTime is
             * normally left unchanged, because it is automatically reset to a new
             * value when the tick count equals xNextTaskUnblockTime.  However if
             * tickless idling is used it might be more important to enter sleep mode
             * at the earliest possible time - so reset xNextTaskUnblockTime here to
             * ensure it is updated at the earliest possible time. */
            prvResetNextTaskUnblockTime();
        }
    #endif

    /* Remove the task from the delayed list and add it to the ready list.  The
     * scheduler is suspended so interrupts will not be accessing the ready
     * lists. */
    ( void ) uxListRemove( &( pxUnblockedTCB->xStateListItem ) );
    prvAddTaskToReadyList( pxUnblockedTCB );

    #if ( configUSE_PREEMPTION == 1 )
        taskENTER_CRITICAL();
        {
            prvYieldForTask( pxUnblockedTCB, pdFALSE );
        }
        taskEXIT_CRITICAL();
    #endif
}
/*-----------------------------------------------------------*/

void vTaskSetTimeOutState( TimeOut_t * const pxTimeOut )
{
    configASSERT( pxTimeOut );
    taskENTER_CRITICAL();
    {
        pxTimeOut->xOverflowCount = xNumOfOverflows;
        pxTimeOut->xTimeOnEntering = xTickCount;
    }
    taskEXIT_CRITICAL();
}
/*-----------------------------------------------------------*/

void vTaskInternalSetTimeOutState( TimeOut_t * const pxTimeOut )
{
    /* For internal use only as it does not use a critical section. */
    pxTimeOut->xOverflowCount = xNumOfOverflows;
    pxTimeOut->xTimeOnEntering = xTickCount;
}
/*-----------------------------------------------------------*/

BaseType_t xTaskCheckForTimeOut( TimeOut_t * const pxTimeOut,
                                 TickType_t * const pxTicksToWait )
{
    BaseType_t xReturn;

    configASSERT( pxTimeOut );
    configASSERT( pxTicksToWait );

    taskENTER_CRITICAL();
    {
        /* Minor optimisation.  The tick count cannot change in this block. */
        const TickType_t xConstTickCount = xTickCount;
        const TickType_t xElapsedTime = xConstTickCount - pxTimeOut->xTimeOnEntering;

        #if ( INCLUDE_xTaskAbortDelay == 1 )
            if( pxCurrentTCB->ucDelayAborted != ( uint8_t ) pdFALSE )
            {
                /* The delay was aborted, which is not the same as a time out,
                 * but has the same result. */
                pxCurrentTCB->ucDelayAborted = pdFALSE;
                xReturn = pdTRUE;
            }
            else
        #endif

        #if ( INCLUDE_vTaskSuspend == 1 )
            if( *pxTicksToWait == portMAX_DELAY )
            {
                /* If INCLUDE_vTaskSuspend is set to 1 and the block time
                 * specified is the maximum block time then the task should block
                 * indefinitely, and therefore never time out. */
                xReturn = pdFALSE;
            }
            else
        #endif

        if( ( xNumOfOverflows != pxTimeOut->xOverflowCount ) && ( xConstTickCount >= pxTimeOut->xTimeOnEntering ) ) /*lint !e525 Indentation preferred as is to make code within pre-processor directives clearer. */
        {
            /* The tick count is greater than the time at which
             * vTaskSetTimeout() was called, but has also overflowed since
             * vTaskSetTimeOut() was called.  It must have wrapped all the way
             * around and gone past again. This passed since vTaskSetTimeout()
             * was called. */
            xReturn = pdTRUE;
            *pxTicksToWait = ( TickType_t ) 0;
        }
        else if( xElapsedTime < *pxTicksToWait ) /*lint !e961 Explicit casting is only redundant with some compilers, whereas others require it to prevent integer conversion errors. */
        {
            /* Not a genuine timeout. Adjust parameters for time remaining. */
            *pxTicksToWait -= xElapsedTime;
            vTaskInternalSetTimeOutState( pxTimeOut );
            xReturn = pdFALSE;
        }
        else
        {
            *pxTicksToWait = ( TickType_t ) 0;
            xReturn = pdTRUE;
        }
    }
    taskEXIT_CRITICAL();

    return xReturn;
}
/*-----------------------------------------------------------*/

void vTaskMissedYield( void )
{
    /* Must be called from within a critical section */
    xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
}
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

    UBaseType_t uxTaskGetTaskNumber( TaskHandle_t xTask )
    {
        UBaseType_t uxReturn;
        TCB_t const * pxTCB;

        if( xTask != NULL )
        {
            pxTCB = xTask;
            uxReturn = pxTCB->uxTaskNumber;
        }
        else
        {
            uxReturn = 0U;
        }

        return uxReturn;
    }

#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

    void vTaskSetTaskNumber( TaskHandle_t xTask,
                             const UBaseType_t uxHandle )
    {
        TCB_t * pxTCB;

        if( xTask != NULL )
        {
            pxTCB = xTask;
            pxTCB->uxTaskNumber = uxHandle;
        }
    }

#endif /* configUSE_TRACE_FACILITY */

/*
 * -----------------------------------------------------------
 * The MinimalIdle task.
 * ----------------------------------------------------------
 *
 * The minimal idle task is used for all the additional Cores in a SMP system.
 * There must be only 1 idle task and the rest are minimal idle tasks.
 *
 * @todo additional conditional compiles to remove this function.
 */

#if ( configNUM_CORES > 1 )
    static portTASK_FUNCTION( prvMinimalIdleTask, pvParameters )
    {
        taskYIELD();

        for( ; ; )
        {
            #if ( configUSE_PREEMPTION == 0 )
                {
                    /* If we are not using preemption we keep forcing a task switch to
                     * see if any other task has become available.  If we are using
                     * preemption we don't need to do this as any task becoming available
                     * will automatically get the processor anyway. */
                    taskYIELD();
                }
            #endif /* configUSE_PREEMPTION */

            #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
                {
                    /* When using preemption tasks of equal priority will be
                     * timesliced.  If a task that is sharing the idle priority is ready
                     * to run then the idle task should yield before the end of the
                     * timeslice.
                     *
                     * A critical region is not required here as we are just reading from
                     * the list, and an occasional incorrect value will not matter.  If
                     * the ready list at the idle priority contains one more task than the
                     * number of idle tasks, which is equal to the configured numbers of cores
                     * then a task other than the idle task is ready to execute. */
                    if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUM_CORES )
                    {
                        taskYIELD();
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }
                }
            #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */

            #if ( configUSE_MINIMAL_IDLE_HOOK == 1 )
                {
                    extern void vApplicationMinimalIdleHook( void );

                    /* Call the user defined function from within the idle task.  This
                     * allows the application designer to add background functionality
                     * without the overhead of a separate task.
                     *
                     * This hook is intended to manage core activity such as disabling cores that go idle.
                     *
                     * NOTE: vApplicationMinimalIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
                     * CALL A FUNCTION THAT MIGHT BLOCK. */
                    vApplicationMinimalIdleHook();
                }
            #endif /* configUSE_MINIMAL_IDLE_HOOK */
        }
    }
#endif /* if ( configNUM_CORES > 1 ) */

/*
 * -----------------------------------------------------------
 * The Idle task.
 * ----------------------------------------------------------
 *
 *
 */
static portTASK_FUNCTION( prvIdleTask, pvParameters )
{
    /* Stop warnings. */
    ( void ) pvParameters;

    /** THIS IS THE RTOS IDLE TASK - WHICH IS CREATED AUTOMATICALLY WHEN THE
     * SCHEDULER IS STARTED. **/

    /* In case a task that has a secure context deletes itself, in which case
     * the idle task is responsible for deleting the task's secure context, if
     * any. */
    portALLOCATE_SECURE_CONTEXT( configMINIMAL_SECURE_STACK_SIZE );

    /* All cores start up in the idle task. This initial yield gets the application
     * tasks started. */
    taskYIELD();

    for( ; ; )
    {
        /* See if any tasks have deleted themselves - if so then the idle task
         * is responsible for freeing the deleted task's TCB and stack. */
        prvCheckTasksWaitingTermination();

        #if ( configUSE_PREEMPTION == 0 )
            {
                /* If we are not using preemption we keep forcing a task switch to
                 * see if any other task has become available.  If we are using
                 * preemption we don't need to do this as any task becoming available
                 * will automatically get the processor anyway. */
                taskYIELD();
            }
        #endif /* configUSE_PREEMPTION */

        #if ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) )
            {
                /* When using preemption tasks of equal priority will be
                 * timesliced.  If a task that is sharing the idle priority is ready
                 * to run then the idle task should yield before the end of the
                 * timeslice.
                 *
                 * A critical region is not required here as we are just reading from
                 * the list, and an occasional incorrect value will not matter.  If
                 * the ready list at the idle priority contains one more task than the
                 * number of idle tasks, which is equal to the configured numbers of cores
                 * then a task other than the idle task is ready to execute. */
                if( listCURRENT_LIST_LENGTH( &( pxReadyTasksLists[ tskIDLE_PRIORITY ] ) ) > ( UBaseType_t ) configNUM_CORES )
                {
                    taskYIELD();
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
        #endif /* ( ( configUSE_PREEMPTION == 1 ) && ( configIDLE_SHOULD_YIELD == 1 ) ) */

