/*
 * SPDX-FileCopyrightText: 2015-2022 Espressif Systems (Shanghai) CO LTD
 *
 * SPDX-License-Identifier: Apache-2.0
 */

#include <string.h>
#include <stdbool.h>

#include "freertos/FreeRTOS.h"
#include "freertos/queue.h"
#include "freertos/task.h"

#include "sdkconfig.h"

#if CONFIG_I2S_ENABLE_DEBUG_LOG
// The local log level must be defined before including esp_log.h
// Set the maximum log level for this source file
#define LOG_LOCAL_LEVEL ESP_LOG_DEBUG
#endif
#include "esp_log.h"

#include "soc/i2s_periph.h"
#include "soc/soc_caps.h"
#include "hal/gpio_hal.h"
#include "hal/i2s_hal.h"

#if SOC_I2S_SUPPORTS_ADC_DAC
#include "hal/adc_ll.h"
#include "driver/adc_i2s_legacy.h"
#endif
#if SOC_I2S_SUPPORTS_APLL
#include "clk_ctrl_os.h"
#endif

#include "esp_private/i2s_platform.h"
#include "esp_private/periph_ctrl.h"
#include "esp_private/esp_clk.h"

#include "driver/gpio.h"
#include "driver/i2s_common.h"
#include "i2s_private.h"

#include "clk_ctrl_os.h"
#include "esp_intr_alloc.h"
#include "esp_check.h"
#include "esp_attr.h"

#include "esp_rom_gpio.h"
#include "esp_memory_utils.h"

/* The actual max size of DMA buffer is 4095
 * Set 4092 here to align with 4-byte, so that the position of the slot data in the buffer will be relatively fixed */
#define I2S_DMA_BUFFER_MAX_SIZE     (4092)

/**
 * @brief Global i2s platform object
 * @note  For saving all the I2S related information
 */
i2s_platform_t g_i2s = {
    .spinlock = (portMUX_TYPE)portMUX_INITIALIZER_UNLOCKED,
    .controller[0 ... (SOC_I2S_NUM - 1)] = NULL, // groups will be lazy installed
    .comp_name[0 ... (SOC_I2S_NUM - 1)] = NULL,
};

static const char *TAG = "i2s_common";

/*---------------------------------------------------------------------------
                             I2S Static APIs
 ----------------------------------------------------------------------------
    Scope: This file only
 ----------------------------------------------------------------------------*/

static void i2s_tx_channel_start(i2s_chan_handle_t handle)
{
    i2s_hal_tx_reset(&(handle->controller->hal));
#if SOC_GDMA_SUPPORTED
    gdma_reset((handle->dma.dma_chan));
#else
    i2s_hal_tx_reset_dma(&(handle->controller->hal));
#endif
    i2s_hal_tx_reset_fifo(&(handle->controller->hal));
#if SOC_GDMA_SUPPORTED
    gdma_start((handle->dma.dma_chan), (uint32_t) handle->dma.desc[0]);
#else
    esp_intr_enable(handle->dma.dma_chan);
    i2s_hal_tx_enable_intr(&(handle->controller->hal));
    i2s_hal_tx_enable_dma(&(handle->controller->hal));
    i2s_hal_tx_start_link(&(handle->controller->hal), (uint32_t) handle->dma.desc[0]);
#endif
    i2s_hal_tx_start(&(handle->controller->hal));
}

static void i2s_rx_channel_start(i2s_chan_handle_t handle)
{
    i2s_hal_rx_reset(&(handle->controller->hal));
#if SOC_GDMA_SUPPORTED
    gdma_reset(handle->dma.dma_chan);
#else
    i2s_hal_rx_reset_dma(&(handle->controller->hal));
#endif
    i2s_hal_rx_reset_fifo(&(handle->controller->hal));
#if SOC_GDMA_SUPPORTED
    gdma_start(handle->dma.dma_chan, (uint32_t) handle->dma.desc[0]);
#else
    esp_intr_enable(handle->dma.dma_chan);
    i2s_hal_rx_enable_intr(&(handle->controller->hal));
    i2s_hal_rx_enable_dma(&(handle->controller->hal));
    i2s_hal_rx_start_link(&(handle->controller->hal), (uint32_t) handle->dma.desc[0]);
#endif
    i2s_hal_rx_start(&(handle->controller->hal));
}

