/* Tests for the spi_master device driver */ #include <esp_types.h> #include <stdio.h> #include <stdlib.h> #include <malloc.h> #include <string.h> #include "rom/ets_sys.h" #include "freertos/FreeRTOS.h" #include "freertos/task.h" #include "freertos/semphr.h" #include "freertos/queue.h" #include "freertos/xtensa_api.h" #include "unity.h" #include "driver/spi_master.h" #include "driver/spi_slave.h" #include "soc/dport_reg.h" #include "esp_heap_caps.h" #include "esp_log.h" #include "soc/spi_periph.h" #include "test_utils.h" #include "test/test_common_spi.h" #include "soc/gpio_periph.h" #include "sdkconfig.h" const static char TAG[] = "test_spi"; static void check_spi_pre_n_for(int clk, int pre, int n) { esp_err_t ret; spi_device_handle_t handle; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=clk, .duty_cycle_pos=128, .mode=0, .spics_io_num=21, .queue_size=3 }; char sendbuf[16]=""; spi_transaction_t t; memset(&t, 0, sizeof(t)); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle); TEST_ASSERT(ret==ESP_OK); t.length=16*8; t.tx_buffer=sendbuf; ret=spi_device_transmit(handle, &t); printf("Checking clk rate %dHz. expect pre %d n %d, got pre %d n %d\n", clk, pre, n, SPI2.clock.clkdiv_pre+1, SPI2.clock.clkcnt_n+1); TEST_ASSERT(SPI2.clock.clkcnt_n+1==n); TEST_ASSERT(SPI2.clock.clkdiv_pre+1==pre); ret=spi_bus_remove_device(handle); TEST_ASSERT(ret==ESP_OK); } TEST_CASE("SPI Master clockdiv calculation routines", "[spi]") { spi_bus_config_t buscfg={ .mosi_io_num=4, .miso_io_num=26, .sclk_io_num=25, .quadwp_io_num=-1, .quadhd_io_num=-1 }; esp_err_t ret; ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); check_spi_pre_n_for(26000000, 1, 3); check_spi_pre_n_for(20000000, 1, 4); check_spi_pre_n_for(8000000, 1, 10); check_spi_pre_n_for(800000, 2, 50); check_spi_pre_n_for(100000, 16, 50); check_spi_pre_n_for(333333, 4, 60); check_spi_pre_n_for(900000, 2, 44); check_spi_pre_n_for(1, 8192, 64); //Actually should generate the minimum clock speed, 152Hz check_spi_pre_n_for(26000000, 1, 3); ret=spi_bus_free(HSPI_HOST); TEST_ASSERT(ret==ESP_OK); } static spi_device_handle_t setup_spi_bus(int clkspeed, bool dma) { spi_bus_config_t buscfg={ .mosi_io_num=26, .miso_io_num=26, .sclk_io_num=25, .quadwp_io_num=-1, .quadhd_io_num=-1, .max_transfer_sz=4096*3 }; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=clkspeed, .duty_cycle_pos=128, .mode=0, .spics_io_num=21, .queue_size=3, }; esp_err_t ret; spi_device_handle_t handle; ret=spi_bus_initialize(HSPI_HOST, &buscfg, dma?1:0); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &handle); TEST_ASSERT(ret==ESP_OK); //connect MOSI to two devices breaks the output, fix it. spitest_gpio_output_sel(26, FUNC_GPIO, HSPID_OUT_IDX); printf("Bus/dev inited.\n"); return handle; } static int spi_test(spi_device_handle_t handle, int num_bytes) { esp_err_t ret; int x; bool success = true; srand(num_bytes); char *sendbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA); char *recvbuf=heap_caps_malloc((num_bytes+3)&(~3), MALLOC_CAP_DMA); for (x=0; x<num_bytes; x++) { sendbuf[x]=rand()&0xff; recvbuf[x]=0x55; } spi_transaction_t t; memset(&t, 0, sizeof(t)); t.length=num_bytes*8; t.tx_buffer=sendbuf; t.rx_buffer=recvbuf; t.addr=0xA00000000000000FL; t.cmd=0x55; printf("Transmitting %d bytes...\n", num_bytes); ret=spi_device_transmit(handle, &t); TEST_ASSERT(ret==ESP_OK); srand(num_bytes); for (x=0; x<num_bytes; x++) { if (sendbuf[x]!=(rand()&0xff)) { printf("Huh? Sendbuf corrupted at byte %d\n", x); TEST_ASSERT(0); } if (sendbuf[x]!=recvbuf[x]) break; } if (x!=num_bytes) { int from=x-16; if (from<0) from=0; success = false; printf("Error at %d! Sent vs recved: (starting from %d)\n" , x, from); for (int i=0; i<32; i++) { if (i+from<num_bytes) printf("%02X ", sendbuf[from+i]); } printf("\n"); for (int i=0; i<32; i++) { if (i+from<num_bytes) printf("%02X ", recvbuf[from+i]); } printf("\n"); } if (success) printf("Success!