        #if ( configUSE_IDLE_HOOK == 1 )
            {
                extern void vApplicationIdleHook( void );

                /* Call the user defined function from within the idle task.  This
                 * allows the application designer to add background functionality
                 * without the overhead of a separate task.
                 *
                 * NOTE: vApplicationIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
                 * CALL A FUNCTION THAT MIGHT BLOCK. */
                vApplicationIdleHook();
            }
        #endif /* configUSE_IDLE_HOOK */

        /* This conditional compilation should use inequality to 0, not equality
         * to 1.  This is to ensure portSUPPRESS_TICKS_AND_SLEEP() is called when
         * user defined low power mode  implementations require
         * configUSE_TICKLESS_IDLE to be set to a value other than 1. */
        #if ( configUSE_TICKLESS_IDLE != 0 )
            {
                TickType_t xExpectedIdleTime;

                /* It is not desirable to suspend then resume the scheduler on
                 * each iteration of the idle task.  Therefore, a preliminary
                 * test of the expected idle time is performed without the
                 * scheduler suspended.  The result here is not necessarily
                 * valid. */
                xExpectedIdleTime = prvGetExpectedIdleTime();

                if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
                {
                    vTaskSuspendAll();
                    {
                        /* Now the scheduler is suspended, the expected idle
                         * time can be sampled again, and this time its value can
                         * be used. */
                        configASSERT( xNextTaskUnblockTime >= xTickCount );
                        xExpectedIdleTime = prvGetExpectedIdleTime();

                        /* Define the following macro to set xExpectedIdleTime to 0
                         * if the application does not want
                         * portSUPPRESS_TICKS_AND_SLEEP() to be called. */
                        configPRE_SUPPRESS_TICKS_AND_SLEEP_PROCESSING( xExpectedIdleTime );

                        if( xExpectedIdleTime >= configEXPECTED_IDLE_TIME_BEFORE_SLEEP )
                        {
                            traceLOW_POWER_IDLE_BEGIN();
                            portSUPPRESS_TICKS_AND_SLEEP( xExpectedIdleTime );
                            traceLOW_POWER_IDLE_END();
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }
                    }
                    ( void ) xTaskResumeAll();
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
        #endif /* configUSE_TICKLESS_IDLE */

        #if ( configUSE_MINIMAL_IDLE_HOOK == 1 )
            {
                extern void vApplicationMinimalIdleHook( void );

                /* Call the user defined function from within the idle task.  This
                 * allows the application designer to add background functionality
                 * without the overhead of a separate task.
                 *
                 * This hook is intended to manage core activity such as disabling cores that go idle.
                 *
                 * NOTE: vApplicationMinimalIdleHook() MUST NOT, UNDER ANY CIRCUMSTANCES,
                 * CALL A FUNCTION THAT MIGHT BLOCK. */
                vApplicationMinimalIdleHook();
            }
        #endif /* configUSE_MINIMAL_IDLE_HOOK */
    }
}
/*-----------------------------------------------------------*/

#if ( configUSE_TICKLESS_IDLE != 0 )

    eSleepModeStatus eTaskConfirmSleepModeStatus( void )
    {
        /* The idle task exists in addition to the application tasks. */
        const UBaseType_t uxNonApplicationTasks = 1;
        eSleepModeStatus eReturn = eStandardSleep;

        /* This function must be called from a critical section. */

        if( listCURRENT_LIST_LENGTH( &xPendingReadyList ) != 0 )
        {
            /* A task was made ready while the scheduler was suspended. */
            eReturn = eAbortSleep;
        }
        else if( xYieldPending != pdFALSE )
        {
            /* A yield was pended while the scheduler was suspended. */
            eReturn = eAbortSleep;
        }
        else if( xPendedTicks != 0 )
        {
            /* A tick interrupt has already occurred but was held pending
             * because the scheduler is suspended. */
            eReturn = eAbortSleep;
        }
        else
        {
            /* If all the tasks are in the suspended list (which might mean they
             * have an infinite block time rather than actually being suspended)
             * then it is safe to turn all clocks off and just wait for external
             * interrupts. */
            if( listCURRENT_LIST_LENGTH( &xSuspendedTaskList ) == ( uxCurrentNumberOfTasks - uxNonApplicationTasks ) )
            {
                eReturn = eNoTasksWaitingTimeout;
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }

        return eReturn;
    }

#endif /* configUSE_TICKLESS_IDLE */
/*-----------------------------------------------------------*/

#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )

    void vTaskSetThreadLocalStoragePointer( TaskHandle_t xTaskToSet,
                                            BaseType_t xIndex,
                                            void * pvValue )
    {
        TCB_t * pxTCB;

        if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
        {
            pxTCB = prvGetTCBFromHandle( xTaskToSet );
            configASSERT( pxTCB != NULL );
            pxTCB->pvThreadLocalStoragePointers[ xIndex ] = pvValue;
        }
    }

#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/

#if ( configNUM_THREAD_LOCAL_STORAGE_POINTERS != 0 )

    void * pvTaskGetThreadLocalStoragePointer( TaskHandle_t xTaskToQuery,
                                               BaseType_t xIndex )
    {
        void * pvReturn = NULL;
        TCB_t * pxTCB;

        if( xIndex < configNUM_THREAD_LOCAL_STORAGE_POINTERS )
        {
            pxTCB = prvGetTCBFromHandle( xTaskToQuery );
            pvReturn = pxTCB->pvThreadLocalStoragePointers[ xIndex ];
        }
        else
        {
            pvReturn = NULL;
        }

        return pvReturn;
    }

#endif /* configNUM_THREAD_LOCAL_STORAGE_POINTERS */
/*-----------------------------------------------------------*/

#if ( portUSING_MPU_WRAPPERS == 1 )

    void vTaskAllocateMPURegions( TaskHandle_t xTaskToModify,
                                  const MemoryRegion_t * const xRegions )
    {
        TCB_t * pxTCB;

        /* If null is passed in here then we are modifying the MPU settings of
         * the calling task. */
        pxTCB = prvGetTCBFromHandle( xTaskToModify );

        vPortStoreTaskMPUSettings( &( pxTCB->xMPUSettings ), xRegions, NULL, 0 );
    }

#endif /* portUSING_MPU_WRAPPERS */
/*-----------------------------------------------------------*/

static void prvInitialiseTaskLists( void )
{
    UBaseType_t uxPriority;

    for( uxPriority = ( UBaseType_t ) 0U; uxPriority < ( UBaseType_t ) configMAX_PRIORITIES; uxPriority++ )
    {
        vListInitialise( &( pxReadyTasksLists[ uxPriority ] ) );
    }

    vListInitialise( &xDelayedTaskList1 );
    vListInitialise( &xDelayedTaskList2 );
    vListInitialise( &xPendingReadyList );

    #if ( INCLUDE_vTaskDelete == 1 )
        {
            vListInitialise( &xTasksWaitingTermination );
        }
    #endif /* INCLUDE_vTaskDelete */

    #if ( INCLUDE_vTaskSuspend == 1 )
        {
            vListInitialise( &xSuspendedTaskList );
        }
    #endif /* INCLUDE_vTaskSuspend */

    /* Start with pxDelayedTaskList using list1 and the pxOverflowDelayedTaskList
     * using list2. */
    pxDelayedTaskList = &xDelayedTaskList1;
    pxOverflowDelayedTaskList = &xDelayedTaskList2;
}
/*-----------------------------------------------------------*/

static void prvCheckTasksWaitingTermination( void )
{
    /** THIS FUNCTION IS CALLED FROM THE RTOS IDLE TASK **/

    #if ( INCLUDE_vTaskDelete == 1 )
        {
            TCB_t * pxTCB;

            /* uxDeletedTasksWaitingCleanUp is used to prevent taskENTER_CRITICAL()
             * being called too often in the idle task. */
            while( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
            {
                taskENTER_CRITICAL();
                {
                    /* Since we are SMP, multiple idles can be running simultaneously
                     * and we need to check that other idles did not cleanup while we were
                     * waiting to enter the critical section */
                    if( uxDeletedTasksWaitingCleanUp > ( UBaseType_t ) 0U )
                    {
                        pxTCB = listGET_OWNER_OF_HEAD_ENTRY( ( &xTasksWaitingTermination ) ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */

                        if( pxTCB->xTaskRunState == taskTASK_NOT_RUNNING )
                        {
                            ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
                            --uxCurrentNumberOfTasks;
                            --uxDeletedTasksWaitingCleanUp;
                            prvDeleteTCB( pxTCB );
                        }
                        else
                        {
                            /* The TCB to be deleted still has not yet been switched out
                             * by the scheduler, so we will just exit this loop early and
                             * try again next time. */
                            taskEXIT_CRITICAL();
                            break;
                        }
                    }
                }
                taskEXIT_CRITICAL();
            }
        }
    #endif /* INCLUDE_vTaskDelete */
}
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

    void vTaskGetInfo( TaskHandle_t xTask,
                       TaskStatus_t * pxTaskStatus,
                       BaseType_t xGetFreeStackSpace,
                       eTaskState eState )
    {
        TCB_t * pxTCB;

