/* * SPDX-FileCopyrightText: 2015-2024 Espressif Systems (Shanghai) CO LTD * * SPDX-License-Identifier: Apache-2.0 */ #pragma once #include <stdbool.h> #include <stdlib.h> #include "esp_attr.h" #include "soc/adc_periph.h" #include "soc/apb_saradc_struct.h" #include "soc/apb_saradc_reg.h" #include "soc/rtc_cntl_struct.h" #include "soc/rtc_cntl_reg.h" #include "soc/clk_tree_defs.h" #include "hal/misc.h" #include "hal/assert.h" #include "hal/adc_types.h" #include "hal/adc_types_private.h" #include "hal/regi2c_ctrl.h" #include "soc/regi2c_saradc.h" #ifdef __cplusplus extern "C" { #endif #define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31) #define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30) #define ADC_LL_EVENT_THRES0_HIGH BIT(29) #define ADC_LL_EVENT_THRES1_HIGH BIT(28) #define ADC_LL_EVENT_THRES0_LOW BIT(27) #define ADC_LL_EVENT_THRES1_LOW BIT(26) /*--------------------------------------------------------------- Oneshot ---------------------------------------------------------------*/ #define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0) #define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0) /*--------------------------------------------------------------- DMA ---------------------------------------------------------------*/ #define ADC_LL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0) #define ADC_LL_FSM_RSTB_WAIT_DEFAULT (8) #define ADC_LL_FSM_START_WAIT_DEFAULT (5) #define ADC_LL_FSM_STANDBY_WAIT_DEFAULT (100) #define ADC_LL_SAMPLE_CYCLE_DEFAULT (2) #define ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT (1) #define ADC_LL_CLKM_DIV_NUM_DEFAULT 15 #define ADC_LL_CLKM_DIV_B_DEFAULT 1 #define ADC_LL_CLKM_DIV_A_DEFAULT 0 #define ADC_LL_DEFAULT_CONV_LIMIT_EN 0 #define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10 /** * Workaround: on ESP32C3, the internal hardware counter that counts ADC samples will not be automatically cleared, * and there is no dedicated register to manually clear it. (see section 3.2 of the errata document). * Therefore, traverse from 0 to the value configured last time, so as to clear the ADC sample counter. */ #define ADC_LL_WORKAROUND_CLEAR_EOF_COUNTER (1) /*--------------------------------------------------------------- PWDET (Power Detect) ---------------------------------------------------------------*/ #define ADC_LL_PWDET_CCT_DEFAULT (4) typedef enum { ADC_LL_POWER_BY_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */ ADC_LL_POWER_SW_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */ ADC_LL_POWER_SW_OFF, /*!< ADC XPD controlled by SW. power off. */ } adc_ll_power_t; typedef enum { ADC_LL_CTRL_DIG = 0, ///< For ADC1. Select DIG controller. ADC_LL_CTRL_ARB = 1, ///< For ADC2. The controller is selected by the arbiter. } adc_ll_controller_t; /** * @brief ADC digital controller (DMA mode) work mode. * * @note The conversion mode affects the sampling frequency: * ESP32C3 only support ONLY_ADC1 mode * SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once. */ typedef enum { ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion } adc_ll_digi_convert_mode_t; typedef struct { union { struct { uint8_t atten: 2; uint8_t channel: 3; uint8_t unit: 1; uint8_t reserved: 2; }; uint8_t val; }; } __attribute__((packed)) adc_ll_digi_pattern_table_t; /*--------------------------------------------------------------- Digital controller setting ---------------------------------------------------------------*/ /** * Set adc fsm interval parameter for digital controller. These values are fixed for same platforms. * * @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor. * @param start_wait Delay time after open xpd. * @param standby_wait Delay time to close xpd. */ static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait) { // Internal FSM reset wait time HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, rstb_wait, rst_wait); // Internal FSM start wait time HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, xpd_wait, start_wait); // Internal FSM standby wait time HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.fsm_wait, standby_wait, standby_wait); } /** * Set adc sample cycle for digital controller. * * @note Normally, please use default value. * @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor. * Range: 2 ~ 0xFF. */ static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle) { /* Should be called before writing I2C registers. */ SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle); } /** * Set SAR ADC module clock division factor. * SAR ADC clock divided from digital controller clock. * * @param div Division factor. */ static inline void adc_ll_digi_set_clk_div(uint32_t div) { /* ADC clock divided from digital controller clock clk */ HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl, sar_clk_div, div); } /** * Set adc max conversion number for digital controller. * If the number of ADC conversion is equal to the maximum, the conversion is stopped. * * @param meas_num Max conversion number. Range: 0 ~ 255. */ static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.ctrl2, max_meas_num, meas_num); } /** * Enable max conversion number detection for digital controller. * If the number of ADC conversion is equal to the maximum, the conversion is stopped. * * @param enable true: enable; false: disable */ static inline void adc_ll_digi_convert_limit_enable(bool enable) { APB_SARADC.ctrl2.meas_num_limit = enable; } /** * Set adc conversion mode for digital controller. * * @note ESP32C3 only support ADC1 single mode. * * @param mode Conversion mode select. */ static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode) { //ESP32C3 only supports ADC_LL_DIGI_CONV_ONLY_ADC1 mode } /** * Set pattern table length for digital controller. * The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection, * and attenuation are stored. When the conversion is started, the controller reads conversion rules from the * pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself. * * @param adc_n ADC unit. * @param patt_len Items range: 1 ~ 8. */ static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len) { APB_SARADC.ctrl.sar_patt_len = patt_len - 1; } /** * Set pattern table for digital controller. * The pattern table that defines the conversion rules for each SAR ADC. Each table has 8 items, in which channel selection, * resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the * pattern table one by one. For each controller the scan sequence has at most 8 different rules before repeating itself. * * @param adc_n ADC unit. * @param pattern_index Items index. Range: 0 ~ 7. * @param pattern Stored conversion rules. */ static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table) { uint32_t tab; uint8_t index = pattern_index / 4; uint8_t offset = (pattern_index % 4) * 6; adc_ll_digi_pattern_table_t pattern = {0}; pattern.val = (table.atten & 0x3) | ((table.channel & 0x7) << 2) | ((table.unit & 0x1) << 5); tab = APB_SARADC.sar_patt_tab[index].sar_patt_tab1; // Read old register value tab &= (~(0xFC0000 >> offset)); // Clear old data tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; // Fill in the new data APB_SARADC.sar_patt_tab[index].sar_patt_tab1 = tab; // Write back } /** * Reset the pattern table pointer, then take the measurement rule from table header in next measurement. * * @param adc_n ADC unit. */ static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n) { APB_SARADC.ctrl.sar_patt_p_clear = 1; APB_SARADC.ctrl.sar_patt_p_clear = 0; } /** * Sets the number of cycles required for the conversion to complete and wait for the arbiter to stabilize. * * @note Only ADC2 have arbiter function. * @param cycle range: 0 ~ 4. */ static inline void adc_ll_digi_set_arbiter_stable_cycle(uint32_t cycle) { APB_SARADC.ctrl.wait_arb_cycle = cycle; } /** * ADC Digital controller output data invert or not. * * @param adc_n ADC unit. * @param inv_en data invert or not. */ static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en) { if (adc_n == ADC_UNIT_1) { APB_SARADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert } else { // adc_n == ADC_UNIT_2 APB_SARADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert } } /** * Set the interval clock cycle for the digital controller to trigger the measurement. * Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval. * * @note The trigger interval should not be smaller than the sampling time of the SAR ADC. * @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095. */ static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle) { APB_SARADC.ctrl2.timer_target = cycle; } /** * Enable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_enable(void) { APB_SARADC.ctrl2.timer_en = 1; } /** * Disable digital controller timer to trigger the measurement. */ static inline void adc_ll_digi_trigger_disable(void) { APB_SARADC.ctrl2.timer_en = 