/*
 * SPDX-FileCopyrightText: 2016-2022 Espressif Systems (Shanghai) CO LTD
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <esp_types.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
#include "sdkconfig.h"
#include "esp_intr_alloc.h"
#include "esp_log.h"
#include "esp_pm.h"
#include "esp_check.h"
#include "sys/lock.h"
#include "freertos/FreeRTOS.h"
#include "freertos/semphr.h"
#include "freertos/timers.h"
#include "freertos/ringbuf.h"
#include "esp_private/periph_ctrl.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "hal/adc_types.h"
#include "hal/adc_hal.h"
#include "hal/dma_types.h"
//For calibration
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp_efuse_rtc_table.h"
#elif SOC_ADC_CALIBRATION_V1_SUPPORTED
#include "esp_efuse_rtc_calib.h"
#endif
//For DMA
#if SOC_GDMA_SUPPORTED
#include "esp_private/gdma.h"
#elif CONFIG_IDF_TARGET_ESP32S2
#include "hal/spi_types.h"
#include "driver/spi_common_internal.h"
#elif CONFIG_IDF_TARGET_ESP32
#include "driver/i2s.h"
#include "hal/i2s_types.h"
#include "soc/i2s_periph.h"
#include "esp_private/i2s_platform.h"
#endif

static const char *ADC_TAG = "ADC";

#define ADC_GET_IO_NUM(periph, channel) (adc_channel_io_map[periph][channel])

extern portMUX_TYPE rtc_spinlock; //TODO: Will be placed in the appropriate position after the rtc module is finished.
#define ADC_ENTER_CRITICAL()  portENTER_CRITICAL(&rtc_spinlock)
#define ADC_EXIT_CRITICAL()  portEXIT_CRITICAL(&rtc_spinlock)

/**
 * 1. sar_adc1_lock: this mutex lock is to protect the SARADC1 module.
 * 2. sar_adc2_lock: this mutex lock is to protect the SARADC2 module.
 * 3. adc_reg_lock:  this spin lock is to protect the shared registers used by ADC1 / ADC2 single read mode.
 */
static _lock_t sar_adc1_lock;
#define SAR_ADC1_LOCK_ACQUIRE()    _lock_acquire(&sar_adc1_lock)
#define SAR_ADC1_LOCK_RELEASE()    _lock_release(&sar_adc1_lock)
static _lock_t sar_adc2_lock;
#define SAR_ADC2_LOCK_ACQUIRE()    _lock_acquire(&sar_adc2_lock)
#define SAR_ADC2_LOCK_RELEASE()    _lock_release(&sar_adc2_lock)
portMUX_TYPE adc_reg_lock = portMUX_INITIALIZER_UNLOCKED;
#define ADC_REG_LOCK_ENTER()       portENTER_CRITICAL(&adc_reg_lock)
#define ADC_REG_LOCK_EXIT()        portEXIT_CRITICAL(&adc_reg_lock)

#define INTERNAL_BUF_NUM 5

/*---------------------------------------------------------------
                    Digital Controller Context
---------------------------------------------------------------*/
typedef struct adc_digi_context_t {
    uint8_t                         *rx_dma_buf;                //dma buffer
    adc_hal_context_t               hal;                        //hal context
#if SOC_GDMA_SUPPORTED
    gdma_channel_handle_t           rx_dma_channel;             //dma rx channel handle
#elif CONFIG_IDF_TARGET_ESP32S2
    spi_host_device_t               spi_host;                   //ADC uses this SPI DMA
    intr_handle_t                   intr_hdl;                   //Interrupt handler
#elif CONFIG_IDF_TARGET_ESP32
    i2s_port_t                      i2s_host;                   //ADC uses this I2S DMA
    intr_handle_t                   intr_hdl;                   //Interrupt handler
#endif
    RingbufHandle_t                 ringbuf_hdl;                //RX ringbuffer handler
    intptr_t                        rx_eof_desc_addr;           //eof descriptor address of RX channel
    bool                            ringbuf_overflow_flag;      //1: ringbuffer overflow
    bool                            driver_start_flag;          //1: driver is started; 0: driver is stoped
    bool                            use_adc1;                   //1: ADC unit1 will be used; 0: ADC unit1 won't be used.
    bool                            use_adc2;                   //1: ADC unit2 will be used; 0: ADC unit2 won't be used. This determines whether to acquire sar_adc2_mutex lock or not.
    adc_atten_t                     adc1_atten;                 //Attenuation for ADC1. On this chip each ADC can only support one attenuation.
    adc_atten_t                     adc2_atten;                 //Attenuation for ADC2. On this chip each ADC can only support one attenuation.
    adc_hal_digi_ctrlr_cfg_t             hal_digi_ctrlr_cfg;         //Hal digital controller configuration
    esp_pm_lock_handle_t            pm_lock;                    //For power management
} adc_digi_context_t;

static adc_digi_context_t *s_adc_digi_ctx = NULL;
#ifdef CONFIG_PM_ENABLE
//Only for deprecated API
extern esp_pm_lock_handle_t adc_digi_arbiter_lock;
#endif  //CONFIG_PM_ENABLE