        /* xTask is NULL then get the state of the calling task. */
        pxTCB = prvGetTCBFromHandle( xTask );

        pxTaskStatus->xHandle = ( TaskHandle_t ) pxTCB;
        pxTaskStatus->pcTaskName = ( const char * ) &( pxTCB->pcTaskName[ 0 ] );
        pxTaskStatus->uxCurrentPriority = pxTCB->uxPriority;
        pxTaskStatus->pxStackBase = pxTCB->pxStack;
        pxTaskStatus->xTaskNumber = pxTCB->uxTCBNumber;

        #if ( configUSE_MUTEXES == 1 )
            {
                pxTaskStatus->uxBasePriority = pxTCB->uxBasePriority;
            }
        #else
            {
                pxTaskStatus->uxBasePriority = 0;
            }
        #endif

        #if ( configGENERATE_RUN_TIME_STATS == 1 )
            {
                pxTaskStatus->ulRunTimeCounter = pxTCB->ulRunTimeCounter;
            }
        #else
            {
                pxTaskStatus->ulRunTimeCounter = 0;
            }
        #endif

        /* Obtaining the task state is a little fiddly, so is only done if the
         * value of eState passed into this function is eInvalid - otherwise the
         * state is just set to whatever is passed in. */
        if( eState != eInvalid )
        {
            if( taskTASK_IS_RUNNING( pxTCB->xTaskRunState ) )
            {
                pxTaskStatus->eCurrentState = eRunning;
            }
            else
            {
                pxTaskStatus->eCurrentState = eState;

                #if ( INCLUDE_vTaskSuspend == 1 )
                    {
                        /* If the task is in the suspended list then there is a
                         *  chance it is actually just blocked indefinitely - so really
                         *  it should be reported as being in the Blocked state. */
                        if( eState == eSuspended )
                        {
                            vTaskSuspendAll();
                            {
                                if( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) != NULL )
                                {
                                    pxTaskStatus->eCurrentState = eBlocked;
                                }
                            }
                            ( void ) xTaskResumeAll();
                        }
                    }
                #endif /* INCLUDE_vTaskSuspend */
            }
        }
        else
        {
            pxTaskStatus->eCurrentState = eTaskGetState( pxTCB );
        }

        /* Obtaining the stack space takes some time, so the xGetFreeStackSpace
         * parameter is provided to allow it to be skipped. */
        if( xGetFreeStackSpace != pdFALSE )
        {
            #if ( portSTACK_GROWTH > 0 )
                {
                    pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxEndOfStack );
                }
            #else
                {
                    pxTaskStatus->usStackHighWaterMark = prvTaskCheckFreeStackSpace( ( uint8_t * ) pxTCB->pxStack );
                }
            #endif
        }
        else
        {
            pxTaskStatus->usStackHighWaterMark = 0;
        }
    }

#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/

#if ( configUSE_TRACE_FACILITY == 1 )

    static UBaseType_t prvListTasksWithinSingleList( TaskStatus_t * pxTaskStatusArray,
                                                     List_t * pxList,
                                                     eTaskState eState )
    {
        configLIST_VOLATILE TCB_t * pxNextTCB, * pxFirstTCB;
        UBaseType_t uxTask = 0;

        if( listCURRENT_LIST_LENGTH( pxList ) > ( UBaseType_t ) 0 )
        {
            listGET_OWNER_OF_NEXT_ENTRY( pxFirstTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */

            /* Populate an TaskStatus_t structure within the
             * pxTaskStatusArray array for each task that is referenced from
             * pxList.  See the definition of TaskStatus_t in task.h for the
             * meaning of each TaskStatus_t structure member. */
            do
            {
                listGET_OWNER_OF_NEXT_ENTRY( pxNextTCB, pxList ); /*lint !e9079 void * is used as this macro is used with timers and co-routines too.  Alignment is known to be fine as the type of the pointer stored and retrieved is the same. */
                vTaskGetInfo( ( TaskHandle_t ) pxNextTCB, &( pxTaskStatusArray[ uxTask ] ), pdTRUE, eState );
                uxTask++;
            } while( pxNextTCB != pxFirstTCB );
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        return uxTask;
    }

#endif /* configUSE_TRACE_FACILITY */
/*-----------------------------------------------------------*/

#if ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) )

    static configSTACK_DEPTH_TYPE prvTaskCheckFreeStackSpace( const uint8_t * pucStackByte )
    {
        uint32_t ulCount = 0U;

        while( *pucStackByte == ( uint8_t ) tskSTACK_FILL_BYTE )
        {
            pucStackByte -= portSTACK_GROWTH;
            ulCount++;
        }

        ulCount /= ( uint32_t ) sizeof( StackType_t ); /*lint !e961 Casting is not redundant on smaller architectures. */

        return ( configSTACK_DEPTH_TYPE ) ulCount;
    }

#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark == 1 ) || ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( INCLUDE_uxTaskGetStackHighWaterMark2 == 1 )

/* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are the
 * same except for their return type.  Using configSTACK_DEPTH_TYPE allows the
 * user to determine the return type.  It gets around the problem of the value
 * overflowing on 8-bit types without breaking backward compatibility for
 * applications that expect an 8-bit return type. */
    configSTACK_DEPTH_TYPE uxTaskGetStackHighWaterMark2( TaskHandle_t xTask )
    {
        TCB_t * pxTCB;
        uint8_t * pucEndOfStack;
        configSTACK_DEPTH_TYPE uxReturn;

        /* uxTaskGetStackHighWaterMark() and uxTaskGetStackHighWaterMark2() are
         * the same except for their return type.  Using configSTACK_DEPTH_TYPE
         * allows the user to determine the return type.  It gets around the
         * problem of the value overflowing on 8-bit types without breaking
         * backward compatibility for applications that expect an 8-bit return
         * type. */

        pxTCB = prvGetTCBFromHandle( xTask );

        #if portSTACK_GROWTH < 0
            {
                pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
            }
        #else
            {
                pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
            }
        #endif

        uxReturn = prvTaskCheckFreeStackSpace( pucEndOfStack );

        return uxReturn;
    }

#endif /* INCLUDE_uxTaskGetStackHighWaterMark2 */
/*-----------------------------------------------------------*/

#if ( INCLUDE_uxTaskGetStackHighWaterMark == 1 )

    UBaseType_t uxTaskGetStackHighWaterMark( TaskHandle_t xTask )
    {
        TCB_t * pxTCB;
        uint8_t * pucEndOfStack;
        UBaseType_t uxReturn;

        pxTCB = prvGetTCBFromHandle( xTask );

        #if portSTACK_GROWTH < 0
            {
                pucEndOfStack = ( uint8_t * ) pxTCB->pxStack;
            }
        #else
            {
                pucEndOfStack = ( uint8_t * ) pxTCB->pxEndOfStack;
            }
        #endif

        uxReturn = ( UBaseType_t ) prvTaskCheckFreeStackSpace( pucEndOfStack );

        return uxReturn;
    }

#endif /* INCLUDE_uxTaskGetStackHighWaterMark */
/*-----------------------------------------------------------*/

#if ( INCLUDE_vTaskDelete == 1 )

    static void prvDeleteTCB( TCB_t * pxTCB )
    {
        /* This call is required specifically for the TriCore port.  It must be
         * above the vPortFree() calls.  The call is also used by ports/demos that
         * want to allocate and clean RAM statically. */
        portCLEAN_UP_TCB( pxTCB );

        /* Free up the memory allocated by the scheduler for the task.  It is up
         * to the task to free any memory allocated at the application level.
         * See the third party link http://www.nadler.com/embedded/newlibAndFreeRTOS.html
         * for additional information. */
        #if ( configUSE_NEWLIB_REENTRANT == 1 )
            {
                _reclaim_reent( &( pxTCB->xNewLib_reent ) );
            }
        #endif /* configUSE_NEWLIB_REENTRANT */

        #if ( ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) && ( configSUPPORT_STATIC_ALLOCATION == 0 ) && ( portUSING_MPU_WRAPPERS == 0 ) )
            {
                /* The task can only have been allocated dynamically - free both
                 * the stack and TCB. */
                vPortFreeStack( pxTCB->pxStack );
                vPortFree( pxTCB );
            }
        #elif ( tskSTATIC_AND_DYNAMIC_ALLOCATION_POSSIBLE != 0 ) /*lint !e731 !e9029 Macro has been consolidated for readability reasons. */
            {
                /* The task could have been allocated statically or dynamically, so
                 * check what was statically allocated before trying to free the
                 * memory. */
                if( pxTCB->ucStaticallyAllocated == tskDYNAMICALLY_ALLOCATED_STACK_AND_TCB )
                {
                    /* Both the stack and TCB were allocated dynamically, so both
                     * must be freed. */
                    vPortFreeStack( pxTCB->pxStack );
                    vPortFree( pxTCB );
                }
                else if( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_ONLY )
                {
                    /* Only the stack was statically allocated, so the TCB is the
                     * only memory that must be freed. */
                    vPortFree( pxTCB );
                }
                else
                {
                    /* Neither the stack nor the TCB were allocated dynamically, so
                     * nothing needs to be freed. */
                    configASSERT( pxTCB->ucStaticallyAllocated == tskSTATICALLY_ALLOCATED_STACK_AND_TCB );
                    mtCOVERAGE_TEST_MARKER();
                }
            }
        #endif /* configSUPPORT_DYNAMIC_ALLOCATION */
    }