0; } /** * Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock. * Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1). * * @param div_num Division factor. Range: 0 ~ 255. * @param div_b Division factor. Range: 1 ~ 63. * @param div_a Division factor. Range: 0 ~ 63. */ static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.apb_adc_clkm_conf, clkm_div_num, div_num); APB_SARADC.apb_adc_clkm_conf.clkm_div_b = div_b; APB_SARADC.apb_adc_clkm_conf.clkm_div_a = div_a; } /** * Enable clock and select clock source for ADC digital controller. * * @param clk_src clock source for ADC digital controller. */ static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src) { // Only support APB clock, should always set to 1 or 2 APB_SARADC.apb_adc_clkm_conf.clk_sel = 2; APB_SARADC.ctrl.sar_clk_gated = 1; } /** * Disable clock for ADC digital controller. */ static inline void adc_ll_digi_controller_clk_disable(void) { APB_SARADC.ctrl.sar_clk_gated = 0; } /** * Reset adc digital controller filter. * * @param idx Filter index * @param adc_n ADC unit. */ static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n) { (void)adc_n; APB_SARADC.filter_ctrl0.filter_reset = 1; APB_SARADC.filter_ctrl0.filter_reset = 0; } /** * Set adc digital controller filter coeff. * * @param idx filter index * @param adc_n adc unit * @param channel adc channel * @param coeff filter coeff */ static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff) { uint32_t factor_reg_val = 0; switch (coeff) { case ADC_DIGI_IIR_FILTER_COEFF_2: factor_reg_val = 1; break; case ADC_DIGI_IIR_FILTER_COEFF_4: factor_reg_val = 2; break; case ADC_DIGI_IIR_FILTER_COEFF_8: factor_reg_val = 3; break; case ADC_DIGI_IIR_FILTER_COEFF_16: factor_reg_val = 4; break; case ADC_DIGI_IIR_FILTER_COEFF_64: factor_reg_val = 6; break; default: HAL_ASSERT(false); } if (idx == ADC_DIGI_IIR_FILTER_0) { APB_SARADC.filter_ctrl0.filter_channel0 = ((adc_n + 1) << 3) | (channel & 0x7); APB_SARADC.filter_ctrl1.filter_factor0 = factor_reg_val; } else if (idx == ADC_DIGI_IIR_FILTER_1) { APB_SARADC.filter_ctrl0.filter_channel1 = ((adc_n + 1) << 3) | (channel & 0x7); APB_SARADC.filter_ctrl1.filter_factor1 = factor_reg_val; } } /** * Enable adc digital controller filter. * Filtering the ADC data to obtain smooth data at higher sampling rates. * * @param idx filter index * @param adc_n ADC unit * @param enable Enable / Disable */ static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable) { (void)adc_n; if (!enable) { if (idx == ADC_DIGI_IIR_FILTER_0) { APB_SARADC.filter_ctrl0.filter_channel0 = 0xF; APB_SARADC.filter_ctrl1.filter_factor0 = 0; } else if (idx == ADC_DIGI_IIR_FILTER_1) { APB_SARADC.filter_ctrl0.filter_channel1 = 0xF; APB_SARADC.filter_ctrl1.filter_factor1 = 0; } } //nothing to do to enable, after adc_ll_digi_filter_set_factor, it's enabled. } /** * Set monitor mode of adc digital controller. * * @note If the channel info is not supported, the monitor function will not be enabled. * @param adc_n ADC unit. * @param is_larger true: If ADC_OUT > threshold, Generates monitor interrupt. * false: If ADC_OUT < threshold, Generates monitor interrupt. */ static inline void adc_ll_digi_monitor_set_mode(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *cfg) { if (idx == ADC_DIGI_MONITOR_IDX0) { APB_SARADC.thres0_ctrl.thres0_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7); APB_SARADC.thres0_ctrl.thres0_high = cfg->h_threshold; APB_SARADC.thres0_ctrl.thres0_low = cfg->l_threshold; } else { // ADC_DIGI_MONITOR_IDX1 APB_SARADC.thres1_ctrl.thres1_channel = (cfg->adc_unit << 3) | (cfg->channel & 0x7); APB_SARADC.thres1_ctrl.thres1_high = cfg->h_threshold; APB_SARADC.thres1_ctrl.thres1_low = cfg->l_threshold; } } /** * Enable/disable monitor of adc digital controller. * * @note If the channel info is not supported, the monitor function will not be enabled. * @param adc_n ADC unit. */ static inline void adc_ll_digi_monitor_disable(adc_digi_monitor_idx_t idx) { if (idx == ADC_DIGI_MONITOR_IDX0) { APB_SARADC.thres0_ctrl.thres0_channel = 0xF; } else { // ADC_DIGI_MONITOR_IDX1 APB_SARADC.thres1_ctrl.thres1_channel = 0xF; } } /** * Set DMA eof num of adc digital controller. * If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated. * * @param num eof num of DMA. */ static inline void adc_ll_digi_dma_set_eof_num(uint32_t num) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, num); } /** * Clear ADC sample counter of adc digital controller. */ static inline