\n"); free(sendbuf); free(recvbuf); return success; } TEST_CASE("SPI Master test", "[spi]") { bool success = true; printf("Testing bus at 80KHz\n"); spi_device_handle_t handle=setup_spi_bus(80000, true); success &= spi_test(handle, 16); //small success &= spi_test(handle, 21); //small, unaligned success &= spi_test(handle, 36); //aligned success &= spi_test(handle, 128); //aligned success &= spi_test(handle, 129); //unaligned success &= spi_test(handle, 4096-2); //multiple descs, edge case 1 success &= spi_test(handle, 4096-1); //multiple descs, edge case 2 success &= spi_test(handle, 4096*3); //multiple descs master_free_device_bus(handle); printf("Testing bus at 80KHz, non-DMA\n"); handle=setup_spi_bus(80000, false); success &= spi_test(handle, 4); //aligned success &= spi_test(handle, 16); //small success &= spi_test(handle, 21); //small, unaligned success &= spi_test(handle, 32); //small success &= spi_test(handle, 47); //small, unaligned success &= spi_test(handle, 63); //small success &= spi_test(handle, 64); //small, unaligned master_free_device_bus(handle); printf("Testing bus at 26MHz\n"); handle=setup_spi_bus(20000000, true); success &= spi_test(handle, 128); //DMA, aligned success &= spi_test(handle, 4096*3); //DMA, multiple descs master_free_device_bus(handle); printf("Testing bus at 900KHz\n"); handle=setup_spi_bus(9000000, true); success &= spi_test(handle, 128); //DMA, aligned success &= spi_test(handle, 4096*3); //DMA, multiple descs master_free_device_bus(handle); TEST_ASSERT(success); } TEST_CASE("SPI Master test, interaction of multiple devs", "[spi]") { esp_err_t ret; bool success = true; spi_device_interface_config_t devcfg={ .command_bits=0, .address_bits=0, .dummy_bits=0, .clock_speed_hz=1000000, .duty_cycle_pos=128, .mode=0, .spics_io_num=23, .queue_size=3, }; spi_device_handle_t handle1=setup_spi_bus(80000, true); spi_device_handle_t handle2; spi_bus_add_device(HSPI_HOST, &devcfg, &handle2); printf("Sending to dev 1\n"); success &= spi_test(handle1, 7); printf("Sending to dev 1\n"); success &= spi_test(handle1, 15); printf("Sending to dev 2\n"); success &= spi_test(handle2, 15); printf("Sending to dev 1\n"); success &= spi_test(handle1, 32); printf("Sending to dev 2\n"); success &= spi_test(handle2, 32); printf("Sending to dev 1\n"); success &= spi_test(handle1, 63); printf("Sending to dev 2\n"); success &= spi_test(handle2, 63); printf("Sending to dev 1\n"); success &= spi_test(handle1, 5000); printf("Sending to dev 2\n"); success &= spi_test(handle2, 5000); ret=spi_bus_remove_device(handle2); TEST_ASSERT(ret==ESP_OK); master_free_device_bus(handle1); TEST_ASSERT(success); } static esp_err_t test_master_pins(int mosi, int miso, int sclk, int cs) { esp_err_t ret; spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG(); cfg.mosi_io_num = mosi; cfg.miso_io_num = miso; cfg.sclk_io_num = sclk; spi_device_interface_config_t master_cfg = SPI_DEVICE_TEST_DEFAULT_CONFIG(); master_cfg.spics_io_num = cs; ret = spi_bus_initialize(TEST_SPI_HOST, &cfg, 1); if (ret != ESP_OK) return ret; spi_device_handle_t spi; ret = spi_bus_add_device(TEST_SPI_HOST, &master_cfg, &spi); if (ret != ESP_OK) { spi_bus_free(TEST_SPI_HOST); return ret; } master_free_device_bus(spi); return ESP_OK; } static esp_err_t test_slave_pins(int mosi, int miso, int sclk, int cs) { esp_err_t ret; spi_bus_config_t cfg = SPI_BUS_TEST_DEFAULT_CONFIG(); cfg.mosi_io_num = mosi; cfg.miso_io_num = miso; cfg.sclk_io_num = sclk; spi_slave_interface_config_t slave_cfg = SPI_SLAVE_TEST_DEFAULT_CONFIG(); slave_cfg.spics_io_num = cs; ret = spi_slave_initialize(TEST_SLAVE_HOST, &cfg, &slave_cfg, 1); if (ret != ESP_OK) return ret; spi_slave_free(TEST_SLAVE_HOST); return ESP_OK; } TEST_CASE("spi placed on input-only pins", "[spi]") { TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ASSERT(test_master_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK); TEST_ESP_OK(test_master_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS)!=ESP_OK); TEST_ASSERT(test_master_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34)!