static void i2s_tx_channel_stop(i2s_chan_handle_t handle)
{
    i2s_hal_tx_stop(&(handle->controller->hal));
#if SOC_GDMA_SUPPORTED
    gdma_stop(handle->dma.dma_chan);
#else
    i2s_hal_tx_stop_link(&(handle->controller->hal));
    i2s_hal_tx_disable_intr(&(handle->controller->hal));
    i2s_hal_tx_disable_dma(&(handle->controller->hal));
    esp_intr_disable(handle->dma.dma_chan);
#endif
}

static void i2s_rx_channel_stop(i2s_chan_handle_t handle)
{
    i2s_hal_rx_stop(&(handle->controller->hal));
#if SOC_GDMA_SUPPORTED
    gdma_stop(handle->dma.dma_chan);
#else
    i2s_hal_rx_stop_link(&(handle->controller->hal));
    i2s_hal_rx_disable_intr(&(handle->controller->hal));
    i2s_hal_rx_disable_dma(&(handle->controller->hal));
    esp_intr_disable(handle->dma.dma_chan);
#endif
}

static esp_err_t i2s_destroy_controller_obj(i2s_controller_t **i2s_obj)
{
    I2S_NULL_POINTER_CHECK(TAG, i2s_obj);
    I2S_NULL_POINTER_CHECK(TAG, *i2s_obj);
    ESP_RETURN_ON_FALSE(!(*i2s_obj)->rx_chan && !(*i2s_obj)->tx_chan,
                        ESP_ERR_INVALID_STATE, TAG,
                        "there still have channels under this i2s controller");
    int id = (*i2s_obj)->id;
#if SOC_I2S_HW_VERSION_1
    i2s_ll_enable_dma((*i2s_obj)->hal.dev, false);
#endif
    free(*i2s_obj);
    *i2s_obj = NULL;
    return i2s_platform_release_occupation(id);
}

/**
 * @brief Acquire i2s controller object
 *
 * @param id        i2s port id
 * @param search_reverse   reverse the sequence of port acquirement
 *                  set false to acquire from I2S_NUM_0 first
 *                  set true to acquire from SOC_I2S_NUM - 1 first
 * @return
 *      - pointer of acquired i2s controller object
 */
static i2s_controller_t *i2s_acquire_controller_obj(int id)
{
    if (id < 0 || id >= SOC_I2S_NUM) {
        return NULL;
    }
    /* pre-alloc controller object */
    i2s_controller_t *pre_alloc = (i2s_controller_t *)heap_caps_calloc(1, sizeof(i2s_controller_t), I2S_MEM_ALLOC_CAPS);
    if (pre_alloc == NULL) {
        return NULL;
    }
    pre_alloc->id = id;
    i2s_hal_init(&pre_alloc->hal, id);
    pre_alloc->full_duplex = false;
    pre_alloc->tx_chan = NULL;
    pre_alloc->rx_chan = NULL;
    pre_alloc->mclk = I2S_GPIO_UNUSED;

    i2s_controller_t *i2s_obj = NULL;
    /* Try to occupy this i2s controller */
    if (i2s_platform_acquire_occupation(id, "i2s_driver") == ESP_OK) {
        portENTER_CRITICAL(&g_i2s.spinlock);
        i2s_obj = pre_alloc;
        g_i2s.controller[id] = i2s_obj;
        portEXIT_CRITICAL(&g_i2s.spinlock);
#if SOC_I2S_SUPPORTS_ADC_DAC
        if (id == I2S_NUM_0) {
            adc_ll_digi_set_data_source(ADC_I2S_DATA_SRC_IO_SIG);
        }
#endif
    } else {
        free(pre_alloc);
        portENTER_CRITICAL(&g_i2s.spinlock);
        if (g_i2s.controller[id]) {
            i2s_obj = g_i2s.controller[id];
        }
        portEXIT_CRITICAL(&g_i2s.spinlock);
        if (i2s_obj == NULL) {
            ESP_LOGE(TAG, "i2s%d might be occupied by other component", id);
        }
    }

    return i2s_obj;
}

static inline bool i2s_take_available_channel(i2s_controller_t *i2s_obj, uint8_t chan_search_mask)
{
    bool is_available = false;