#if SOC_ADC_CALIBRATION_V1_SUPPORTED
uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t chan, adc_atten_t atten);
#endif

/*---------------------------------------------------------------
                   ADC Continuous Read Mode (via DMA)
---------------------------------------------------------------*/
//Function to address transaction
static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx);

#if SOC_GDMA_SUPPORTED
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data);
#else
static IRAM_ATTR void adc_dma_intr_handler(void *arg);
#endif

static int8_t adc_digi_get_io_num(uint8_t adc_unit, uint8_t adc_channel)
{
    return adc_channel_io_map[adc_unit][adc_channel];
}

static esp_err_t adc_digi_gpio_init(adc_unit_t adc_unit, uint16_t channel_mask)
{
    esp_err_t ret = ESP_OK;
    uint64_t gpio_mask = 0;
    uint32_t n = 0;
    int8_t io = 0;

    while (channel_mask) {
        if (channel_mask & 0x1) {
            io = adc_digi_get_io_num(adc_unit, n);
            if (io < 0) {
                return ESP_ERR_INVALID_ARG;
            }
            gpio_mask |= BIT64(io);
        }
        channel_mask = channel_mask >> 1;
        n++;
    }

    gpio_config_t cfg = {
        .pin_bit_mask = gpio_mask,
        .mode = GPIO_MODE_DISABLE,
    };
    ret = gpio_config(&cfg);

    return ret;
}

esp_err_t adc_digi_initialize(const adc_digi_init_config_t *init_config)
{
    esp_err_t ret = ESP_OK;

    s_adc_digi_ctx = calloc(1, sizeof(adc_digi_context_t));
    if (s_adc_digi_ctx == NULL) {
        ret = ESP_ERR_NO_MEM;
        goto cleanup;
    }

    //ringbuffer
    s_adc_digi_ctx->ringbuf_hdl = xRingbufferCreate(init_config->max_store_buf_size, RINGBUF_TYPE_BYTEBUF);
    if (!s_adc_digi_ctx->ringbuf_hdl) {
        ret = ESP_ERR_NO_MEM;
        goto cleanup;
    }

    //malloc internal buffer used by DMA
    s_adc_digi_ctx->rx_dma_buf = heap_caps_calloc(1, init_config->conv_num_each_intr * INTERNAL_BUF_NUM, MALLOC_CAP_INTERNAL | MALLOC_CAP_DMA);
    if (!s_adc_digi_ctx->rx_dma_buf) {
        ret = ESP_ERR_NO_MEM;
        goto cleanup;
    }

    //malloc dma descriptor
    s_adc_digi_ctx->hal.rx_desc = heap_caps_calloc(1, (sizeof(dma_descriptor_t)) * INTERNAL_BUF_NUM, MALLOC_CAP_DMA);
    if (!s_adc_digi_ctx->hal.rx_desc) {
        ret = ESP_ERR_NO_MEM;
        goto cleanup;
    }

    //malloc pattern table
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern = calloc(1, SOC_ADC_PATT_LEN_MAX * sizeof(adc_digi_pattern_config_t));
    if (!s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern) {
        ret = ESP_ERR_NO_MEM;
        goto cleanup;
    }

#if CONFIG_PM_ENABLE
    ret = esp_pm_lock_create(ESP_PM_APB_FREQ_MAX, 0, "adc_dma", &s_adc_digi_ctx->pm_lock);
    if (ret != ESP_OK) {
        goto cleanup;
    }
#endif //CONFIG_PM_ENABLE

    //init gpio pins
    if (init_config->adc1_chan_mask) {
        ret = adc_digi_gpio_init(ADC_NUM_1, init_config->adc1_chan_mask);
        if (ret != ESP_OK) {
            goto cleanup;
        }
    }
    if (init_config->adc2_chan_mask) {
        ret = adc_digi_gpio_init(ADC_NUM_2, init_config->adc2_chan_mask);
        if (ret != ESP_OK) {
            goto cleanup;
        }
    }

#if SOC_GDMA_SUPPORTED
    //alloc rx gdma channel
    gdma_channel_alloc_config_t rx_alloc_config = {
        .direction = GDMA_CHANNEL_DIRECTION_RX,
    };
    ret = gdma_new_channel(&rx_alloc_config, &s_adc_digi_ctx->rx_dma_channel);
    if (ret != ESP_OK) {
        goto cleanup;
    }
    gdma_connect(s_adc_digi_ctx->rx_dma_channel, GDMA_MAKE_TRIGGER(GDMA_TRIG_PERIPH_ADC, 0));

    gdma_strategy_config_t strategy_config = {
        .auto_update_desc = true,
        .owner_check = true
    };
    gdma_apply_strategy(s_adc_digi_ctx->rx_dma_channel, &strategy_config);

    gdma_rx_event_callbacks_t cbs = {
        .on_recv_eof = adc_dma_in_suc_eof_callback
    };
    gdma_register_rx_event_callbacks(s_adc_digi_ctx->rx_dma_channel, &cbs, s_adc_digi_ctx);

    int dma_chan;
    gdma_get_channel_id(s_adc_digi_ctx->rx_dma_channel, &dma_chan);