=ESP_OK); TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ESP_OK(test_slave_pins(34, PIN_NUM_MISO, PIN_NUM_CLK, PIN_NUM_CS)); TEST_ASSERT(test_slave_pins(PIN_NUM_MOSI, 34, PIN_NUM_CLK, PIN_NUM_CS)!=ESP_OK); TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, 34, PIN_NUM_CS)); TEST_ESP_OK(test_slave_pins(PIN_NUM_MOSI, PIN_NUM_MISO, PIN_NUM_CLK, 34)); } TEST_CASE("spi bus setting with different pin configs", "[spi]") { spi_bus_config_t cfg; uint32_t flags_o; uint32_t flags_expected; ESP_LOGI(TAG, "test 6 iomux output pins..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_QUAD; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "test 4 iomux output pins..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_NATIVE_PINS | SPICOMMON_BUSFLAG_DUAL; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "test 6 output pins..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_QUAD; //swap MOSI and MISO cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "test 4 output pins..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_DUAL; //swap MOSI and MISO cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "test master 5 output pins and MOSI on input-only pin..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "test slave 5 output pins and MISO on input-only pin..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO | SPICOMMON_BUSFLAG_WPHD; cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "test master 3 output pins and MOSI on input-only pin..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "test slave 3 output pins and MISO on input-only pin..."); flags_expected = SPICOMMON_BUSFLAG_SCLK | SPICOMMON_BUSFLAG_MOSI | SPICOMMON_BUSFLAG_MISO; cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ESP_OK(spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); TEST_ASSERT_EQUAL_HEX32( flags_expected, flags_o ); ESP_LOGI(TAG, "check native flag for 6 output pins..."); flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS; //swap MOSI and MISO cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); ESP_LOGI(TAG, "check native flag for 4 output pins..."); flags_expected = SPICOMMON_BUSFLAG_NATIVE_PINS; //swap MOSI and MISO cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MISO, .miso_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); ESP_LOGI(TAG, "check dual flag for master 5 output pins and MISO/MOSI on input-only pin..."); flags_expected = SPICOMMON_BUSFLAG_DUAL; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); ESP_LOGI(TAG, "check dual flag for master 3 output pins and MISO/MOSI on input-only pin..."); flags_expected = SPICOMMON_BUSFLAG_DUAL; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = 34, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); cfg = (spi_bus_config_t){.mosi_io_num = 34, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); ESP_LOGI(TAG, "check sclk flag..."); flags_expected = SPICOMMON_BUSFLAG_SCLK; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = -1, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); ESP_LOGI(TAG, "check mosi flag..."); flags_expected = SPICOMMON_BUSFLAG_MOSI; cfg = (spi_bus_config_t){.mosi_io_num = -1, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); ESP_LOGI(TAG, "check miso flag..."); flags_expected = SPICOMMON_BUSFLAG_MISO; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = -1, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); ESP_LOGI(TAG, "check quad flag..."); flags_expected = SPICOMMON_BUSFLAG_QUAD; cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = -1, .quadwp_io_num = HSPI_IOMUX_PIN_NUM_WP, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); cfg = (spi_bus_config_t){.mosi_io_num = HSPI_IOMUX_PIN_NUM_MOSI, .miso_io_num = HSPI_IOMUX_PIN_NUM_MISO, .sclk_io_num = HSPI_IOMUX_PIN_NUM_CLK, .quadhd_io_num = HSPI_IOMUX_PIN_NUM_HD, .quadwp_io_num = -1, .max_transfer_sz = 8, .flags = flags_expected}; TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_MASTER, &flags_o)); TEST_ASSERT_EQUAL(ESP_ERR_INVALID_ARG, spicommon_bus_initialize_io(HSPI_HOST, &cfg, 