void adc_ll_digi_dma_clr_eof(void) { uint32_t eof_num = HAL_FORCE_READ_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num); for (int i = 0; i <= eof_num; i++) { HAL_FORCE_MODIFY_U32_REG_FIELD(APB_SARADC.dma_conf, apb_adc_eof_num, i); } } /** * Enable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_enable(void) { APB_SARADC.dma_conf.apb_adc_trans = 1; } /** * Disable output data to DMA from adc digital controller. */ static inline void adc_ll_digi_dma_disable(void) { APB_SARADC.dma_conf.apb_adc_trans = 0; } /** * Reset adc digital controller. */ static inline void adc_ll_digi_reset(void) { APB_SARADC.dma_conf.apb_adc_reset_fsm = 1; APB_SARADC.dma_conf.apb_adc_reset_fsm = 0; } /*--------------------------------------------------------------- PWDET(Power detect) controller setting ---------------------------------------------------------------*/ /** * Set adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @param cct Range: 0 ~ 7. */ static inline void adc_ll_pwdet_set_cct(uint32_t cct) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ RTCCNTL.sensor_ctrl.sar2_pwdet_cct = cct; } /** * Get adc cct for PWDET controller. * * @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY. * @return cct Range: 0 ~ 7. */ static inline uint32_t adc_ll_pwdet_get_cct(void) { /* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */ return RTCCNTL.sensor_ctrl.sar2_pwdet_cct; } /*--------------------------------------------------------------- Common setting ---------------------------------------------------------------*/ /** * Set ADC module power management. * * @param manage Set ADC power status. */ __attribute__((always_inline)) static inline void adc_ll_digi_set_power_manage(adc_ll_power_t manage) { /* Bit1 0:Fsm 1: SW mode Bit0 0:SW mode power down 1: SW mode power on */ if (manage == ADC_LL_POWER_SW_ON) { APB_SARADC.ctrl.sar_clk_gated = 1; APB_SARADC.ctrl.xpd_sar_force = 3; } else if (manage == ADC_LL_POWER_BY_FSM) { APB_SARADC.ctrl.sar_clk_gated = 1; APB_SARADC.ctrl.xpd_sar_force = 0; } else if (manage == ADC_LL_POWER_SW_OFF) { APB_SARADC.ctrl.sar_clk_gated = 0; APB_SARADC.ctrl.xpd_sar_force = 2; } } __attribute__((always_inline)) static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl) { //Not used on ESP32C3 } /** * Set ADC2 module arbiter work mode. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * * @param mode Refer to `adc_arbiter_mode_t`. */ __attribute__((always_inline)) static inline void adc_ll_set_arbiter_work_mode(adc_arbiter_mode_t mode) { if (mode == ADC_ARB_MODE_FIX) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 1; } else if (mode == ADC_ARB_MODE_LOOP) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_fix_priority = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_grant_force = 1; // Shield arbiter. } } /** * Set ADC2 module controller priority in arbiter. * The arbiter is to improve the use efficiency of ADC2. After the control right is robbed by the high priority, * the low priority controller will read the invalid ADC data, and the validity of the data can be judged by the flag bit in the data. * * @note Only ADC2 support arbiter. * @note The arbiter's working clock is APB_CLK. When the APB_CLK clock drops below 8 MHz, the arbiter must be in shield mode. * @note Default priority: Wi-Fi(2) > RTC(1) > Digital(0); * * @param pri_rtc RTC controller priority. Range: 0 ~ 2. * @param pri_dig Digital controller priority. Range: 0 ~ 2. * @param pri_pwdet Wi-Fi controller priority. Range: 0 ~ 2. */ __attribute__((always_inline)) static inline void adc_ll_set_arbiter_priority(uint8_t pri_rtc, uint8_t pri_dig, uint8_t pri_pwdet) { if (pri_rtc != pri_dig && pri_rtc != pri_pwdet && pri_dig != pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_priority = pri_rtc; APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_priority = pri_dig; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_priority = pri_pwdet; } /* Should select highest priority controller. */ if (pri_rtc > pri_dig) { if (pri_rtc > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } else { if (pri_dig > pri_pwdet) { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 1; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 0; } else { APB_SARADC.apb_adc_arb_ctrl.adc_arb_apb_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_rtc_force = 0; APB_SARADC.apb_adc_arb_ctrl.adc_arb_wifi_force = 1; } } } /* ADC calibration code. */ /** * @brief Set common calibration