#elif CONFIG_IDF_TARGET_ESP32S2
    //ADC utilises SPI3 DMA on ESP32S2
    bool spi_success = false;
    uint32_t dma_chan = 0;

    spi_success = spicommon_periph_claim(SPI3_HOST, "adc");
    ret = spicommon_dma_chan_alloc(SPI3_HOST, SPI_DMA_CH_AUTO, &dma_chan, &dma_chan);
    if (ret == ESP_OK) {
        s_adc_digi_ctx->spi_host = SPI3_HOST;
    }
    if (!spi_success || (s_adc_digi_ctx->spi_host != SPI3_HOST)) {
        goto cleanup;
    }

    ret = esp_intr_alloc(spicommon_irqdma_source_for_host(s_adc_digi_ctx->spi_host), 0, adc_dma_intr_handler,
                        (void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
    if (ret != ESP_OK) {
        goto cleanup;
    }

#elif CONFIG_IDF_TARGET_ESP32
    //ADC utilises I2S0 DMA on ESP32
    uint32_t dma_chan = 0;
    ret = i2s_priv_register_object(&s_adc_digi_ctx, I2S_NUM_0);
    if (ret != ESP_OK) {
        goto cleanup;
    }

    s_adc_digi_ctx->i2s_host = I2S_NUM_0;
    ret = esp_intr_alloc(i2s_periph_signal[s_adc_digi_ctx->i2s_host].irq, 0, adc_dma_intr_handler,
                        (void *)s_adc_digi_ctx, &s_adc_digi_ctx->intr_hdl);
    if (ret != ESP_OK) {
        goto cleanup;
    }
#endif

    adc_hal_config_t config = {
#if SOC_GDMA_SUPPORTED
        .dev = (void *)GDMA_LL_GET_HW(0),
#elif CONFIG_IDF_TARGET_ESP32S2
        .dev = (void *)SPI_LL_GET_HW(s_adc_digi_ctx->spi_host),
#elif CONFIG_IDF_TARGET_ESP32
        .dev = (void *)I2S_LL_GET_HW(s_adc_digi_ctx->i2s_host),
#endif
        .desc_max_num = INTERNAL_BUF_NUM,
        .dma_chan = dma_chan,
        .eof_num = init_config->conv_num_each_intr / ADC_HAL_DATA_LEN_PER_CONV
    };
    adc_hal_context_config(&s_adc_digi_ctx->hal, &config);

    //enable SARADC module clock
    periph_module_enable(PERIPH_SARADC_MODULE);

#if SOC_ADC_CALIBRATION_V1_SUPPORTED
    adc_hal_calibration_init(ADC_NUM_1);
    adc_hal_calibration_init(ADC_NUM_2);
#endif  //#if SOC_ADC_CALIBRATION_V1_SUPPORTED

    return ret;

cleanup:
    adc_digi_deinitialize();
    return ret;
}

#if SOC_GDMA_SUPPORTED
static IRAM_ATTR bool adc_dma_in_suc_eof_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
    assert(event_data);
    s_adc_digi_ctx->rx_eof_desc_addr = event_data->rx_eof_desc_addr;
    return s_adc_dma_intr(user_data);
}
#else
static IRAM_ATTR void adc_dma_intr_handler(void *arg)
{
    adc_digi_context_t *ctx = (adc_digi_context_t *)arg;
    bool need_yield = false;

    bool conversion_finish = adc_hal_check_event(&ctx->hal, ADC_HAL_DMA_INTR_MASK);
    if (conversion_finish) {
        adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);

        intptr_t desc_addr = adc_hal_get_desc_addr(&ctx->hal);

        ctx->rx_eof_desc_addr = desc_addr;
        need_yield = s_adc_dma_intr(ctx);
    }

    if (need_yield) {
        portYIELD_FROM_ISR();
    }
}
#endif

static IRAM_ATTR bool s_adc_dma_intr(adc_digi_context_t *adc_digi_ctx)
{
    portBASE_TYPE taskAwoken = 0;
    BaseType_t ret;
    adc_hal_dma_desc_status_t status = false;
    dma_descriptor_t *current_desc = NULL;

    while (1) {
        status = adc_hal_get_reading_result(&adc_digi_ctx->hal, adc_digi_ctx->rx_eof_desc_addr, &current_desc);
        if (status != ADC_HAL_DMA_DESC_VALID) {
            break;
        }

        ret = xRingbufferSendFromISR(adc_digi_ctx->ringbuf_hdl, current_desc->buffer, current_desc->dw0.length, &taskAwoken);
        if (ret == pdFALSE) {
            //ringbuffer overflow
            adc_digi_ctx->ringbuf_overflow_flag = 1;
        }
    }