0, flags_expected|SPICOMMON_BUSFLAG_SLAVE, &flags_o)); } TEST_CASE("SPI Master no response when switch from host1 (HSPI) to host2 (VSPI)", "[spi]") { //spi config spi_bus_config_t bus_config; spi_device_interface_config_t device_config; spi_device_handle_t spi; spi_host_device_t host; int dma = 1; memset(&bus_config, 0, sizeof(spi_bus_config_t)); memset(&device_config, 0, sizeof(spi_device_interface_config_t)); bus_config.miso_io_num = -1; bus_config.mosi_io_num = 26; bus_config.sclk_io_num = 25; bus_config.quadwp_io_num = -1; bus_config.quadhd_io_num = -1; device_config.clock_speed_hz = 50000; device_config.mode = 0; device_config.spics_io_num = -1; device_config.queue_size = 1; device_config.flags = SPI_DEVICE_TXBIT_LSBFIRST | SPI_DEVICE_RXBIT_LSBFIRST; struct spi_transaction_t transaction = { .flags = SPI_TRANS_USE_TXDATA | SPI_TRANS_USE_RXDATA, .length = 16, .rx_buffer = NULL, .tx_data = {0x04, 0x00} }; //initialize for first host host = 1; TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK); TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK); printf("before first xmit\n"); TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK); printf("after first xmit\n"); TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(host) == ESP_OK); //for second host and failed before host = 2; TEST_ASSERT(spi_bus_initialize(host, &bus_config, dma) == ESP_OK); TEST_ASSERT(spi_bus_add_device(host, &device_config, &spi) == ESP_OK); printf("before second xmit\n"); // the original version (bit mis-written) stucks here. TEST_ASSERT(spi_device_transmit(spi, &transaction) == ESP_OK); // test case success when see this. printf("after second xmit\n"); TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(host) == ESP_OK); } DRAM_ATTR static uint32_t data_dram[80]={0}; //force to place in code area. static const uint8_t data_drom[320+3] = { 0xD8, 0xD1, 0x0A, 0xB8, 0xCE, 0x67, 0x1B, 0x11, 0x17, 0xA0, 0xDA, 0x89, 0x55, 0xC1, 0x40, 0x0F, 0x55, 0xEB, 0xF7, 0xEC, 0xF0, 0x3C, 0x0F, 0x4D, 0x2B, 0x9E, 0xBF, 0xCD, 0x57, 0x2C, 0x48, 0x1A, 0x8B, 0x47, 0xC5, 0x01, 0x0C, 0x05, 0x80, 0x30, 0xF4, 0xEA, 0xE5, 0x92, 0x56, 0x97, 0x98, 0x78, 0x21, 0x34, 0xA1, 0xBC, 0xAE, 0x93, 0x7E, 0x96, 0x08, 0xE6, 0x54, 0x6A, 0x6C, 0x67, 0xCF, 0x58, 0xEE, 0x15, 0xA8, 0xB6, 0x32, 0x8C, 0x85, 0xF7, 0xE9, 0x88, 0x5E, 0xB1, 0x76, 0xE4, 0xB2, 0xC7, 0x0F, 0x57, 0x51, 0x7A, 0x2F, 0xAB, 0x12, 0xC3, 0x37, 0x99, 0x4E, 0x67, 0x75, 0x28, 0xE4, 0x1D, 0xF8, 0xBA, 0x22, 0xCB, 0xA1, 0x18, 0x4C, 0xAB, 0x5F, 0xC9, 0xF3, 0xA2, 0x39, 0x92, 0x44, 0xE6, 0x7B, 0xE3, 0xD0, 0x16, 0xC5, 0xC2, 0xCB, 0xD9, 0xC0, 0x7F, 0x06, 0xBF, 0x3E, 0xCE, 0xE1, 0x26, 0xD5, 0x3C, 0xAD, 0x0E, 0xC1, 0xC7, 0x7D, 0x0D, 0x56, 0x85, 0x6F, 0x32, 0xC8, 0x63, 0x8D, 0x12, 0xAB, 0x1E, 0x81, 0x7B, 0xF4, 0xF1, 0xA9, 0xAF, 0xD9, 0x74, 0x60, 0x05, 0x3D, 0xCC, 0x0C, 0x34, 0x11, 0x44, 0xAE, 0x2A, 0x13, 0x2F, 0x04, 0xC3, 0x59, 0xF0, 0x54, 0x07, 0xBA, 0x26, 0xD9, 0xFB, 0x80, 0x95, 0xC0, 0x14, 0xFA, 0x27, 0xEF, 0xD3, 0x58, 0xB8, 0xE4, 0xA2, 0xE3, 0x5E, 0x94, 0xB3, 0xCD, 0x2C, 0x4F, 0xAC, 0x3B, 0xD1, 0xCA, 0xBE, 0x61, 0x71, 0x7B, 0x62, 0xEB, 0xF0, 0xFC, 0xEF, 0x22, 0xB7, 0x3F, 0x56, 0x65, 0x19, 0x61, 0x73, 0x1A, 0x4D, 0xE4, 0x23, 0xE5, 0x3A, 0x91, 0x5C, 0xE6, 0x1B, 0x5F, 0x0E, 0x10, 0x94, 0x7C, 0x9F, 0xCF, 0x75, 0xB3, 0xEB, 0x42, 0x4C, 0xCF, 0xFE, 0xAF, 0x68, 0x62, 0x3F, 0x9A, 0x3C, 0x81, 0x3E, 0x7A, 0x45, 0x92, 0x79, 0x91, 0x4F, 0xFF, 0xDE, 0x25, 0x18, 0x33, 0xB9, 0xA9, 0x3A, 0x3F, 0x1F, 0x4F, 0x4B, 0x5C, 0x71, 0x82, 0x75, 0xB0, 0x1F, 0xE9, 0x98, 0xA3, 0xE2, 0x65, 0xBB, 0xCA, 0x4F, 0xB7, 0x1D, 0x23, 0x43, 0x16, 0x73, 0xBD, 0x83, 0x70, 0x22, 0x7D, 0x0A, 0x6D, 0xD3, 0x77, 0x73, 0xD0, 0xF4, 0x06, 0xB2, 0x19, 0x8C, 0xFF, 0x58, 0xE4, 0xDB, 0xE9, 0xEC, 0x89, 0x6A, 0xF4, 0x0E, 0x67, 0x12, 0xEC, 0x11, 0xD2, 0x1F, 0x8D, 0xD7, }; TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]") { #ifdef CONFIG_SPIRAM_SUPPORT //test psram if enabled ESP_LOGI(TAG, "testing