#endif /* INCLUDE_vTaskDelete */
/*-----------------------------------------------------------*/

static void prvResetNextTaskUnblockTime( void )
{
    if( listLIST_IS_EMPTY( pxDelayedTaskList ) != pdFALSE )
    {
        /* The new current delayed list is empty.  Set xNextTaskUnblockTime to
         * the maximum possible value so it is  extremely unlikely that the
         * if( xTickCount >= xNextTaskUnblockTime ) test will pass until
         * there is an item in the delayed list. */
        xNextTaskUnblockTime = portMAX_DELAY;
    }
    else
    {
        /* The new current delayed list is not empty, get the value of
         * the item at the head of the delayed list.  This is the time at
         * which the task at the head of the delayed list should be removed
         * from the Blocked state. */
        xNextTaskUnblockTime = listGET_ITEM_VALUE_OF_HEAD_ENTRY( pxDelayedTaskList );
    }
}
/*-----------------------------------------------------------*/

#if ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) )

    TaskHandle_t xTaskGetCurrentTaskHandle( void )
    {
        TaskHandle_t xReturn;
        uint32_t ulState;

        ulState = portDISABLE_INTERRUPTS();
        xReturn = pxCurrentTCBs[ portGET_CORE_ID() ];
        portRESTORE_INTERRUPTS( ulState );

        return xReturn;
    }

    TaskHandle_t xTaskGetCurrentTaskHandleCPU( UBaseType_t xCoreID )
    {
        TaskHandle_t xReturn = NULL;

        if( taskVALID_CORE_ID( xCoreID ) != pdFALSE )
        {
            xReturn = pxCurrentTCBs[ xCoreID ];
        }

        return xReturn;
    }

#endif /* ( ( INCLUDE_xTaskGetCurrentTaskHandle == 1 ) || ( configUSE_MUTEXES == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) )

    BaseType_t xTaskGetSchedulerState( void )
    {
        BaseType_t xReturn;

        if( xSchedulerRunning == pdFALSE )
        {
            xReturn = taskSCHEDULER_NOT_STARTED;
        }
        else
        {
            taskENTER_CRITICAL();
            {
                if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
                {
                    xReturn = taskSCHEDULER_RUNNING;
                }
                else
                {
                    xReturn = taskSCHEDULER_SUSPENDED;
                }
            }
            taskEXIT_CRITICAL();
        }

        return xReturn;
    }

#endif /* ( ( INCLUDE_xTaskGetSchedulerState == 1 ) || ( configUSE_TIMERS == 1 ) ) */
/*-----------------------------------------------------------*/

#if ( configUSE_MUTEXES == 1 )

    BaseType_t xTaskPriorityInherit( TaskHandle_t const pxMutexHolder )
    {
        TCB_t * const pxMutexHolderTCB = pxMutexHolder;
        BaseType_t xReturn = pdFALSE;

        /* If the mutex was given back by an interrupt while the queue was
         * locked then the mutex holder might now be NULL.  _RB_ Is this still
         * needed as interrupts can no longer use mutexes? */
        if( pxMutexHolder != NULL )
        {
            /* If the holder of the mutex has a priority below the priority of
             * the task attempting to obtain the mutex then it will temporarily
             * inherit the priority of the task attempting to obtain the mutex. */
            if( pxMutexHolderTCB->uxPriority < pxCurrentTCB->uxPriority )
            {
                /* Adjust the mutex holder state to account for its new
                 * priority.  Only reset the event list item value if the value is
                 * not being used for anything else. */
                if( ( listGET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
                {
                    listSET_LIST_ITEM_VALUE( &( pxMutexHolderTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }

                /* If the task being modified is in the ready state it will need
                 * to be moved into a new list. */
                if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ pxMutexHolderTCB->uxPriority ] ), &( pxMutexHolderTCB->xStateListItem ) ) != pdFALSE )
                {
                    if( uxListRemove( &( pxMutexHolderTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
                    {
                        /* It is known that the task is in its ready list so
                         * there is no need to check again and the port level
                         * reset macro can be called directly. */
                        portRESET_READY_PRIORITY( pxMutexHolderTCB->uxPriority, uxTopReadyPriority );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    /* Inherit the priority before being moved into the new list. */
                    pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
                    prvAddTaskToReadyList( pxMutexHolderTCB );
                }
                else
                {
                    /* Just inherit the priority. */
                    pxMutexHolderTCB->uxPriority = pxCurrentTCB->uxPriority;
                }

                traceTASK_PRIORITY_INHERIT( pxMutexHolderTCB, pxCurrentTCB->uxPriority );

                /* Inheritance occurred. */
                xReturn = pdTRUE;
            }
            else
            {
                if( pxMutexHolderTCB->uxBasePriority < pxCurrentTCB->uxPriority )
                {
                    /* The base priority of the mutex holder is lower than the
                     * priority of the task attempting to take the mutex, but the
                     * current priority of the mutex holder is not lower than the
                     * priority of the task attempting to take the mutex.
                     * Therefore the mutex holder must have already inherited a
                     * priority, but inheritance would have occurred if that had
                     * not been the case. */
                    xReturn = pdTRUE;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        return xReturn;
    }

#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/

#if ( configUSE_MUTEXES == 1 )

    BaseType_t xTaskPriorityDisinherit( TaskHandle_t const pxMutexHolder )
    {
        TCB_t * const pxTCB = pxMutexHolder;
        BaseType_t xReturn = pdFALSE;

        if( pxMutexHolder != NULL )
        {
            /* A task can only have an inherited priority if it holds the mutex.
             * If the mutex is held by a task then it cannot be given from an
             * interrupt, and if a mutex is given by the holding task then it must
             * be the running state task. */
            configASSERT( pxTCB == pxCurrentTCB );
            configASSERT( pxTCB->uxMutexesHeld );
            ( pxTCB->uxMutexesHeld )--;

            /* Has the holder of the mutex inherited the priority of another
             * task? */
            if( pxTCB->uxPriority != pxTCB->uxBasePriority )
            {
                /* Only disinherit if no other mutexes are held. */
                if( pxTCB->uxMutexesHeld == ( UBaseType_t ) 0 )
                {
                    /* A task can only have an inherited priority if it holds
                     * the mutex.  If the mutex is held by a task then it cannot be
                     * given from an interrupt, and if a mutex is given by the
                     * holding task then it must be the running state task.  Remove
                     * the holding task from the ready list. */
                    if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
                    {
                        portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    /* Disinherit the priority before adding the task into the
                     * new  ready list. */
                    traceTASK_PRIORITY_DISINHERIT( pxTCB, pxTCB->uxBasePriority );
                    pxTCB->uxPriority = pxTCB->uxBasePriority;

                    /* Reset the event list item value.  It cannot be in use for
                     * any other purpose if this task is running, and it must be
                     * running to give back the mutex. */
                    listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxTCB->uxPriority ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
                    prvAddTaskToReadyList( pxTCB );

                    /* Return true to indicate that a context switch is required.
                     * This is only actually required in the corner case whereby
                     * multiple mutexes were held and the mutexes were given back
                     * in an order different to that in which they were taken.
                     * If a context switch did not occur when the first mutex was
                     * returned, even if a task was waiting on it, then a context
                     * switch should occur when the last mutex is returned whether
                     * a task is waiting on it or not. */
                    xReturn = pdTRUE;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }

        return xReturn;
    }

#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/

#if ( configUSE_MUTEXES == 1 )

    void vTaskPriorityDisinheritAfterTimeout( TaskHandle_t const pxMutexHolder,
                                              UBaseType_t uxHighestPriorityWaitingTask )
    {
        TCB_t * const pxTCB = pxMutexHolder;
        UBaseType_t uxPriorityUsedOnEntry, uxPriorityToUse;
        const UBaseType_t uxOnlyOneMutexHeld = ( UBaseType_t ) 1;

        if( pxMutexHolder != NULL )
        {
            /* If pxMutexHolder is not NULL then the holder must hold at least
             * one mutex. */
            configASSERT( pxTCB->uxMutexesHeld );

            /* Determine the priority to which the priority of the task that
             * holds the mutex should be set.  This will be the greater of the
             * holding task's base priority and the priority of the highest
             * priority task that is waiting to obtain the mutex. */
            if( pxTCB->uxBasePriority < uxHighestPriorityWaitingTask )
            {
                uxPriorityToUse = uxHighestPriorityWaitingTask;
            }
            else
            {
                uxPriorityToUse = pxTCB->uxBasePriority;
            }