    if (status == ADC_HAL_DMA_DESC_NULL) {
        //start next turns of dma operation
        adc_hal_digi_start(&adc_digi_ctx->hal, adc_digi_ctx->rx_dma_buf);
    }

    return (taskAwoken == pdTRUE);
}

esp_err_t adc_digi_start(void)
{
    if (s_adc_digi_ctx) {
        if (s_adc_digi_ctx->driver_start_flag != 0) {
            ESP_LOGE(ADC_TAG, "The driver is already started");
            return ESP_ERR_INVALID_STATE;
        }
        adc_power_acquire();
        //reset flags
        s_adc_digi_ctx->ringbuf_overflow_flag = 0;
        s_adc_digi_ctx->driver_start_flag = 1;
        if (s_adc_digi_ctx->use_adc1) {
            SAR_ADC1_LOCK_ACQUIRE();
        }
        if (s_adc_digi_ctx->use_adc2) {
            SAR_ADC2_LOCK_ACQUIRE();
        }

#if CONFIG_PM_ENABLE
        // Lock APB frequency while ADC driver is in use
        esp_pm_lock_acquire(s_adc_digi_ctx->pm_lock);
#endif

#if SOC_ADC_CALIBRATION_V1_SUPPORTED
        if (s_adc_digi_ctx->use_adc1) {
            uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc1_atten);
            adc_hal_set_calibration_param(ADC_NUM_1, cal_val);
        }
        if (s_adc_digi_ctx->use_adc2) {
            uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, ADC_CHANNEL_MAX, s_adc_digi_ctx->adc2_atten);
            adc_hal_set_calibration_param(ADC_NUM_2, cal_val);
        }
#endif  //#if SOC_ADC_CALIBRATION_V1_SUPPORTED

        adc_hal_init();
#if SOC_ADC_ARBITER_SUPPORTED
        adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
        adc_hal_arbiter_config(&config);
#endif  //#if SOC_ADC_ARBITER_SUPPORTED

        adc_hal_set_controller(ADC_NUM_1, ADC_HAL_CONTINUOUS_READ_MODE);
        adc_hal_set_controller(ADC_NUM_2, ADC_HAL_CONTINUOUS_READ_MODE);

        adc_hal_digi_init(&s_adc_digi_ctx->hal);
        adc_hal_digi_controller_config(&s_adc_digi_ctx->hal, &s_adc_digi_ctx->hal_digi_ctrlr_cfg);

        //start conversion
        adc_hal_digi_start(&s_adc_digi_ctx->hal, s_adc_digi_ctx->rx_dma_buf);

    }
#if CONFIG_IDF_TARGET_ESP32S2
    //For being compatible with the deprecated behaviour
    else {
        ESP_LOGE(ADC_TAG, "API used without driver initialization before. The following behaviour is deprecated!!");
#ifdef CONFIG_PM_ENABLE
        ESP_RETURN_ON_FALSE((adc_digi_arbiter_lock), ESP_FAIL, ADC_TAG, "Should start after call `adc_digi_controller_config`");
        esp_pm_lock_acquire(adc_digi_arbiter_lock);
#endif
        ADC_ENTER_CRITICAL();
        adc_ll_digi_dma_enable();
        adc_ll_digi_trigger_enable();
        ADC_EXIT_CRITICAL();
    }
#endif  //#if CONFIG_IDF_TARGET_ESP32S2
    return ESP_OK;
}

esp_err_t adc_digi_stop(void)
{
    if (s_adc_digi_ctx) {
        if (s_adc_digi_ctx->driver_start_flag != 1) {
            ESP_LOGE(ADC_TAG, "The driver is already stopped");
            return ESP_ERR_INVALID_STATE;
        }
        s_adc_digi_ctx->driver_start_flag = 0;

        //disable the in suc eof intrrupt
        adc_hal_digi_dis_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
        //clear the in suc eof interrupt
        adc_hal_digi_clr_intr(&s_adc_digi_ctx->hal, ADC_HAL_DMA_INTR_MASK);
        //stop ADC
        adc_hal_digi_stop(&s_adc_digi_ctx->hal);

        adc_hal_digi_deinit(&s_adc_digi_ctx->hal);
#if CONFIG_PM_ENABLE
        if (s_adc_digi_ctx->pm_lock) {
            esp_pm_lock_release(s_adc_digi_ctx->pm_lock);
        }
#endif  //CONFIG_PM_ENABLE

        if (s_adc_digi_ctx->use_adc1) {
            SAR_ADC1_LOCK_RELEASE();
        }
        if (s_adc_digi_ctx->use_adc2) {
            SAR_ADC2_LOCK_RELEASE();
        }
        adc_power_release();
    }
#if CONFIG_IDF_TARGET_ESP32S2
    else {
        //For being compatible with the deprecated behaviour
        ESP_LOGE(ADC_TAG, "API used without driver initialization before. The following behaviour is deprecated!!");
#ifdef CONFIG_PM_ENABLE
        if (adc_digi_arbiter_lock) {
            esp_pm_lock_release(adc_digi_arbiter_lock);
        }
#endif
        ADC_ENTER_CRITICAL();
        adc_ll_digi_trigger_disable();
        adc_ll_digi_dma_disable();
        ADC_EXIT_CRITICAL();
    }
#endif  //#if CONFIG_IDF_TARGET_ESP32S2
    return ESP_OK;
}