PSRAM..."); uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_SPIRAM); TEST_ASSERT(esp_ptr_external_ram(data_malloc)); #else uint32_t* data_malloc = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_DMA); TEST_ASSERT(esp_ptr_in_dram(data_malloc)); #endif TEST_ASSERT(data_malloc != NULL); //refer to soc_memory_layout.c uint32_t* data_iram = (uint32_t*)heap_caps_malloc(324, MALLOC_CAP_EXEC); TEST_ASSERT(data_iram != NULL); ESP_LOGI(TAG, "iram: %p, dram: %p", data_iram, data_dram); ESP_LOGI(TAG, "drom: %p, malloc: %p", data_drom, data_malloc); TEST_ASSERT(esp_ptr_in_dram(data_dram)); TEST_ASSERT(esp_ptr_in_iram(data_iram)); TEST_ASSERT(esp_ptr_in_drom(data_drom)); srand(52); for (int i = 0; i < 320/4; i++) { data_iram[i] = rand(); data_dram[i] = rand(); data_malloc[i] = rand(); } esp_err_t ret; spi_device_handle_t spi; spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); buscfg.miso_io_num = PIN_NUM_MOSI; spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); //Initialize the SPI bus ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); //Attach the LCD to the SPI bus ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi); TEST_ASSERT(ret==ESP_OK); //connect MOSI to two devices breaks the output, fix it. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX); #define TEST_REGION_SIZE 5 static spi_transaction_t trans[TEST_REGION_SIZE]; int x; memset(trans, 0, sizeof(trans)); trans[0].length = 320*8, trans[0].tx_buffer = data_iram; trans[0].rx_buffer = data_malloc+1; trans[1].length = 320*8, trans[1].tx_buffer = data_dram; trans[1].rx_buffer = data_iram; trans[2].length = 320*8, trans[2].tx_buffer = data_malloc+2; trans[2].rx_buffer = data_dram; trans[3].length = 320*8, trans[3].tx_buffer = data_drom; trans[3].rx_buffer = data_iram; trans[4].length = 4*8, trans[4].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA; uint32_t* ptr = (uint32_t*)trans[4].rx_data; *ptr = 0x54545454; ptr = (uint32_t*)trans[4].tx_data; *ptr = 0xbc124960; //Queue all transactions. for (x=0; x<TEST_REGION_SIZE; x++) { ESP_LOGI(TAG, "transmitting %d...", x); ret=spi_device_transmit(spi,&trans[x]); TEST_ASSERT(ret==ESP_OK); if (trans[x].flags & SPI_TRANS_USE_RXDATA) { TEST_ASSERT_EQUAL_HEX8_ARRAY(trans[x].tx_data, trans[x].rx_data, 4); } else { TEST_ASSERT_EQUAL_HEX32_ARRAY(trans[x].tx_buffer, trans[x].rx_buffer, trans[x].length / 8 /4); } } TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK); free(data_malloc); free(data_iram); } //this part tests 3 DMA issues in master mode, full-duplex in IDF2.1 // 1. RX buffer not aligned (start and end) // 2. not setting rx_buffer // 3. setting rx_length != length TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]") { uint8_t tx_buf[320]={0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43}; uint8_t rx_buf[320]; esp_err_t ret; spi_device_handle_t spi; spi_bus_config_t buscfg={ .miso_io_num=PIN_NUM_MOSI, .mosi_io_num=PIN_NUM_MOSI, .sclk_io_num=PIN_NUM_CLK, .quadwp_io_num=-1, .quadhd_io_num=-1 }; spi_device_interface_config_t devcfg={ .clock_speed_hz=10*1000*1000, //Clock out at 10 MHz .mode=0, //SPI mode 0 .spics_io_num=PIN_NUM_CS, //CS pin .queue_size=7, //We want to be able to queue 7 transactions at a time .pre_cb=NULL, }; //Initialize the SPI bus ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); //Attach the LCD to the SPI bus ret=spi_bus_add_device(HSPI_HOST, &devcfg, &spi); TEST_ASSERT(ret==ESP_OK); //connect MOSI to two devices breaks the output, fix it. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, HSPID_OUT_IDX); memset(rx_buf, 0x66, 320); for ( int i = 0; i < 8; i ++ ) { memset( rx_buf, 0x66, sizeof(rx_buf)); spi_transaction_t t = {}; t.length = 8*(i+1); t.rxlength = 0; t.tx_buffer = tx_buf+2*i; t.rx_buffer = rx_buf + i; if ( i == 1 ) { //test set no start t.rx_buffer = NULL; } else if ( i == 2 ) { //test rx length != tx_length t.rxlength = t.length - 8; } spi_device_transmit( spi, &t ); for( int i = 0; i < 16; i ++ ) { printf("%02X ", rx_buf[i]); } printf("\n"); if ( i == 1 ) { // no rx, skip check } else if ( i == 2 ) { //test rx length = tx length-1 TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8-1 ); } else { //normal check TEST_ASSERT_EQUAL_HEX8_ARRAY(t.tx_buffer, t.rx_buffer, t.length/8 ); } } TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK); } static uint8_t bitswap(uint8_t in) { uint8_t out = 0; for (int i = 0; i < 8; i++) { out = out >> 1; if (in&0x80) out |= 0x80; in = in << 1; } return out; } void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first) { spi_device_handle_t spi; ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB"); //initial master, mode 0, 1MHz spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1)); spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.clock_speed_hz = 1*1000*1000; if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST; TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi)); //connecting pins to two peripherals breaks the output, fix it. spitest_gpio_output_sel(buscfg.mosi_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spid_out); spitest_gpio_output_sel(buscfg.miso_io_num, FUNC_GPIO, spi_periph_signal[TEST_SLAVE_HOST].spiq_out); spitest_gpio_output_sel(devcfg.spics_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spics_out[0]); spitest_gpio_output_sel(buscfg.sclk_io_num, FUNC_GPIO, spi_periph_signal[TEST_SPI_HOST].spiclk_out); for (int i= 0; i < 8; i++) { //prepare slave tx data slave_txdata_t slave_txdata = (slave_txdata_t) { .start = spitest_slave_send + 4*(i%3), .len = 256, }; xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY); vTaskDelay(50); //prepare master tx data int cmd_bits = (i+1)*2; int addr_bits = 56-8*i; int round_up = (cmd_bits+addr_bits+7)/8*8; addr_bits = round_up - cmd_bits; spi_transaction_ext_t trans = (spi_transaction_ext_t) { .base = { .flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR, .addr = 0x456789abcdef0123, .cmd = 0xcdef, }, .command_bits = cmd_bits, .address_bits = addr_bits, }; ESP_LOGI( MASTER_TAG, "===== test%d =====", i ); ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits); TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans)); //wait for both master and slave end size_t rcv_len; slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY); rcv_len-=8; uint8_t *buffer = rcv_data->data; ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len); TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8); TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits); ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len); uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1); uint64_t addr_expected = trans.base.addr & ((1ULL<<addr_bits) - 1); uint8_t *data_ptr = buffer; uint16_t cmd_got = *(uint16_t*)data_ptr; data_ptr += cmd_bits/8; cmd_got = __builtin_bswap16(cmd_got); cmd_got = cmd_got >> (16-cmd_bits); int remain_bits = cmd_bits % 8; uint64_t addr_got = *(uint64_t*)data_ptr; data_ptr += 8; addr_got = __builtin_bswap64(addr_got); addr_got = (addr_got << remain_bits); addr_got |= (*data_ptr >> (8-remain_bits)); addr_got = addr_got >> (64-addr_bits); if (lsb_first) { cmd_got = __builtin_bswap16(cmd_got); addr_got = __builtin_bswap64(addr_got); uint8_t *swap_ptr = (uint8_t*)&cmd_got; swap_ptr[0] = bitswap(swap_ptr[0]); swap_ptr[1] = bitswap(swap_ptr[1]); cmd_got = cmd_got >> (16-cmd_bits); swap_ptr = (uint8_t*)&addr_got; for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]); addr_got = addr_got >> (64-addr_bits); } ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got); TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got); if (addr_bits > 0) { TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got); TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8); } //clean vRingbufferReturnItem(slave_context->data_received, buffer); } TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK); TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK); } TEST_CASE("SPI master variable cmd & addr test","[spi]") { spi_slave_task_context_t slave_context = {}; esp_err_t err = init_slave_context( &slave_context ); TEST_ASSERT( err == ESP_OK ); TaskHandle_t handle_slave; xTaskCreate( spitest_slave_task, "spi_slave", 4096, &slave_context, 0, &handle_slave); //initial slave, mode 0, no dma int dma_chan = 0; int slave_mode = 0; spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG(); slvcfg.mode = slave_mode; //Initialize SPI slave interface TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) ); test_cmd_addr(&slave_context, false); test_cmd_addr(&slave_context, true); vTaskDelete( handle_slave ); handle_slave = 0; deinit_slave_context(&slave_context); TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK); ESP_LOGI(MASTER_TAG, "test passed."); } /******************************************************************************** * Test SPI transaction interval ********************************************************************************/ #define RECORD_TIME_PREPARE() uint32_t __t1, __t2 #define RECORD_TIME_START() do {__t1 = xthal_get_ccount();}while(0) #define RECORD_TIME_END(p_time) do{__t2 = xthal_get_ccount(); *p_time = (__t2-__t1)/240;}while(0) static void speed_setup(spi_device_handle_t* spi, bool use_dma) { esp_err_t ret; spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.queue_size=8; //We want to be able to queue 7 transactions at a time //Initialize the SPI bus and the device to test ret=spi_bus_initialize(HSPI_HOST, &buscfg, (use_dma?1:0)); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, spi); TEST_ASSERT(ret==ESP_OK); } static void sorted_array_insert(uint32_t* array, int* size, uint32_t item) { int pos; for (pos = *size; pos>0; pos--) { if (array[pos-1] < item) break; array[pos] = array[pos-1]; } array[pos]=item; (*size)++; } #define TEST_TIMES 11 static IRAM_ATTR void spi_transmit_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight) { RECORD_TIME_PREPARE(); spi_device_transmit(spi, trans); // prime the flash cache RECORD_TIME_START(); spi_device_transmit(spi, trans); RECORD_TIME_END(t_flight); } static IRAM_ATTR void spi_transmit_polling_measure(spi_device_handle_t spi, spi_transaction_t* trans, uint32_t* t_flight) { RECORD_TIME_PREPARE(); spi_device_polling_transmit(spi, trans); // prime the flash cache RECORD_TIME_START(); spi_device_polling_transmit(spi, trans); RECORD_TIME_END(t_flight); } TEST_CASE("spi_speed","[spi]") { uint32_t t_flight; //to get rid of the influence of randomly interrupts, we measured the performance by median value uint32_t t_flight_sorted[TEST_TIMES]; esp_err_t ret; int t_flight_num = 0; spi_device_handle_t spi; const bool use_dma = true; WORD_ALIGNED_ATTR spi_transaction_t trans = { .length = 1*8, .flags = SPI_TRANS_USE_TXDATA, }; //first work with DMA speed_setup(&spi, use_dma); //record flight time by isr, with DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_NO_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //acquire the bus to send polling transactions faster ret = spi_device_acquire_bus(spi, portMAX_DELAY); TEST_ESP_OK(ret); //record flight time by polling and with DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_polling_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //release the bus spi_device_release_bus(spi); master_free_device_bus(spi); speed_setup(&spi, !use_dma); //record flight time by isr, without DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN( SPI_PER_TRANS_NO_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //acquire the bus to send polling transactions faster ret = spi_device_acquire_bus(spi, portMAX_DELAY); TEST_ESP_OK(ret); //record flight time by polling, without DMA t_flight_num = 0; for (int i = 0; i < TEST_TIMES; i++) { spi_transmit_polling_measure(spi, &trans, &t_flight); sorted_array_insert(t_flight_sorted, &t_flight_num, t_flight); } for (int i = 0; i < TEST_TIMES; i++) { ESP_LOGI(TAG, "%d", t_flight_sorted[i]); } TEST_PERFORMANCE_LESS_THAN(SPI_PER_TRANS_POLLING_NO_DMA, "%d us", t_flight_sorted[(TEST_TIMES+1)/2]); //release the bus spi_device_release_bus(spi); master_free_device_bus(spi); } typedef