            /* Does the priority need to change? */
            if( pxTCB->uxPriority != uxPriorityToUse )
            {
                /* Only disinherit if no other mutexes are held.  This is a
                 * simplification in the priority inheritance implementation.  If
                 * the task that holds the mutex is also holding other mutexes then
                 * the other mutexes may have caused the priority inheritance. */
                if( pxTCB->uxMutexesHeld == uxOnlyOneMutexHeld )
                {
                    /* If a task has timed out because it already holds the
                     * mutex it was trying to obtain then it cannot of inherited
                     * its own priority. */
                    configASSERT( pxTCB != pxCurrentTCB );

                    /* Disinherit the priority, remembering the previous
                     * priority to facilitate determining the subject task's
                     * state. */
                    traceTASK_PRIORITY_DISINHERIT( pxTCB, uxPriorityToUse );
                    uxPriorityUsedOnEntry = pxTCB->uxPriority;
                    pxTCB->uxPriority = uxPriorityToUse;

                    /* Only reset the event list item value if the value is not
                     * being used for anything else. */
                    if( ( listGET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ) ) & taskEVENT_LIST_ITEM_VALUE_IN_USE ) == 0UL )
                    {
                        listSET_LIST_ITEM_VALUE( &( pxTCB->xEventListItem ), ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) uxPriorityToUse ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }

                    /* If the running task is not the task that holds the mutex
                     * then the task that holds the mutex could be in either the
                     * Ready, Blocked or Suspended states.  Only remove the task
                     * from its current state list if it is in the Ready state as
                     * the task's priority is going to change and there is one
                     * Ready list per priority. */
                    if( listIS_CONTAINED_WITHIN( &( pxReadyTasksLists[ uxPriorityUsedOnEntry ] ), &( pxTCB->xStateListItem ) ) != pdFALSE )
                    {
                        if( uxListRemove( &( pxTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
                        {
                            /* It is known that the task is in its ready list so
                             * there is no need to check again and the port level
                             * reset macro can be called directly. */
                            portRESET_READY_PRIORITY( pxTCB->uxPriority, uxTopReadyPriority );
                        }
                        else
                        {
                            mtCOVERAGE_TEST_MARKER();
                        }

                        prvAddTaskToReadyList( pxTCB );
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/

/*
 * If not in a critical section then yield immediately.
 * Otherwise set xYieldPending to true to wait to
 * yield until exiting the critical section.
 */
void vTaskYieldWithinAPI( void )
{
    if( pxCurrentTCB->uxCriticalNesting == 0U )
    {
        portYIELD();
    }
    else
    {
        xYieldPendings[ portGET_CORE_ID() ] = pdTRUE;
    }
}
/*-----------------------------------------------------------*/

#if ( portCRITICAL_NESTING_IN_TCB == 1 )

    void vTaskEnterCritical( void )
    {
        portDISABLE_INTERRUPTS();

        if( xSchedulerRunning != pdFALSE )
        {
            if( pxCurrentTCB->uxCriticalNesting == 0U )
            {
                if( portCHECK_IF_IN_ISR() == pdFALSE )
                {
                    portGET_TASK_LOCK();
                }

                portGET_ISR_LOCK();
            }

            ( pxCurrentTCB->uxCriticalNesting )++;

            /* This should now be interrupt safe. The only time there would be
             * a problem is if this is called before a context switch and
             * vTaskExitCritical() is called after pxCurrentTCB changes. Therefore
             * this should not be used within vTaskSwitchContext(). */

            if( ( uxSchedulerSuspended == 0U ) && ( pxCurrentTCB->uxCriticalNesting == 1U ) )
            {
                prvCheckForRunStateChange();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/

#if ( portCRITICAL_NESTING_IN_TCB == 1 )

    void vTaskExitCritical( void )
    {
        if( xSchedulerRunning != pdFALSE )
        {
            /* If pxCurrentTCB->uxCriticalNesting is zero then this function
             * does not match a previous call to vTaskEnterCritical(). */
            configASSERT( pxCurrentTCB->uxCriticalNesting > 0U );

            if( pxCurrentTCB->uxCriticalNesting > 0U )
            {
                ( pxCurrentTCB->uxCriticalNesting )--;

                if( pxCurrentTCB->uxCriticalNesting == 0U )
                {
                    portRELEASE_ISR_LOCK();

                    if( portCHECK_IF_IN_ISR() == pdFALSE )
                    {
                        portRELEASE_TASK_LOCK();
                        portENABLE_INTERRUPTS();

                        /* When a task yields in a critical section it just sets
                         * xYieldPending to true. So now that we have exited the
                         * critical section check if xYieldPending is true, and
                         * if so yield. */
                        if( xYieldPending != pdFALSE )
                        {
                            portYIELD();
                        }
                    }
                    else
                    {
                        /* In an ISR we don't hold the task lock and don't
                         * need to yield. Yield will happen if necessary when
                         * the application ISR calls portEND_SWITCHING_ISR() */
                        mtCOVERAGE_TEST_MARKER();
                    }
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

#endif /* portCRITICAL_NESTING_IN_TCB */
/*-----------------------------------------------------------*/

#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) )

    static char * prvWriteNameToBuffer( char * pcBuffer,
                                        const char * pcTaskName )
    {
        size_t x;

        /* Start by copying the entire string. */
        strcpy( pcBuffer, pcTaskName );

        /* Pad the end of the string with spaces to ensure columns line up when
         * printed out. */
        for( x = strlen( pcBuffer ); x < ( size_t ) ( configMAX_TASK_NAME_LEN - 1 ); x++ )
        {
            pcBuffer[ x ] = ' ';
        }

        /* Terminate. */
        pcBuffer[ x ] = ( char ) 0x00;

        /* Return the new end of string. */
        return &( pcBuffer[ x ] );
    }

#endif /* ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) */
/*-----------------------------------------------------------*/

#if ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )

    void vTaskList( char * pcWriteBuffer )
    {
        TaskStatus_t * pxTaskStatusArray;
        UBaseType_t uxArraySize, x;
        char cStatus;

        /*
         * PLEASE NOTE:
         *
         * This function is provided for convenience only, and is used by many
         * of the demo applications.  Do not consider it to be part of the
         * scheduler.
         *
         * vTaskList() calls uxTaskGetSystemState(), then formats part of the
         * uxTaskGetSystemState() output into a human readable table that
         * displays task: names, states, priority, stack usage and task number.
         * Stack usage specified as the number of unused StackType_t words stack can hold
         * on top of stack - not the number of bytes.
         *
         * vTaskList() has a dependency on the sprintf() C library function that
         * might bloat the code size, use a lot of stack, and provide different
         * results on different platforms.  An alternative, tiny, third party,
         * and limited functionality implementation of sprintf() is provided in
         * many of the FreeRTOS/Demo sub-directories in a file called
         * printf-stdarg.c (note printf-stdarg.c does not provide a full
         * snprintf() implementation!).
         *
         * It is recommended that production systems call uxTaskGetSystemState()
         * directly to get access to raw stats data, rather than indirectly
         * through a call to vTaskList().
         */


        /* Make sure the write buffer does not contain a string. */
        *pcWriteBuffer = ( char ) 0x00;

        /* Take a snapshot of the number of tasks in case it changes while this
         * function is executing. */
        uxArraySize = uxCurrentNumberOfTasks;

        /* Allocate an array index for each task.  NOTE!  if
         * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
         * equate to NULL. */
        pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */

        if( pxTaskStatusArray != NULL )
        {
            /* Generate the (binary) data. */
            uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, NULL );

            /* Create a human readable table from the binary data. */
            for( x = 0; x < uxArraySize; x++ )
            {
                switch( pxTaskStatusArray[ x ].eCurrentState )
                {
                    case eRunning:
                        cStatus = tskRUNNING_CHAR;
                        break;

                    case eReady:
                        cStatus = tskREADY_CHAR;
                        break;

                    case eBlocked:
                        cStatus = tskBLOCKED_CHAR;
                        break;

                    case eSuspended:
                        cStatus = tskSUSPENDED_CHAR;
                        break;

                    case eDeleted:
                        cStatus = tskDELETED_CHAR;
                        break;

                    case eInvalid: /* Fall through. */
                    default:       /* Should not get here, but it is included
                                    * to prevent static checking errors. */
                        cStatus = ( char ) 0x00;
                        break;
                }

                /* Write the task name to the string, padding with spaces so it
                 * can be printed in tabular form more easily. */
                pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );

                /* Write the rest of the string. */
                sprintf( pcWriteBuffer, "\t%c\t%u\t%u\t%u\r\n", cStatus, ( unsigned int ) pxTaskStatusArray[ x ].uxCurrentPriority, ( unsigned int ) pxTaskStatusArray[ x ].usStackHighWaterMark, ( unsigned int ) pxTaskStatusArray[ x ].xTaskNumber ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
                pcWriteBuffer += strlen( pcWriteBuffer );                                                                                                                                                                                                /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
            }