configuration. Should be shared with other parts (PWDET). */ __attribute__((always_inline)) static inline void adc_ll_calibration_init(adc_unit_t adc_n) { if (adc_n == ADC_UNIT_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_DREF_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_DREF_ADDR, 1); } } /** * Configure the registers for ADC calibration. You need to call the ``adc_ll_calibration_finish`` interface to resume after calibration. * * @note Different ADC units and different attenuation options use different calibration data (initial data). * * @param adc_n ADC index number. * @param internal_gnd true: Disconnect from the IO port and use the internal GND as the calibration voltage. * false: Use IO external voltage as calibration voltage. */ static inline void adc_ll_calibration_prepare(adc_unit_t adc_n, bool internal_gnd) { /* Enable/disable internal connect GND (for calibration). */ if (adc_n == ADC_UNIT_1) { if (internal_gnd) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0); } } else { if (internal_gnd) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 1); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0); } } } /** * Resume register status after calibration. * * @param adc_n ADC index number. */ static inline void adc_ll_calibration_finish(adc_unit_t adc_n) { if (adc_n == ADC_UNIT_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_ENCAL_GND_ADDR, 0); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_ENCAL_GND_ADDR, 0); } } /** * Set the calibration result to ADC. * * @note Different ADC units and different attenuation options use different calibration data (initial data). * * @param adc_n ADC index number. */ __attribute__((always_inline)) static inline void adc_ll_set_calibration_param(adc_unit_t adc_n, uint32_t param) { uint8_t msb = param >> 8; uint8_t lsb = param & 0xFF; if (adc_n == ADC_UNIT_1) { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, msb); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, lsb); } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, msb); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, lsb); } } /* Temp code end. */ /** * Output ADCn inter reference voltage to ADC2 channels. * * This function routes the internal reference voltage of ADCn to one of * ADC1's channels. This reference voltage can then be manually measured * for calibration purposes. * * @param[in] adc ADC unit select * @param[in] channel ADC1 channel number * @param[in] en Enable/disable the reference voltage output */ static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en) { if (en) { REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 3); SET_PERI_REG_MASK(RTC_CNTL_REG, RTC_CNTL_REGULATOR_FORCE_PU); REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 2); SET_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN); SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE); SET_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE); APB_SARADC.sar_patt_tab[0].sar_patt_tab1 = 0xFFFFFF; APB_SARADC.sar_patt_tab[1].sar_patt_tab1 = 0xFFFFFF; APB_SARADC.onetime_sample.adc1_onetime_sample = 1; APB_SARADC.onetime_sample.onetime_channel = channel; SET_PERI_REG_MASK(RTC_CNTL_ANA_CONF_REG, RTC_CNTL_SAR_I2C_PU); if (adc == ADC_UNIT_1) { /* Config test mux to route v_ref to ADC1 Channels */ REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 1); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 1); } else { /* Config test mux to route v_ref to ADC2 Channels */ REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_TSENS_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0); } } else { REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0); REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0); APB_SARADC.onetime_sample.adc1_onetime_sample = 0; APB_SARADC.onetime_sample.onetime_channel = 0xf; REG_SET_FIELD(RTC_CNTL_SENSOR_CTRL_REG, RTC_CNTL_FORCE_XPD_SAR, 0); REG_SET_FIELD(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_SEL, 0); CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_CLKM_CONF_REG, APB_SARADC_CLK_EN); CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_GRANT_FORCE); CLEAR_PERI_REG_MASK(APB_SARADC_APB_ADC_ARB_CTRL_REG, APB_SARADC_ADC_ARB_APB_FORCE); } } /*--------------------------------------------------------------- Oneshot Read ---------------------------------------------------------------*/ /** * Set adc output data format for oneshot mode * * @note ESP32C3 Oneshot mode only