esp_err_t adc_digi_read_bytes(uint8_t *buf, uint32_t length_max, uint32_t *out_length, uint32_t timeout_ms)
{
    TickType_t ticks_to_wait;
    esp_err_t ret = ESP_OK;
    uint8_t *data = NULL;
    size_t size = 0;

    ticks_to_wait = timeout_ms / portTICK_PERIOD_MS;
    if (timeout_ms == ADC_MAX_DELAY) {
        ticks_to_wait = portMAX_DELAY;
    }

    data = xRingbufferReceiveUpTo(s_adc_digi_ctx->ringbuf_hdl, &size, ticks_to_wait, length_max);
    if (!data) {
        ESP_LOGV(ADC_TAG, "No data, increase timeout or reduce conv_num_each_intr");
        ret = ESP_ERR_TIMEOUT;
        *out_length = 0;
        return ret;
    }

    memcpy(buf, data, size);
    vRingbufferReturnItem(s_adc_digi_ctx->ringbuf_hdl, data);
    assert((size % 4) == 0);
    *out_length = size;

    if (s_adc_digi_ctx->ringbuf_overflow_flag) {
        ret = ESP_ERR_INVALID_STATE;
    }

    return ret;
}

esp_err_t adc_digi_deinitialize(void)
{
    if (!s_adc_digi_ctx) {
        return ESP_ERR_INVALID_STATE;
    }

    if (s_adc_digi_ctx->driver_start_flag != 0) {
        ESP_LOGE(ADC_TAG, "The driver is not stopped");
        return ESP_ERR_INVALID_STATE;
    }

    if (s_adc_digi_ctx->ringbuf_hdl) {
        vRingbufferDelete(s_adc_digi_ctx->ringbuf_hdl);
        s_adc_digi_ctx->ringbuf_hdl = NULL;
    }

#if CONFIG_PM_ENABLE
    if (s_adc_digi_ctx->pm_lock) {
        esp_pm_lock_delete(s_adc_digi_ctx->pm_lock);
    }
#endif  //CONFIG_PM_ENABLE

    free(s_adc_digi_ctx->rx_dma_buf);
    free(s_adc_digi_ctx->hal.rx_desc);
    free(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern);
#if SOC_GDMA_SUPPORTED
    gdma_disconnect(s_adc_digi_ctx->rx_dma_channel);
    gdma_del_channel(s_adc_digi_ctx->rx_dma_channel);
#elif CONFIG_IDF_TARGET_ESP32S2
    esp_intr_free(s_adc_digi_ctx->intr_hdl);
    spicommon_dma_chan_free(s_adc_digi_ctx->spi_host);
    spicommon_periph_free(s_adc_digi_ctx->spi_host);
#elif CONFIG_IDF_TARGET_ESP32
    esp_intr_free(s_adc_digi_ctx->intr_hdl);
    i2s_priv_deregister_object(s_adc_digi_ctx->i2s_host);
#endif
    free(s_adc_digi_ctx);
    s_adc_digi_ctx = NULL;

    periph_module_disable(PERIPH_SARADC_MODULE);

    return ESP_OK;
}

/*---------------------------------------------------------------
                    Digital controller setting
---------------------------------------------------------------*/
esp_err_t adc_digi_controller_configure(const adc_digi_configuration_t *config)
{
    if (!s_adc_digi_ctx) {
        return ESP_ERR_INVALID_STATE;
    }

    //Pattern related check
    ESP_RETURN_ON_FALSE(config->pattern_num <= SOC_ADC_PATT_LEN_MAX, ESP_ERR_INVALID_ARG, ADC_TAG, "Max pattern num is %d", SOC_ADC_PATT_LEN_MAX);
#if CONFIG_IDF_TARGET_ESP32
    for (int i = 0; i < config->pattern_num; i++) {
        ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width >= SOC_ADC_DIGI_MIN_BITWIDTH && config->adc_pattern->bit_width <= SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
        ESP_RETURN_ON_FALSE(config->adc_pattern[i].unit == 0, ESP_ERR_INVALID_ARG, ADC_TAG, "Only support using ADC1 DMA mode");
    }
#else
    for (int i = 0; i < config->pattern_num; i++) {
        ESP_RETURN_ON_FALSE((config->adc_pattern[i].bit_width == SOC_ADC_DIGI_MAX_BITWIDTH), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC bitwidth not supported");
    }
#endif
    ESP_RETURN_ON_FALSE(config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW, ESP_ERR_INVALID_ARG, ADC_TAG, "ADC sampling frequency out of range");
#if CONFIG_IDF_TARGET_ESP32
    ESP_RETURN_ON_FALSE(config->conv_limit_en == 1, ESP_ERR_INVALID_ARG, ADC_TAG, "`conv_limit_en` should be set to 1");
#endif