            /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
             * is 0 then vPortFree() will be #defined to nothing. */
            vPortFree( pxTaskStatusArray );
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

#endif /* ( ( configUSE_TRACE_FACILITY == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) ) */
/*----------------------------------------------------------*/

#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_DYNAMIC_ALLOCATION == 1 ) )

    void vTaskGetRunTimeStats( char * pcWriteBuffer )
    {
        TaskStatus_t * pxTaskStatusArray;
        UBaseType_t uxArraySize, x;
        uint32_t ulTotalTime, ulStatsAsPercentage;

        #if ( configUSE_TRACE_FACILITY != 1 )
            {
                #error configUSE_TRACE_FACILITY must also be set to 1 in FreeRTOSConfig.h to use vTaskGetRunTimeStats().
            }
        #endif

        /*
         * PLEASE NOTE:
         *
         * This function is provided for convenience only, and is used by many
         * of the demo applications.  Do not consider it to be part of the
         * scheduler.
         *
         * vTaskGetRunTimeStats() calls uxTaskGetSystemState(), then formats part
         * of the uxTaskGetSystemState() output into a human readable table that
         * displays the amount of time each task has spent in the Running state
         * in both absolute and percentage terms.
         *
         * vTaskGetRunTimeStats() has a dependency on the sprintf() C library
         * function that might bloat the code size, use a lot of stack, and
         * provide different results on different platforms.  An alternative,
         * tiny, third party, and limited functionality implementation of
         * sprintf() is provided in many of the FreeRTOS/Demo sub-directories in
         * a file called printf-stdarg.c (note printf-stdarg.c does not provide
         * a full snprintf() implementation!).
         *
         * It is recommended that production systems call uxTaskGetSystemState()
         * directly to get access to raw stats data, rather than indirectly
         * through a call to vTaskGetRunTimeStats().
         */

        /* Make sure the write buffer does not contain a string. */
        *pcWriteBuffer = ( char ) 0x00;

        /* Take a snapshot of the number of tasks in case it changes while this
         * function is executing. */
        uxArraySize = uxCurrentNumberOfTasks;

        /* Allocate an array index for each task.  NOTE!  If
         * configSUPPORT_DYNAMIC_ALLOCATION is set to 0 then pvPortMalloc() will
         * equate to NULL. */
        pxTaskStatusArray = pvPortMalloc( uxCurrentNumberOfTasks * sizeof( TaskStatus_t ) ); /*lint !e9079 All values returned by pvPortMalloc() have at least the alignment required by the MCU's stack and this allocation allocates a struct that has the alignment requirements of a pointer. */

        if( pxTaskStatusArray != NULL )
        {
            /* Generate the (binary) data. */
            uxArraySize = uxTaskGetSystemState( pxTaskStatusArray, uxArraySize, &ulTotalTime );

            /* For percentage calculations. */
            ulTotalTime /= 100UL;

            /* Avoid divide by zero errors. */
            if( ulTotalTime > 0UL )
            {
                /* Create a human readable table from the binary data. */
                for( x = 0; x < uxArraySize; x++ )
                {
                    /* What percentage of the total run time has the task used?
                     * This will always be rounded down to the nearest integer.
                     * ulTotalRunTimeDiv100 has already been divided by 100. */
                    ulStatsAsPercentage = pxTaskStatusArray[ x ].ulRunTimeCounter / ulTotalTime;

                    /* Write the task name to the string, padding with
                     * spaces so it can be printed in tabular form more
                     * easily. */
                    pcWriteBuffer = prvWriteNameToBuffer( pcWriteBuffer, pxTaskStatusArray[ x ].pcTaskName );

                    if( ulStatsAsPercentage > 0UL )
                    {
                        #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
                            {
                                sprintf( pcWriteBuffer, "\t%lu\t\t%lu%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter, ulStatsAsPercentage );
                            }
                        #else
                            {
                                /* sizeof( int ) == sizeof( long ) so a smaller
                                 * printf() library can be used. */
                                sprintf( pcWriteBuffer, "\t%u\t\t%u%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter, ( unsigned int ) ulStatsAsPercentage ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
                            }
                        #endif
                    }
                    else
                    {
                        /* If the percentage is zero here then the task has
                         * consumed less than 1% of the total run time. */
                        #ifdef portLU_PRINTF_SPECIFIER_REQUIRED
                            {
                                sprintf( pcWriteBuffer, "\t%lu\t\t<1%%\r\n", pxTaskStatusArray[ x ].ulRunTimeCounter );
                            }
                        #else
                            {
                                /* sizeof( int ) == sizeof( long ) so a smaller
                                 * printf() library can be used. */
                                sprintf( pcWriteBuffer, "\t%u\t\t<1%%\r\n", ( unsigned int ) pxTaskStatusArray[ x ].ulRunTimeCounter ); /*lint !e586 sprintf() allowed as this is compiled with many compilers and this is a utility function only - not part of the core kernel implementation. */
                            }
                        #endif
                    }

                    pcWriteBuffer += strlen( pcWriteBuffer ); /*lint !e9016 Pointer arithmetic ok on char pointers especially as in this case where it best denotes the intent of the code. */
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            /* Free the array again.  NOTE!  If configSUPPORT_DYNAMIC_ALLOCATION
             * is 0 then vPortFree() will be #defined to nothing. */
            vPortFree( pxTaskStatusArray );
        }
        else
        {
            mtCOVERAGE_TEST_MARKER();
        }
    }

#endif /* ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( configUSE_STATS_FORMATTING_FUNCTIONS > 0 ) && ( configSUPPORT_STATIC_ALLOCATION == 1 ) ) */
/*-----------------------------------------------------------*/

TickType_t uxTaskResetEventItemValue( void )
{
    TickType_t uxReturn;

    uxReturn = listGET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ) );

    /* Reset the event list item to its normal value - so it can be used with
     * queues and semaphores. */
    listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xEventListItem ), ( ( TickType_t ) configMAX_PRIORITIES - ( TickType_t ) pxCurrentTCB->uxPriority ) ); /*lint !e961 MISRA exception as the casts are only redundant for some ports. */

    return uxReturn;
}
/*-----------------------------------------------------------*/

#if ( configUSE_MUTEXES == 1 )

    TaskHandle_t pvTaskIncrementMutexHeldCount( void )
    {
        /* If xSemaphoreCreateMutex() is called before any tasks have been created
         * then pxCurrentTCB will be NULL. */
        if( pxCurrentTCB != NULL )
        {
            ( pxCurrentTCB->uxMutexesHeld )++;
        }

        return pxCurrentTCB;
    }

#endif /* configUSE_MUTEXES */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_NOTIFICATIONS == 1 )

    uint32_t ulTaskGenericNotifyTake( UBaseType_t uxIndexToWait,
                                      BaseType_t xClearCountOnExit,
                                      TickType_t xTicksToWait )
    {
        uint32_t ulReturn;

        configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );

        taskENTER_CRITICAL();
        {
            /* Only block if the notification count is not already non-zero. */
            if( pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] == 0UL )
            {
                /* Mark this task as waiting for a notification. */
                pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;

                if( xTicksToWait > ( TickType_t ) 0 )
                {
                    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
                    traceTASK_NOTIFY_TAKE_BLOCK( uxIndexToWait );

                    /* All ports are written to allow a yield in a critical
                     * section (some will yield immediately, others wait until the
                     * critical section exits) - but it is not something that
                     * application code should ever do. */
                    vTaskYieldWithinAPI();
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        taskEXIT_CRITICAL();

        taskENTER_CRITICAL();
        {
            traceTASK_NOTIFY_TAKE( uxIndexToWait );
            ulReturn = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];

            if( ulReturn != 0UL )
            {
                if( xClearCountOnExit != pdFALSE )
                {
                    pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = 0UL;
                }
                else
                {
                    pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] = ulReturn - ( uint32_t ) 1;
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }

            pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
        }
        taskEXIT_CRITICAL();

        return ulReturn;
    }

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_NOTIFICATIONS == 1 )

    BaseType_t xTaskGenericNotifyWait( UBaseType_t uxIndexToWait,
                                       uint32_t ulBitsToClearOnEntry,
                                       uint32_t ulBitsToClearOnExit,
                                       uint32_t * pulNotificationValue,
                                       TickType_t xTicksToWait )
    {
        BaseType_t xReturn;

        configASSERT( uxIndexToWait < configTASK_NOTIFICATION_ARRAY_ENTRIES );

        taskENTER_CRITICAL();
        {
            /* Only block if a notification is not already pending. */
            if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
            {
                /* Clear bits in the task's notification value as bits may get
                 * set  by the notifying task or interrupt.  This can be used to
                 * clear the value to zero. */
                pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnEntry;

                /* Mark this task as waiting for a notification. */
                pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskWAITING_NOTIFICATION;

                if( xTicksToWait > ( TickType_t ) 0 )
                {
                    prvAddCurrentTaskToDelayedList( xTicksToWait, pdTRUE );
                    traceTASK_NOTIFY_WAIT_BLOCK( uxIndexToWait );