supports 12bit. * @param adc_n ADC unit. * @param bits Output data bits width option. */ static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits) { //ESP32C3 only supports 12bit, leave here for compatibility HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT); } /** * Enable adc channel to start convert. * * @note Only one channel can be selected for measurement. * * @param adc_n ADC unit. * @param channel ADC channel number for each ADCn. */ static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel) { APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | channel); } /** * Disable adc channel to start convert. * * @note Only one channel can be selected in once measurement. * * @param adc_n ADC unit. */ static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n) { if (adc_n == ADC_UNIT_1) { APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | 0xF); } else { // adc_n == ADC_UNIT_2 APB_SARADC.onetime_sample.onetime_channel = ((adc_n << 3) | 0x1); } } /** * Start oneshot conversion by software * * @param val Usage: set to 1 to start the ADC conversion. The step signal should at least keep 3 ADC digital controller clock cycle, * otherwise the step signal may not be captured by the ADC digital controller when its frequency is slow. * This hardware limitation will be removed in future versions. */ static inline void adc_oneshot_ll_start(bool val) { APB_SARADC.onetime_sample.onetime_start = val; } /** * Clear the event for each ADCn for Oneshot mode * * @param event ADC event */ static inline void adc_oneshot_ll_clear_event(uint32_t event_mask) { APB_SARADC.int_clr.val |= event_mask; } /** * Check the event for each ADCn for Oneshot mode * * @param event ADC event * * @return * -true : The conversion process is finish. * -false : The conversion process is not finish. */ static inline bool adc_oneshot_ll_get_event(uint32_t event_mask) { return (APB_SARADC.int_raw.val & event_mask); } /** * Get the converted value for each ADCn for RTC controller. * * @param adc_n ADC unit. * @return * - Converted value. */ static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n) { uint32_t ret_val = 0; if (adc_n == ADC_UNIT_1) { ret_val = APB_SARADC.apb_saradc1_data_status.adc1_data & 0xfff; } else { // adc_n == ADC_UNIT_2 ret_val = APB_SARADC.apb_saradc2_data_status.adc2_data & 0xfff; } return ret_val; } /** * Analyze whether the obtained raw data is correct. * ADC2 can use arbiter. The arbitration result is stored in the channel information of the returned data. * * @param adc_n ADC unit. * @param raw_data ADC raw data input (convert value). * @return * - 1: The data is correct to use. * - 0: The data is invalid. */ static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw_data) { if (adc_n == ADC_UNIT_1) { return true; } //The raw data API returns value without channel information. Read value directly from the register if (((APB_SARADC.apb_saradc2_data_status.adc2_data >> 13) & 0xF) > 9) { return false; } return true; } /** * ADC module RTC output data invert or not. * * @param adc_n ADC unit. * @param inv_en data invert or not. */ static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en) { (void)adc_n; (void)inv_en; //For compatibility } /** * Enable oneshot conversion trigger * * @param adc_n ADC unit */ static inline void adc_oneshot_ll_enable(adc_unit_t adc_n) { if (adc_n == ADC_UNIT_1) { APB_SARADC.onetime_sample.adc1_onetime_sample = 1; } else { APB_SARADC.onetime_sample.adc2_onetime_sample = 1; } } /** * Disable oneshot conversion trigger for all the ADC units */ static inline void adc_oneshot_ll_disable_all_unit(void) { APB_SARADC.onetime_sample.adc1_onetime_sample = 0; APB_SARADC.onetime_sample.adc2_onetime_sample = 0; } /** * Set attenuation * * @note Attenuation is for all channels * * @param adc_n ADC unit * @param channel ADC channel * @param atten ADC attenuation */ static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten) { (void)adc_n; (void)channel; // Attenuation is for all channels, unit and channel are for compatibility APB_SARADC.onetime_sample.onetime_atten = atten; } /** * Get the attenuation of a particular channel on ADCn. * * @param adc_n ADC unit. * @param channel ADCn channel number. * @return atten The attenuation option. */ __attribute__((always_inline)) static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel) { (void)adc_n; (void)channel; return APB_SARADC.onetime_sample.onetime_atten; } #ifdef __cplusplus } #endif