#if CONFIG_IDF_TARGET_ESP32
    ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
#elif CONFIG_IDF_TARGET_ESP32S2
    if (config->conv_mode == ADC_CONV_BOTH_UNIT || config->conv_mode == ADC_CONV_ALTER_UNIT) {
        ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
    } else if (config->conv_mode == ADC_CONV_SINGLE_UNIT_1 || config->conv_mode == ADC_CONV_SINGLE_UNIT_2) {
        ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE1, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type1");
    }
#else
    ESP_RETURN_ON_FALSE(config->format == ADC_DIGI_OUTPUT_FORMAT_TYPE2, ESP_ERR_INVALID_ARG, ADC_TAG, "Please use type2");
#endif

    s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_en = config->conv_limit_en;
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_num = config->conv_limit_num;
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->pattern_num;
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_mode = config->conv_mode;
    memcpy(s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern, config->adc_pattern, config->pattern_num * sizeof(adc_digi_pattern_config_t));

    const int atten_uninitialized = 999;
    s_adc_digi_ctx->adc1_atten = atten_uninitialized;
    s_adc_digi_ctx->adc2_atten = atten_uninitialized;
    s_adc_digi_ctx->use_adc1 = 0;
    s_adc_digi_ctx->use_adc2 = 0;
    for (int i = 0; i < config->pattern_num; i++) {
        const adc_digi_pattern_config_t *pat = &config->adc_pattern[i];
        if (pat->unit == ADC_NUM_1) {
            s_adc_digi_ctx->use_adc1 = 1;

            if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
                s_adc_digi_ctx->adc1_atten = pat->atten;
            } else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
                return ESP_ERR_INVALID_ARG;
            }
        } else if (pat->unit == ADC_NUM_2) {
            //See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
            s_adc_digi_ctx->use_adc2 = 1;

            if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
                s_adc_digi_ctx->adc2_atten = pat->atten;
            } else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
                return ESP_ERR_INVALID_ARG;
            }
        }
    }

    return ESP_OK;
}


#if CONFIG_IDF_TARGET_ESP32C3
/*---------------------------------------------------------------
                    ADC Single Read Mode
---------------------------------------------------------------*/
static adc_atten_t s_atten1_single[ADC1_CHANNEL_MAX];    //Array saving attenuate of each channel of ADC1, used by single read API
static adc_atten_t s_atten2_single[ADC2_CHANNEL_MAX];    //Array saving attenuate of each channel of ADC2, used by single read API

esp_err_t adc_vref_to_gpio(adc_unit_t adc_unit, gpio_num_t gpio)
{
    esp_err_t ret;
    uint32_t channel = ADC2_CHANNEL_MAX;
    if (adc_unit == ADC_UNIT_2) {
        for (int i = 0; i < ADC2_CHANNEL_MAX; i++) {
            if (gpio == ADC_GET_IO_NUM(ADC_NUM_2, i)) {
                channel = i;
                break;
            }
        }
        if (channel == ADC2_CHANNEL_MAX) {
            return ESP_ERR_INVALID_ARG;
        }
    }

    adc_power_acquire();
    if (adc_unit & ADC_UNIT_1) {
        ADC_ENTER_CRITICAL();
        adc_hal_vref_output(ADC_NUM_1, channel, true);
        ADC_EXIT_CRITICAL();
    } else if (adc_unit & ADC_UNIT_2) {
        ADC_ENTER_CRITICAL();
        adc_hal_vref_output(ADC_NUM_2, channel, true);
        ADC_EXIT_CRITICAL();
    }

    ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));

    return ret;
}

esp_err_t adc1_config_width(adc_bits_width_t width_bit)
{
    //On ESP32C3, the data width is always 12-bits.
    if (width_bit != ADC_WIDTH_BIT_12) {
        return ESP_ERR_INVALID_ARG;
    }

    return ESP_OK;
}

esp_err_t adc1_config_channel_atten(adc1_channel_t channel, adc_atten_t atten)
{
    ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_NUM_1), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC1 channel error");
    ESP_RETURN_ON_FALSE((atten < ADC_ATTEN_MAX), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC Atten Err");

    esp_err_t ret = ESP_OK;
    s_atten1_single[channel] = atten;
    ret = adc_digi_gpio_init(ADC_NUM_1, BIT(channel));

    adc_hal_calibration_init(ADC_NUM_1);

    return ret;
}

int adc1_get_raw(adc1_channel_t channel)
{
    int raw_out = 0;

    periph_module_enable(PERIPH_SARADC_MODULE);
    adc_power_acquire();

    SAR_ADC1_LOCK_ACQUIRE();

    adc_atten_t atten = s_atten1_single[channel];
    uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_1, channel, atten);
    adc_hal_set_calibration_param(ADC_NUM_1, cal_val);