struct { spi_device_handle_t handle; bool finished; } task_context_t; void spi_task1(void* arg) { //task1 send 50 polling transactions, acquire the bus and send another 50 int count=0; spi_transaction_t t = { .flags = SPI_TRANS_USE_TXDATA, .tx_data = { 0x80, 0x12, 0x34, 0x56 }, .length = 4*8, }; spi_device_handle_t handle = ((task_context_t*)arg)->handle; for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_polling_transmit( handle, &t )); ESP_LOGI( TAG, "task1:%d", count++ ); } TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY )); for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_polling_transmit( handle, &t )); ESP_LOGI( TAG, "task1:%d", count++ ); } spi_device_release_bus(handle); ESP_LOGI(TAG, "task1 terminates"); ((task_context_t*)arg)->finished = true; vTaskDelete(NULL); } void spi_task2(void* arg) { int count=0; //task2 acquire the bus, send 50 polling transactions and then 50 non-polling spi_transaction_t t = { .flags = SPI_TRANS_USE_TXDATA, .tx_data = { 0x80, 0x12, 0x34, 0x56 }, .length = 4*8, }; spi_transaction_t *ret_t; spi_device_handle_t handle = ((task_context_t*)arg)->handle; TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY )); for (int i = 0; i < 50; i ++) { TEST_ESP_OK(spi_device_polling_transmit(handle, &t)); ESP_LOGI( TAG, "task2: %d", count++ ); } for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_queue_trans( handle, &t, portMAX_DELAY )); } for( int j = 0; j < 50; j ++ ) { TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY)); assert(ret_t == &t); ESP_LOGI( TAG, "task2: %d", count++ ); } spi_device_release_bus(handle); vTaskDelay(1); ESP_LOGI(TAG, "task2 terminates"); ((task_context_t*)arg)->finished = true; vTaskDelete(NULL); } void spi_task3(void* arg) { //task3 send 30 polling transactions, acquire the bus, send 20 polling transactions and then 50 non-polling int count=0; spi_transaction_t t = { .flags = SPI_TRANS_USE_TXDATA, .tx_data = { 0x80, 0x12, 0x34, 0x56 }, .length = 4*8, }; spi_transaction_t *ret_t; spi_device_handle_t handle = ((task_context_t*)arg)->handle; for (int i = 0; i < 30; i ++) { TEST_ESP_OK(spi_device_polling_transmit(handle, &t)); ESP_LOGI( TAG, "task3: %d", count++ ); } TEST_ESP_OK(spi_device_acquire_bus( handle, portMAX_DELAY )); for (int i = 0; i < 20; i ++) { TEST_ESP_OK(spi_device_polling_transmit(handle, &t)); ESP_LOGI( TAG, "task3: %d", count++ ); } for (int j = 0; j < 50; j++) { TEST_ESP_OK(spi_device_queue_trans(handle, &t, portMAX_DELAY)); } for (int j = 0; j < 50; j++) { TEST_ESP_OK(spi_device_get_trans_result(handle, &ret_t, portMAX_DELAY)); assert(ret_t == &t); ESP_LOGI(TAG, "task3: %d", count++); } spi_device_release_bus(handle); ESP_LOGI(TAG, "task3 terminates"); ((task_context_t*)arg)->finished = true; vTaskDelete(NULL); } TEST_CASE("spi poll tasks","[spi]") { task_context_t context1={}; task_context_t context2={}; task_context_t context3={}; TaskHandle_t task1, task2, task3; esp_err_t ret; spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG(); spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG(); devcfg.queue_size = 100; //Initialize the SPI bus and 3 devices ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context1.handle); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context2.handle); TEST_ASSERT(ret==ESP_OK); ret=spi_bus_add_device(HSPI_HOST, &devcfg, &context3.handle); TEST_ASSERT(ret==ESP_OK); xTaskCreate( spi_task1, "task1", 2048, &context1, 0, &task1 ); xTaskCreate( spi_task2, "task2", 2048, &context2, 0, &task2 ); xTaskCreate( spi_task3, "task3", 2048, &context3, 0, &task3 ); for(;;){ vTaskDelay(10); if (context1.finished && context2.finished && context3.finished) break; } TEST_ESP_OK( spi_bus_remove_device(context1.handle) ); TEST_ESP_OK( spi_bus_remove_device(context2.handle) ); TEST_ESP_OK( spi_bus_remove_device(context3.handle) ); TEST_ESP_OK( spi_bus_free(HSPI_HOST) ); } //TODO: add a case when a non-polling transaction happened in the bus-acquiring time and then release the bus then queue a new trans