#if SOC_I2S_HW_VERSION_1
    /* In ESP32 and ESP32-S2, tx channel and rx channel are not totally separated
     * Take both two channels in case one channel can affect another
     */
    chan_search_mask = I2S_DIR_RX | I2S_DIR_TX;
#endif
    portENTER_CRITICAL(&g_i2s.spinlock);
    if (!(chan_search_mask & i2s_obj->chan_occupancy)) {
        i2s_obj->chan_occupancy |= chan_search_mask;
        is_available = true;
    }
    portEXIT_CRITICAL(&g_i2s.spinlock);
    return is_available;
}

static esp_err_t i2s_register_channel(i2s_controller_t *i2s_obj, i2s_dir_t dir, uint32_t desc_num)
{
    I2S_NULL_POINTER_CHECK(TAG, i2s_obj);

    esp_err_t ret = ESP_OK;

    i2s_chan_handle_t new_chan = (i2s_chan_handle_t)heap_caps_calloc(1, sizeof(struct i2s_channel_obj_t), I2S_MEM_ALLOC_CAPS);
    ESP_RETURN_ON_FALSE(new_chan, ESP_ERR_NO_MEM, TAG, "No memory for new channel");
    new_chan->mode = I2S_COMM_MODE_NONE;
    new_chan->role = I2S_ROLE_MASTER; // Set default role to master
    new_chan->dir = dir;
    new_chan->state = I2S_CHAN_STATE_REGISTER;
#if SOC_I2S_SUPPORTS_APLL
    new_chan->apll_en = false;
#endif
    new_chan->mode_info = NULL;
    new_chan->controller = i2s_obj;
#if CONFIG_PM_ENABLE
    new_chan->pm_lock = NULL; // Init in i2s_set_clock according to clock source
#endif
#if CONFIG_I2S_ISR_IRAM_SAFE
    new_chan->msg_que_storage = (uint8_t *)heap_caps_calloc(desc_num - 1, sizeof(uint8_t *), I2S_MEM_ALLOC_CAPS);
    ESP_GOTO_ON_FALSE(new_chan->msg_que_storage, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue storage");
    new_chan->msg_que_struct = (StaticQueue_t *)heap_caps_calloc(1, sizeof(StaticQueue_t), I2S_MEM_ALLOC_CAPS);
    ESP_GOTO_ON_FALSE(new_chan->msg_que_struct, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue struct");
    new_chan->msg_queue =  xQueueCreateStatic(desc_num - 1, sizeof(uint8_t *), new_chan->msg_que_storage, new_chan->msg_que_struct);
    ESP_GOTO_ON_FALSE(new_chan->msg_queue, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue");
    new_chan->mutex_struct = (StaticSemaphore_t *)heap_caps_calloc(1, sizeof(StaticSemaphore_t), I2S_MEM_ALLOC_CAPS);
    ESP_GOTO_ON_FALSE(new_chan->mutex_struct, ESP_ERR_NO_MEM, err, TAG, "No memory for mutex struct");
    new_chan->mutex = xSemaphoreCreateMutexStatic(new_chan->mutex_struct);
    ESP_GOTO_ON_FALSE(new_chan->mutex, ESP_ERR_NO_MEM, err, TAG, "No memory for mutex");
    new_chan->binary_struct = (StaticSemaphore_t *)heap_caps_calloc(1, sizeof(StaticSemaphore_t), I2S_MEM_ALLOC_CAPS);
    ESP_GOTO_ON_FALSE(new_chan->binary_struct, ESP_ERR_NO_MEM, err, TAG, "No memory for binary struct");
    new_chan->binary = xSemaphoreCreateBinaryStatic(new_chan->binary_struct);
    ESP_GOTO_ON_FALSE(new_chan->binary, ESP_ERR_NO_MEM, err, TAG, "No memory for binary");
#else
    new_chan->msg_queue = xQueueCreate(desc_num - 1, sizeof(uint8_t *));
    ESP_GOTO_ON_FALSE(new_chan->msg_queue, ESP_ERR_NO_MEM, err, TAG, "No memory for message queue");
    new_chan->mutex = xSemaphoreCreateMutex();
    ESP_GOTO_ON_FALSE(new_chan->mutex, ESP_ERR_NO_MEM, err, TAG, "No memory for mutex semaphore");
    new_chan->binary = xSemaphoreCreateBinary();
    ESP_GOTO_ON_FALSE(new_chan->binary, ESP_ERR_NO_MEM, err, TAG, "No memory for binary semaphore");
#endif