                    /* All ports are written to allow a yield in a critical
                     * section (some will yield immediately, others wait until the
                     * critical section exits) - but it is not something that
                     * application code should ever do. */
                    vTaskYieldWithinAPI();
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        taskEXIT_CRITICAL();

        taskENTER_CRITICAL();
        {
            traceTASK_NOTIFY_WAIT( uxIndexToWait );

            if( pulNotificationValue != NULL )
            {
                /* Output the current notification value, which may or may not
                 * have changed. */
                *pulNotificationValue = pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ];
            }

            /* If ucNotifyValue is set then either the task never entered the
             * blocked state (because a notification was already pending) or the
             * task unblocked because of a notification.  Otherwise the task
             * unblocked because of a timeout. */
            if( pxCurrentTCB->ucNotifyState[ uxIndexToWait ] != taskNOTIFICATION_RECEIVED )
            {
                /* A notification was not received. */
                xReturn = pdFALSE;
            }
            else
            {
                /* A notification was already pending or a notification was
                 * received while the task was waiting. */
                pxCurrentTCB->ulNotifiedValue[ uxIndexToWait ] &= ~ulBitsToClearOnExit;
                xReturn = pdTRUE;
            }

            pxCurrentTCB->ucNotifyState[ uxIndexToWait ] = taskNOT_WAITING_NOTIFICATION;
        }
        taskEXIT_CRITICAL();

        return xReturn;
    }

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_NOTIFICATIONS == 1 )

    BaseType_t xTaskGenericNotify( TaskHandle_t xTaskToNotify,
                                   UBaseType_t uxIndexToNotify,
                                   uint32_t ulValue,
                                   eNotifyAction eAction,
                                   uint32_t * pulPreviousNotificationValue )
    {
        TCB_t * pxTCB;
        BaseType_t xReturn = pdPASS;
        uint8_t ucOriginalNotifyState;

        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );
        configASSERT( xTaskToNotify );
        pxTCB = xTaskToNotify;

        taskENTER_CRITICAL();
        {
            if( pulPreviousNotificationValue != NULL )
            {
                *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
            }

            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];

            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;

            switch( eAction )
            {
                case eSetBits:
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
                    break;

                case eIncrement:
                    ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
                    break;

                case eSetValueWithOverwrite:
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
                    break;

                case eSetValueWithoutOverwrite:

                    if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
                    {
                        pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
                    }
                    else
                    {
                        /* The value could not be written to the task. */
                        xReturn = pdFAIL;
                    }

                    break;

                case eNoAction:

                    /* The task is being notified without its notify value being
                     * updated. */
                    break;

                default:

                    /* Should not get here if all enums are handled.
                     * Artificially force an assert by testing a value the
                     * compiler can't assume is const. */
                    configASSERT( xTickCount == ( TickType_t ) 0 );

                    break;
            }

            traceTASK_NOTIFY( uxIndexToNotify );

            /* If the task is in the blocked state specifically to wait for a
             * notification then unblock it now. */
            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
            {
                ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
                prvAddTaskToReadyList( pxTCB );

                /* The task should not have been on an event list. */
                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );

                #if ( configUSE_TICKLESS_IDLE != 0 )
                    {
                        /* If a task is blocked waiting for a notification then
                         * xNextTaskUnblockTime might be set to the blocked task's time
                         * out time.  If the task is unblocked for a reason other than
                         * a timeout xNextTaskUnblockTime is normally left unchanged,
                         * because it will automatically get reset to a new value when
                         * the tick count equals xNextTaskUnblockTime.  However if
                         * tickless idling is used it might be more important to enter
                         * sleep mode at the earliest possible time - so reset
                         * xNextTaskUnblockTime here to ensure it is updated at the
                         * earliest possible time. */
                        prvResetNextTaskUnblockTime();
                    }
                #endif

                #if ( configUSE_PREEMPTION == 1 )
                    {
                        prvYieldForTask( pxTCB, pdFALSE );
                    }
                #endif
            }
            else
            {
                mtCOVERAGE_TEST_MARKER();
            }
        }
        taskEXIT_CRITICAL();

        return xReturn;
    }

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_NOTIFICATIONS == 1 )

    BaseType_t xTaskGenericNotifyFromISR( TaskHandle_t xTaskToNotify,
                                          UBaseType_t uxIndexToNotify,
                                          uint32_t ulValue,
                                          eNotifyAction eAction,
                                          uint32_t * pulPreviousNotificationValue,
                                          BaseType_t * pxHigherPriorityTaskWoken )
    {
        TCB_t * pxTCB;
        uint8_t ucOriginalNotifyState;
        BaseType_t xReturn = pdPASS;
        UBaseType_t uxSavedInterruptStatus;

        configASSERT( xTaskToNotify );
        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );

        /* RTOS ports that support interrupt nesting have the concept of a
         * maximum  system call (or maximum API call) interrupt priority.
         * Interrupts that are  above the maximum system call priority are keep
         * permanently enabled, even when the RTOS kernel is in a critical section,
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
         * is defined in FreeRTOSConfig.h then
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
         * failure if a FreeRTOS API function is called from an interrupt that has
         * been assigned a priority above the configured maximum system call
         * priority.  Only FreeRTOS functions that end in FromISR can be called
         * from interrupts  that have been assigned a priority at or (logically)
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
         * separate interrupt safe API to ensure interrupt entry is as fast and as
         * simple as possible.  More information (albeit Cortex-M specific) is
         * provided on the following link:
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();

        pxTCB = xTaskToNotify;

        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
        {
            if( pulPreviousNotificationValue != NULL )
            {
                *pulPreviousNotificationValue = pxTCB->ulNotifiedValue[ uxIndexToNotify ];
            }

            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;

            switch( eAction )
            {
                case eSetBits:
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] |= ulValue;
                    break;

                case eIncrement:
                    ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;
                    break;

                case eSetValueWithOverwrite:
                    pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
                    break;

                case eSetValueWithoutOverwrite:

                    if( ucOriginalNotifyState != taskNOTIFICATION_RECEIVED )
                    {
                        pxTCB->ulNotifiedValue[ uxIndexToNotify ] = ulValue;
                    }
                    else
                    {
                        /* The value could not be written to the task. */
                        xReturn = pdFAIL;
                    }

                    break;

                case eNoAction:

                    /* The task is being notified without its notify value being
                     * updated. */
                    break;

                default:

                    /* Should not get here if all enums are handled.
                     * Artificially force an assert by testing a value the
                     * compiler can't assume is const. */
                    configASSERT( xTickCount == ( TickType_t ) 0 );
                    break;
            }

            traceTASK_NOTIFY_FROM_ISR( uxIndexToNotify );

            /* If the task is in the blocked state specifically to wait for a
             * notification then unblock it now. */
            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
            {
                /* The task should not have been on an event list. */
                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );

                if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
                {
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
                    prvAddTaskToReadyList( pxTCB );
                }
                else
                {
                    /* The delayed and ready lists cannot be accessed, so hold
                     * this task pending until the scheduler is resumed. */
                    vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
                }

                #if ( configUSE_PREEMPTION == 1 )
                    prvYieldForTask( pxTCB, pdFALSE );

                    if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
                    {
                        if( pxHigherPriorityTaskWoken != NULL )
                        {
                            *pxHigherPriorityTaskWoken = pdTRUE;
                        }
                    }
                #endif
            }
        }
        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );

        return xReturn;
    }

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_NOTIFICATIONS == 1 )

    void vTaskGenericNotifyGiveFromISR( TaskHandle_t xTaskToNotify,
                                        UBaseType_t uxIndexToNotify,
                                        BaseType_t * pxHigherPriorityTaskWoken )
    {
        TCB_t * pxTCB;
        uint8_t ucOriginalNotifyState;
        UBaseType_t uxSavedInterruptStatus;

        configASSERT( xTaskToNotify );
        configASSERT( uxIndexToNotify < configTASK_NOTIFICATION_ARRAY_ENTRIES );

        /* RTOS ports that support interrupt nesting have the concept of a
         * maximum  system call (or maximum API call) interrupt priority.
         * Interrupts that are  above the maximum system call priority are keep
         * permanently enabled, even when the RTOS kernel is in a critical section,
         * but cannot make any calls to FreeRTOS API functions.  If configASSERT()
         * is defined in FreeRTOSConfig.h then
         * portASSERT_IF_INTERRUPT_PRIORITY_INVALID() will result in an assertion
         * failure if a FreeRTOS API function is called from an interrupt that has
         * been assigned a priority above the configured maximum system call
         * priority.  Only FreeRTOS functions that end in FromISR can be called
         * from interrupts  that have been assigned a priority at or (logically)
         * below the maximum system call interrupt priority.  FreeRTOS maintains a
         * separate interrupt safe API to ensure interrupt entry is as fast and as
         * simple as possible.  More information (albeit Cortex-M specific) is
         * provided on the following link:
         * https://www.FreeRTOS.org/RTOS-Cortex-M3-M4.html */
        portASSERT_IF_INTERRUPT_PRIORITY_INVALID();

        pxTCB = xTaskToNotify;

        uxSavedInterruptStatus = portSET_INTERRUPT_MASK_FROM_ISR();
        {
            ucOriginalNotifyState = pxTCB->ucNotifyState[ uxIndexToNotify ];
            pxTCB->ucNotifyState[ uxIndexToNotify ] = taskNOTIFICATION_RECEIVED;