    ADC_REG_LOCK_ENTER();
    adc_hal_set_atten(ADC_NUM_2, channel, atten);
    adc_hal_convert(ADC_NUM_1, channel, &raw_out);
    ADC_REG_LOCK_EXIT();

    SAR_ADC1_LOCK_RELEASE();

    adc_power_release();
    periph_module_disable(PERIPH_SARADC_MODULE);

    return raw_out;
}

esp_err_t adc2_config_channel_atten(adc2_channel_t channel, adc_atten_t atten)
{
    ESP_RETURN_ON_FALSE(channel < SOC_ADC_CHANNEL_NUM(ADC_NUM_2), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 channel error");
    ESP_RETURN_ON_FALSE((atten <= ADC_ATTEN_11db), ESP_ERR_INVALID_ARG, ADC_TAG, "ADC2 Atten Err");

    esp_err_t ret = ESP_OK;
    s_atten2_single[channel] = atten;
    ret = adc_digi_gpio_init(ADC_NUM_2, BIT(channel));

    adc_hal_calibration_init(ADC_NUM_2);

    return ret;
}

esp_err_t adc2_get_raw(adc2_channel_t channel, adc_bits_width_t width_bit, int *raw_out)
{
    //On ESP32C3, the data width is always 12-bits.
    if (width_bit != ADC_WIDTH_BIT_12) {
        return ESP_ERR_INVALID_ARG;
    }

    esp_err_t ret = ESP_OK;

    periph_module_enable(PERIPH_SARADC_MODULE);
    adc_power_acquire();

    SAR_ADC2_LOCK_ACQUIRE();

    adc_arbiter_t config = ADC_ARBITER_CONFIG_DEFAULT();
    adc_hal_arbiter_config(&config);

    adc_atten_t atten = s_atten2_single[channel];
    uint32_t cal_val = adc_get_calibration_offset(ADC_NUM_2, channel, atten);
    adc_hal_set_calibration_param(ADC_NUM_2, cal_val);

    ADC_REG_LOCK_ENTER();
    adc_hal_set_atten(ADC_NUM_2, channel, atten);
    ret = adc_hal_convert(ADC_NUM_2, channel, raw_out);
    ADC_REG_LOCK_EXIT();

    SAR_ADC2_LOCK_RELEASE();

    adc_power_release();
    periph_module_disable(PERIPH_SARADC_MODULE);

    return ret;
}

/*************************************/
/* Digital controller filter setting */
/*************************************/

esp_err_t adc_digi_filter_reset(adc_digi_filter_idx_t idx)
{
    ADC_ENTER_CRITICAL();
    adc_hal_digi_filter_reset(idx);
    ADC_EXIT_CRITICAL();
    return ESP_OK;
}

esp_err_t adc_digi_filter_set_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
    ADC_ENTER_CRITICAL();
    adc_hal_digi_filter_set_factor(idx, config);
    ADC_EXIT_CRITICAL();
    return ESP_OK;
}

esp_err_t adc_digi_filter_get_config(adc_digi_filter_idx_t idx, adc_digi_filter_t *config)
{
    ADC_ENTER_CRITICAL();
    adc_hal_digi_filter_get_factor(idx, config);
    ADC_EXIT_CRITICAL();
    return ESP_OK;
}

esp_err_t adc_digi_filter_enable(adc_digi_filter_idx_t idx, bool enable)
{
    ADC_ENTER_CRITICAL();
    adc_hal_digi_filter_enable(idx, enable);
    ADC_EXIT_CRITICAL();
    return ESP_OK;
}

/**************************************/
/* Digital controller monitor setting */
/**************************************/

esp_err_t adc_digi_monitor_set_config(adc_digi_monitor_idx_t idx, adc_digi_monitor_t *config)
{
    ADC_ENTER_CRITICAL();
    adc_hal_digi_monitor_config(idx, config);
    ADC_EXIT_CRITICAL();
    return ESP_OK;
}

esp_err_t adc_digi_monitor_enable(adc_digi_monitor_idx_t idx, bool enable)
{

    ADC_ENTER_CRITICAL();
    adc_hal_digi_monitor_enable(idx, enable);
    ADC_EXIT_CRITICAL();
    return ESP_OK;
}
#endif  //#if CONFIG_IDF_TARGET_ESP32C3


#if SOC_ADC_CALIBRATION_V1_SUPPORTED
/*---------------------------------------------------------------
                    Hardware Calibration Setting
---------------------------------------------------------------*/
#if CONFIG_IDF_TARGET_ESP32S2
#define esp_efuse_rtc_calib_get_ver()                               esp_efuse_rtc_table_read_calib_version()

static inline uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int atten)
{
    int tag = esp_efuse_rtc_table_get_tag(version, adc_unit + 1, atten, RTCCALIB_V2_PARAM_VINIT);
    return esp_efuse_rtc_table_get_parsed_efuse_value(tag, false);
}
#endif

static uint16_t s_adc_cali_param[SOC_ADC_PERIPH_NUM][ADC_ATTEN_MAX] = {};