    new_chan->callbacks.on_recv = NULL;
    new_chan->callbacks.on_recv_q_ovf = NULL;
    new_chan->callbacks.on_sent = NULL;
    new_chan->callbacks.on_send_q_ovf = NULL;
    new_chan->dma.rw_pos = 0;
    new_chan->dma.curr_ptr = NULL;
    new_chan->start = NULL;
    new_chan->stop = NULL;

    if (dir == I2S_DIR_TX) {
        if (i2s_obj->tx_chan) {
            i2s_del_channel(i2s_obj->tx_chan);
        }
        i2s_obj->tx_chan = new_chan;

    } else {
        if (i2s_obj->rx_chan) {
            i2s_del_channel(i2s_obj->rx_chan);
        }
        i2s_obj->rx_chan = new_chan;
    }
    return ret;
err:
#if CONFIG_I2S_ISR_IRAM_SAFE
    if (new_chan->msg_que_storage) {
        free(new_chan->msg_que_storage);
    }
    if (new_chan->msg_que_struct) {
        free(new_chan->msg_que_struct);
    }
    if (new_chan->mutex_struct) {
        free(new_chan->mutex_struct);
    }
    if (new_chan->binary_struct) {
        free(new_chan->binary_struct);
    }
#endif
    if (new_chan->msg_queue) {
        vQueueDelete(new_chan->msg_queue);
    }
    if (new_chan->mutex) {
        vSemaphoreDelete(new_chan->mutex);
    }
    if (new_chan->binary) {
        vSemaphoreDelete(new_chan->binary);
    }
    free(new_chan);

    return ret;
}

esp_err_t i2s_channel_register_event_callback(i2s_chan_handle_t handle, const i2s_event_callbacks_t *callbacks, void *user_data)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    I2S_NULL_POINTER_CHECK(TAG, callbacks);
    esp_err_t ret = ESP_OK;
#if CONFIG_I2S_ISR_IRAM_SAFE
    if (callbacks->on_recv) {
        ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_recv), ESP_ERR_INVALID_ARG, TAG, "on_recv callback not in IRAM");
    }
    if (callbacks->on_recv_q_ovf) {
        ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_recv_q_ovf), ESP_ERR_INVALID_ARG, TAG, "on_recv_q_ovf callback not in IRAM");
    }
    if (callbacks->on_sent) {
        ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_sent), ESP_ERR_INVALID_ARG, TAG, "on_sent callback not in IRAM");
    }
    if (callbacks->on_send_q_ovf) {
        ESP_RETURN_ON_FALSE(esp_ptr_in_iram(callbacks->on_send_q_ovf), ESP_ERR_INVALID_ARG, TAG, "on_send_q_ovf callback not in IRAM");
    }
    if (user_data) {
        ESP_RETURN_ON_FALSE(esp_ptr_internal(user_data), ESP_ERR_INVALID_ARG, TAG, "user context not in internal RAM");
    }
#endif