            /* 'Giving' is equivalent to incrementing a count in a counting
             * semaphore. */
            ( pxTCB->ulNotifiedValue[ uxIndexToNotify ] )++;

            traceTASK_NOTIFY_GIVE_FROM_ISR( uxIndexToNotify );

            /* If the task is in the blocked state specifically to wait for a
             * notification then unblock it now. */
            if( ucOriginalNotifyState == taskWAITING_NOTIFICATION )
            {
                /* The task should not have been on an event list. */
                configASSERT( listLIST_ITEM_CONTAINER( &( pxTCB->xEventListItem ) ) == NULL );

                if( uxSchedulerSuspended == ( UBaseType_t ) pdFALSE )
                {
                    ( void ) uxListRemove( &( pxTCB->xStateListItem ) );
                    prvAddTaskToReadyList( pxTCB );
                }
                else
                {
                    /* The delayed and ready lists cannot be accessed, so hold
                     * this task pending until the scheduler is resumed. */
                    vListInsertEnd( &( xPendingReadyList ), &( pxTCB->xEventListItem ) );
                }

                #if ( configUSE_PREEMPTION == 1 )
                    prvYieldForTask( pxTCB, pdFALSE );

                    if( xYieldPendings[ portGET_CORE_ID() ] == pdTRUE )
                    {
                        if( pxHigherPriorityTaskWoken != NULL )
                        {
                            *pxHigherPriorityTaskWoken = pdTRUE;
                        }
                    }
                #endif
            }
        }
        portCLEAR_INTERRUPT_MASK_FROM_ISR( uxSavedInterruptStatus );
    }

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_NOTIFICATIONS == 1 )

    BaseType_t xTaskGenericNotifyStateClear( TaskHandle_t xTask,
                                             UBaseType_t uxIndexToClear )
    {
        TCB_t * pxTCB;
        BaseType_t xReturn;

        configASSERT( uxIndexToClear < configTASK_NOTIFICATION_ARRAY_ENTRIES );

        /* If null is passed in here then it is the calling task that is having
         * its notification state cleared. */
        pxTCB = prvGetTCBFromHandle( xTask );

        taskENTER_CRITICAL();
        {
            if( pxTCB->ucNotifyState[ uxIndexToClear ] == taskNOTIFICATION_RECEIVED )
            {
                pxTCB->ucNotifyState[ uxIndexToClear ] = taskNOT_WAITING_NOTIFICATION;
                xReturn = pdPASS;
            }
            else
            {
                xReturn = pdFAIL;
            }
        }
        taskEXIT_CRITICAL();

        return xReturn;
    }

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if ( configUSE_TASK_NOTIFICATIONS == 1 )

    uint32_t ulTaskGenericNotifyValueClear( TaskHandle_t xTask,
                                            UBaseType_t uxIndexToClear,
                                            uint32_t ulBitsToClear )
    {
        TCB_t * pxTCB;
        uint32_t ulReturn;

        /* If null is passed in here then it is the calling task that is having
         * its notification state cleared. */
        pxTCB = prvGetTCBFromHandle( xTask );

        taskENTER_CRITICAL();
        {
            /* Return the notification as it was before the bits were cleared,
             * then clear the bit mask. */
            ulReturn = pxTCB->ulNotifiedValue[ uxIndexToClear ];
            pxTCB->ulNotifiedValue[ uxIndexToClear ] &= ~ulBitsToClear;
        }
        taskEXIT_CRITICAL();

        return ulReturn;
    }

#endif /* configUSE_TASK_NOTIFICATIONS */
/*-----------------------------------------------------------*/

#if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) )

    uint32_t ulTaskGetIdleRunTimeCounter( void )
    {
        uint32_t ulReturn = 0;

        for( BaseType_t i = 0; i < configNUM_CORES; i++ )
        {
            ulReturn += xIdleTaskHandle[ i ]->ulRunTimeCounter;
        }

        return ulReturn;
    }

#endif /* if ( ( configGENERATE_RUN_TIME_STATS == 1 ) && ( INCLUDE_xTaskGetIdleTaskHandle == 1 ) ) */
/*-----------------------------------------------------------*/

static void prvAddCurrentTaskToDelayedList( TickType_t xTicksToWait,
                                            const BaseType_t xCanBlockIndefinitely )
{
    TickType_t xTimeToWake;
    const TickType_t xConstTickCount = xTickCount;

    #if ( INCLUDE_xTaskAbortDelay == 1 )
        {
            /* About to enter a delayed list, so ensure the ucDelayAborted flag is
             * reset to pdFALSE so it can be detected as having been set to pdTRUE
             * when the task leaves the Blocked state. */
            pxCurrentTCB->ucDelayAborted = pdFALSE;
        }
    #endif

    /* Remove the task from the ready list before adding it to the blocked list
     * as the same list item is used for both lists. */
    if( uxListRemove( &( pxCurrentTCB->xStateListItem ) ) == ( UBaseType_t ) 0 )
    {
        /* The current task must be in a ready list, so there is no need to
         * check, and the port reset macro can be called directly. */
        portRESET_READY_PRIORITY( pxCurrentTCB->uxPriority, uxTopReadyPriority ); /*lint !e931 pxCurrentTCB cannot change as it is the calling task.  pxCurrentTCB->uxPriority and uxTopReadyPriority cannot change as called with scheduler suspended or in a critical section. */
    }
    else
    {
        mtCOVERAGE_TEST_MARKER();
    }

    #if ( INCLUDE_vTaskSuspend == 1 )
        {
            if( ( xTicksToWait == portMAX_DELAY ) && ( xCanBlockIndefinitely != pdFALSE ) )
            {
                /* Add the task to the suspended task list instead of a delayed task
                 * list to ensure it is not woken by a timing event.  It will block
                 * indefinitely. */
                vListInsertEnd( &xSuspendedTaskList, &( pxCurrentTCB->xStateListItem ) );
            }
            else
            {
                /* Calculate the time at which the task should be woken if the event
                 * does not occur.  This may overflow but this doesn't matter, the
                 * kernel will manage it correctly. */
                xTimeToWake = xConstTickCount + xTicksToWait;

                /* The list item will be inserted in wake time order. */
                listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );

                if( xTimeToWake < xConstTickCount )
                {
                    /* Wake time has overflowed.  Place this item in the overflow
                     * list. */
                    vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
                }
                else
                {
                    /* The wake time has not overflowed, so the current block list
                     * is used. */
                    vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );

                    /* If the task entering the blocked state was placed at the
                     * head of the list of blocked tasks then xNextTaskUnblockTime
                     * needs to be updated too. */
                    if( xTimeToWake < xNextTaskUnblockTime )
                    {
                        xNextTaskUnblockTime = xTimeToWake;
                    }
                    else
                    {
                        mtCOVERAGE_TEST_MARKER();
                    }
                }
            }
        }
    #else /* INCLUDE_vTaskSuspend */
        {
            /* Calculate the time at which the task should be woken if the event
             * does not occur.  This may overflow but this doesn't matter, the kernel
             * will manage it correctly. */
            xTimeToWake = xConstTickCount + xTicksToWait;

            /* The list item will be inserted in wake time order. */
            listSET_LIST_ITEM_VALUE( &( pxCurrentTCB->xStateListItem ), xTimeToWake );

            if( xTimeToWake < xConstTickCount )
            {
                /* Wake time has overflowed.  Place this item in the overflow list. */
                vListInsert( pxOverflowDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );
            }
            else
            {
                /* The wake time has not overflowed, so the current block list is used. */
                vListInsert( pxDelayedTaskList, &( pxCurrentTCB->xStateListItem ) );

                /* If the task entering the blocked state was placed at the head of the
                 * list of blocked tasks then xNextTaskUnblockTime needs to be updated
                 * too. */
                if( xTimeToWake < xNextTaskUnblockTime )
                {
                    xNextTaskUnblockTime = xTimeToWake;
                }
                else
                {
                    mtCOVERAGE_TEST_MARKER();
                }
            }

            /* Avoid compiler warning when INCLUDE_vTaskSuspend is not 1. */
            ( void ) xCanBlockIndefinitely;
        }
    #endif /* INCLUDE_vTaskSuspend */
}

/* Code below here allows additional code to be inserted into this source file,
 * especially where access to file scope functions and data is needed (for example
 * when performing module tests). */

#ifdef FREERTOS_MODULE_TEST
    #include "tasks_test_access_functions.h"
#endif


#if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 )

    #include "freertos_tasks_c_additions.h"

    #ifdef FREERTOS_TASKS_C_ADDITIONS_INIT
        static void freertos_tasks_c_additions_init( void )
        {
            FREERTOS_TASKS_C_ADDITIONS_INIT();
        }
    #endif

#endif /* if ( configINCLUDE_FREERTOS_TASK_C_ADDITIONS_H == 1 ) */