//NOTE: according to calibration version, different types of lock may be taken during the process:
//  1. Semaphore when reading efuse
//  2. Lock (Spinlock, or Mutex) if we actually do ADC calibration in the future
//This function shoudn't be called inside critical section or ISR
uint32_t adc_get_calibration_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
    if (s_adc_cali_param[adc_n][atten]) {
        ESP_LOGV(ADC_TAG, "Use calibrated val ADC%d atten=%d: %04X", adc_n, atten, s_adc_cali_param[adc_n][atten]);
        return (uint32_t)s_adc_cali_param[adc_n][atten];
    }

    // check if we can fetch the values from eFuse.
    int version = esp_efuse_rtc_calib_get_ver();

    uint32_t init_code = 0;

    if (version == ESP_EFUSE_ADC_CALIB_VER) {
        init_code = esp_efuse_rtc_calib_get_init_code(version, adc_n, atten);

    } else {
        ESP_LOGD(ADC_TAG, "Calibration eFuse is not configured, use self-calibration for ICode");
        adc_power_acquire();
        ADC_ENTER_CRITICAL();
        const bool internal_gnd = true;
        init_code = adc_hal_self_calibration(adc_n, channel, atten, internal_gnd);
        ADC_EXIT_CRITICAL();
        adc_power_release();
    }

    s_adc_cali_param[adc_n][atten] = init_code;
    ESP_LOGV(ADC_TAG, "Calib(V%d) ADC%d atten=%d: %04X", version, adc_n, atten, init_code);

    return init_code;
}

// Internal function to calibrate PWDET for WiFi
esp_err_t adc_cal_offset(adc_ll_num_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
    adc_hal_calibration_init(adc_n);
    uint32_t cal_val = adc_get_calibration_offset(adc_n, channel, atten);
    ADC_ENTER_CRITICAL();
    adc_hal_set_calibration_param(adc_n, cal_val);
    ADC_EXIT_CRITICAL();
    return ESP_OK;
}
#endif //#if SOC_ADC_CALIBRATION_V1_SUPPORTED

/*---------------------------------------------------------------
                   Deprecated API
---------------------------------------------------------------*/
#if CONFIG_IDF_TARGET_ESP32C3
#pragma GCC diagnostic ignored "-Wdeprecated-declarations"
#include "deprecated/driver/adc_deprecated.h"
#include "deprecated/driver/adc_types_deprecated.h"
esp_err_t adc_digi_controller_config(const adc_digi_config_t *config)
{
    if (!s_adc_digi_ctx) {
        return ESP_ERR_INVALID_STATE;
    }
    ESP_RETURN_ON_FALSE((config->sample_freq_hz <= SOC_ADC_SAMPLE_FREQ_THRES_HIGH && config->sample_freq_hz >= SOC_ADC_SAMPLE_FREQ_THRES_LOW), ESP_ERR_INVALID_ARG, ADC_TAG, "DC sampling frequency out of range");

    s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_en = config->conv_limit_en;
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.conv_limit_num = config->conv_limit_num;
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern_len = config->adc_pattern_len;
    s_adc_digi_ctx->hal_digi_ctrlr_cfg.sample_freq_hz = config->sample_freq_hz;

    for (int i = 0; i < config->adc_pattern_len; i++) {
        s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i].atten = config->adc_pattern[i].atten;
        s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i].channel = config->adc_pattern[i].channel;
        s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i].unit = config->adc_pattern[i].unit;
    }


    const int atten_uninitialized = 999;
    s_adc_digi_ctx->adc1_atten = atten_uninitialized;
    s_adc_digi_ctx->adc2_atten = atten_uninitialized;
    s_adc_digi_ctx->use_adc1 = 0;
    s_adc_digi_ctx->use_adc2 = 0;
    for (int i = 0; i < config->adc_pattern_len; i++) {
        const adc_digi_pattern_config_t *pat = &s_adc_digi_ctx->hal_digi_ctrlr_cfg.adc_pattern[i];
        if (pat->unit == ADC_NUM_1) {
            s_adc_digi_ctx->use_adc1 = 1;

            if (s_adc_digi_ctx->adc1_atten == atten_uninitialized) {
                s_adc_digi_ctx->adc1_atten = pat->atten;
            } else if (s_adc_digi_ctx->adc1_atten != pat->atten) {
                return ESP_ERR_INVALID_ARG;
            }
        } else if (pat->unit == ADC_NUM_2) {
            //See whether ADC2 will be used or not. If yes, the ``sar_adc2_mutex`` should be acquired in the continuous read driver
            s_adc_digi_ctx->use_adc2 = 1;

            if (s_adc_digi_ctx->adc2_atten == atten_uninitialized) {
                s_adc_digi_ctx->adc2_atten = pat->atten;
            } else if (s_adc_digi_ctx->adc2_atten != pat->atten) {
                return ESP_ERR_INVALID_ARG;
            }
        }
    }

    return ESP_OK;
}
#endif  //#if CONFIG_IDF_TARGET_ESP32C3