    xSemaphoreTake(handle->mutex, portMAX_DELAY);
    ESP_GOTO_ON_FALSE(handle->state < I2S_CHAN_STATE_RUNNING, ESP_ERR_INVALID_STATE, err, TAG, "invalid state, I2S has enabled");
    memcpy(&(handle->callbacks), callbacks, sizeof(i2s_event_callbacks_t));
    handle->user_data = user_data;
err:
    xSemaphoreGive(handle->mutex);
    return ret;
}

uint32_t i2s_get_buf_size(i2s_chan_handle_t handle, uint32_t data_bit_width, uint32_t dma_frame_num)
{
    uint32_t active_chan = handle->active_slot;
    uint32_t bytes_per_sample = ((data_bit_width + 15) / 16) * 2;
    uint32_t bytes_per_frame = bytes_per_sample * active_chan;
    uint32_t bufsize = dma_frame_num * bytes_per_frame;
    /* Limit DMA buffer size if it is out of range (DMA buffer limitation is 4092 bytes) */
    if (bufsize > I2S_DMA_BUFFER_MAX_SIZE) {
        uint32_t frame_num = I2S_DMA_BUFFER_MAX_SIZE / bytes_per_frame;
        bufsize = frame_num * bytes_per_frame;
        ESP_LOGW(TAG, "dma frame num is out of dma buffer size, limited to %"PRIu32, frame_num);
    }
    return bufsize;
}

esp_err_t i2s_free_dma_desc(i2s_chan_handle_t handle)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    if (!handle->dma.desc) {
        return ESP_OK;
    }
    for (int i = 0; i < handle->dma.desc_num; i++) {
        if (handle->dma.bufs[i]) {
            free(handle->dma.bufs[i]);
        }
        if (handle->dma.desc[i]) {
            free(handle->dma.desc[i]);
        }
    }
    if (handle->dma.bufs) {
        free(handle->dma.bufs);
    }
    if (handle->dma.desc) {
        free(handle->dma.desc);
    }
    handle->dma.desc = NULL;

    return ESP_OK;
}

esp_err_t i2s_alloc_dma_desc(i2s_chan_handle_t handle, uint32_t num, uint32_t bufsize)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    esp_err_t ret = ESP_OK;
    ESP_RETURN_ON_FALSE(bufsize <= I2S_DMA_BUFFER_MAX_SIZE, ESP_ERR_INVALID_ARG, TAG, "dma buffer can't be bigger than %d", I2S_DMA_BUFFER_MAX_SIZE);
    handle->dma.desc_num = num;
    handle->dma.buf_size = bufsize;

    /* Descriptors must be in the internal RAM */
    handle->dma.desc = (lldesc_t **)heap_caps_calloc(num, sizeof(lldesc_t *), I2S_MEM_ALLOC_CAPS);
    ESP_GOTO_ON_FALSE(handle->dma.desc, ESP_ERR_NO_MEM, err, TAG, "create I2S DMA decriptor array failed");
    handle->dma.bufs = (uint8_t **)heap_caps_calloc(num, sizeof(uint8_t *), I2S_MEM_ALLOC_CAPS);
    for (int i = 0; i < num; i++) {
        /* Allocate DMA descriptor */
        handle->dma.desc[i] = (lldesc_t *) heap_caps_calloc(1, sizeof(lldesc_t), I2S_DMA_ALLOC_CAPS);
        ESP_GOTO_ON_FALSE(handle->dma.desc[i], ESP_ERR_NO_MEM, err, TAG,  "allocate DMA description failed");
        handle->dma.desc[i]->owner = 1;
        handle->dma.desc[i]->eof = 1;
        handle->dma.desc[i]->sosf = 0;
        handle->dma.desc[i]->length = bufsize;
        handle->dma.desc[i]->size = bufsize;
        handle->dma.desc[i]->offset = 0;
        handle->dma.bufs[i] = (uint8_t *) heap_caps_calloc(1, bufsize * sizeof(uint8_t), I2S_DMA_ALLOC_CAPS);
        handle->dma.desc[i]->buf = handle->dma.bufs[i];
        ESP_GOTO_ON_FALSE(handle->dma.desc[i]->buf, ESP_ERR_NO_MEM, err, TAG,  "allocate DMA buffer failed");
        ESP_LOGV(TAG, "desc addr: %8p\tbuffer addr:%8p", handle->dma.desc[i], handle->dma.bufs[i]);
    }
    /* Connect DMA descriptor as a circle */
    for (int i = 0; i < num; i++) {
        /* Link to the next descriptor */
        handle->dma.desc[i]->empty = (uint32_t)((i < (num - 1)) ? (handle->dma.desc[i + 1]) : handle->dma.desc[0]);
    }
    if (handle->dir == I2S_DIR_RX) {
        i2s_ll_rx_set_eof_num(handle->controller->hal.dev, bufsize);
    }
    ESP_LOGD(TAG, "DMA malloc info: dma_desc_num = %"PRIu32", dma_desc_buf_size = dma_frame_num * slot_num * data_bit_width = %"PRIu32, num, bufsize);
    return ESP_OK;
err:
    i2s_free_dma_desc(handle);
    return ret;
}

#if SOC_I2S_SUPPORTS_APLL
static uint32_t i2s_set_get_apll_freq(uint32_t mclk_freq_hz)
{
    /* Calculate the expected APLL  */
    int mclk_div = (int)((SOC_APLL_MIN_HZ / mclk_freq_hz) + 1);
    /* apll_freq = mclk * div
        * when div = 1, hardware will still divide 2
        * when div = 0, the final mclk will be unpredictable
        * So the div here should be at least 2 */
    mclk_div = mclk_div < 2 ? 2 : mclk_div;
    uint32_t expt_freq = mclk_freq_hz * mclk_div;
    if (expt_freq > SOC_APLL_MAX_HZ) {
        ESP_LOGE(TAG, "The required APLL frequency exceed its maximum value");
        return 0;
    }
    uint32_t real_freq = 0;
    esp_err_t ret = periph_rtc_apll_freq_set(expt_freq, &real_freq);
    if (ret == ESP_ERR_INVALID_ARG) {
        ESP_LOGE(TAG, "set APLL freq failed due to invalid argument");
        return 0;
    }
    if (ret == ESP_ERR_INVALID_STATE) {
        ESP_LOGW(TAG, "APLL is occupied already, it is working at %"PRIu32" Hz while the expected frequency is %"PRIu32" Hz", real_freq, expt_freq);
        ESP_LOGW(TAG, "Trying to work at %"PRIu32" Hz...", real_freq);
    }
    ESP_LOGD(TAG, "APLL expected frequency is %"PRIu32" Hz, real frequency is %"PRIu32" Hz", expt_freq, real_freq);
    return real_freq;
}
#endif

// [clk_tree] TODO: replace the following switch table by clk_tree API
uint32_t i2s_get_source_clk_freq(i2s_clock_src_t clk_src, uint32_t mclk_freq_hz)
{
    switch (clk_src)
    {
#if SOC_I2S_SUPPORTS_APLL
    case I2S_CLK_SRC_APLL:
        return i2s_set_get_apll_freq(mclk_freq_hz);
#endif
#if SOC_I2S_SUPPORTS_XTAL
    case I2S_CLK_SRC_XTAL:
        (void)mclk_freq_hz;
        return esp_clk_xtal_freq();
#endif
#if SOC_I2S_SUPPORTS_PLL_F160M
    case I2S_CLK_SRC_PLL_160M:
        (void)mclk_freq_hz;
        return I2S_LL_PLL_F160M_CLK_FREQ;
#endif
#if SOC_I2S_SUPPORTS_PLL_F96M
    case I2S_CLK_SRC_PLL_96M:
        (void)mclk_freq_hz;
        return I2S_LL_PLL_F96M_CLK_FREQ;
#endif
#if SOC_I2S_SUPPORTS_PLL_F64M
    case I2S_CLK_SRC_PLL_64M:
        (void)mclk_freq_hz;
        return I2S_LL_PLL_F64M_CLK_FREQ;
#endif
    default:
        // Invalid clock source
        return 0;
    }
}

#if SOC_GDMA_SUPPORTED
static bool IRAM_ATTR i2s_dma_rx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
    i2s_chan_handle_t handle = (i2s_chan_handle_t)user_data;
    portBASE_TYPE need_yield1 = 0;
    portBASE_TYPE need_yield2 = 0;
    portBASE_TYPE user_need_yield = 0;
    lldesc_t *finish_desc;
    uint32_t dummy;

    finish_desc = (lldesc_t *)event_data->rx_eof_desc_addr;
    i2s_event_data_t evt = {
        .data = &(finish_desc->buf),
        .size = handle->dma.buf_size,
    };
    if (handle->callbacks.on_recv) {
        user_need_yield |= handle->callbacks.on_recv(handle, &evt, handle->user_data);
    }
    if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
        xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
        if (handle->callbacks.on_recv_q_ovf) {
            evt.data = NULL;
            user_need_yield |= handle->callbacks.on_recv_q_ovf(handle, &evt, handle->user_data);
        }
    }
    xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);

    return need_yield1 | need_yield2 | user_need_yield;
}

static bool IRAM_ATTR i2s_dma_tx_callback(gdma_channel_handle_t dma_chan, gdma_event_data_t *event_data, void *user_data)
{
    i2s_chan_handle_t handle = (i2s_chan_handle_t)user_data;
    portBASE_TYPE need_yield1 = 0;
    portBASE_TYPE need_yield2 = 0;
    portBASE_TYPE user_need_yield = 0;
    lldesc_t *finish_desc;
    uint32_t dummy;

    finish_desc = (lldesc_t *)(event_data->tx_eof_desc_addr);
    i2s_event_data_t evt = {
        .data = &(finish_desc->buf),
        .size = handle->dma.buf_size,
    };
    if (handle->callbacks.on_sent) {
        user_need_yield |= handle->callbacks.on_sent(handle, &evt, handle->user_data);
    }
    if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
        xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
        if (handle->callbacks.on_send_q_ovf) {
            evt.data = NULL;
            user_need_yield |= handle->callbacks.on_send_q_ovf(handle, &evt, handle->user_data);
        }
    }
    if (handle->dma.auto_clear) {
        uint8_t *sent_buf = (uint8_t *)finish_desc->buf;
        memset(sent_buf, 0, handle->dma.buf_size);
    }
    xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);

    return need_yield1 | need_yield2 | user_need_yield;
}

#else

static void IRAM_ATTR i2s_dma_rx_callback(void *arg)
{
    portBASE_TYPE need_yield1 = 0;
    portBASE_TYPE need_yield2 = 0;
    portBASE_TYPE user_need_yield = 0;
    lldesc_t *finish_desc = NULL;
    i2s_event_data_t evt;
    i2s_chan_handle_t handle = (i2s_chan_handle_t)arg;
    uint32_t dummy;

    uint32_t status = i2s_hal_get_intr_status(&(handle->controller->hal));
    i2s_hal_clear_intr_status(&(handle->controller->hal), status);
    if (!status) {
        return;
    }

    if (handle && (status & I2S_LL_EVENT_RX_EOF)) {
        i2s_hal_get_in_eof_des_addr(&(handle->controller->hal), (uint32_t *)&finish_desc);
        evt.data = &(finish_desc->buf);
        evt.size = handle->dma.buf_size;
        if (handle->callbacks.on_recv) {
            user_need_yield |= handle->callbacks.on_recv(handle, &evt, handle->user_data);
        }
        if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
            xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
            if (handle->callbacks.on_recv_q_ovf) {
                evt.data = NULL;
                user_need_yield |= handle->callbacks.on_recv_q_ovf(handle, &evt, handle->user_data);
            }
        }
        xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);
    }

    if (need_yield1 || need_yield2 || user_need_yield) {
        portYIELD_FROM_ISR();
    }
}

static void IRAM_ATTR i2s_dma_tx_callback(void *arg)
{
    portBASE_TYPE need_yield1 = 0;
    portBASE_TYPE need_yield2 = 0;
    portBASE_TYPE user_need_yield = 0;
    lldesc_t *finish_desc = NULL;
    i2s_event_data_t evt;
    i2s_chan_handle_t handle = (i2s_chan_handle_t)arg;
    uint32_t dummy;

    uint32_t status = i2s_hal_get_intr_status(&(handle->controller->hal));
    i2s_hal_clear_intr_status(&(handle->controller->hal), status);
    if (!status) {
        return;
    }

    if (handle && (status & I2S_LL_EVENT_TX_EOF)) {
        i2s_hal_get_out_eof_des_addr(&(handle->controller->hal), (uint32_t *)&finish_desc);
        evt.data = &(finish_desc->buf);
        evt.size = handle->dma.buf_size;
        if (handle->callbacks.on_sent) {
            user_need_yield |= handle->callbacks.on_sent(handle, &evt, handle->user_data);
        }
        if (xQueueIsQueueFullFromISR(handle->msg_queue)) {
            xQueueReceiveFromISR(handle->msg_queue, &dummy, &need_yield1);
            if (handle->callbacks.on_send_q_ovf) {
                evt.data = NULL;
                user_need_yield |= handle->callbacks.on_send_q_ovf(handle, &evt, handle->user_data);
            }
        }
        // Auto clear the dma buffer after data sent
        if (handle->dma.auto_clear) {
            uint8_t *buff = (uint8_t *)finish_desc->buf;
            memset(buff, 0, handle->dma.buf_size);
        }
        xQueueSendFromISR(handle->msg_queue, &(finish_desc->buf), &need_yield2);
    }

    if (need_yield1 || need_yield2 || user_need_yield) {
        portYIELD_FROM_ISR();
    }
}
#endif

/**
 * @brief   I2S DMA interrupt initialization
 * @note    I2S will use GDMA if chip supports, and the interrupt is triggered by GDMA.
 *
 * @param   handle      I2S channel handle
 * @param   intr_flag   Interrupt allocation flag
 * @return
 *      - ESP_OK                    I2S DMA interrupt initialize success
 *      - ESP_ERR_NOT_FOUND         GDMA channel not found
 *      - ESP_ERR_INVALID_ARG       Invalid arguments
 *      - ESP_ERR_INVALID_STATE     GDMA state error
 */
esp_err_t i2s_init_dma_intr(i2s_chan_handle_t handle, int intr_flag)
{
    i2s_port_t port_id = handle->controller->id;
    ESP_RETURN_ON_FALSE((port_id >= 0) && (port_id < SOC_I2S_NUM), ESP_ERR_INVALID_ARG, TAG, "invalid handle");
#if SOC_GDMA_SUPPORTED
    /* Set GDMA trigger module */
    gdma_trigger_t trig = {.periph = GDMA_TRIG_PERIPH_I2S};

    switch (port_id) {
#if SOC_I2S_NUM > 1
    case I2S_NUM_1:
        trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S1;
        break;
#endif
    default:
        trig.instance_id = SOC_GDMA_TRIG_PERIPH_I2S0;
        break;
    }

    /* Set GDMA config */
    gdma_channel_alloc_config_t dma_cfg = {};
    if (handle->dir == I2S_DIR_TX) {
        dma_cfg.direction = GDMA_CHANNEL_DIRECTION_TX;
        /* Register a new GDMA tx channel */
        ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &handle->dma.dma_chan), TAG, "Register tx dma channel error");
        ESP_RETURN_ON_ERROR(gdma_connect(handle->dma.dma_chan, trig), TAG, "Connect tx dma channel error");
        gdma_tx_event_callbacks_t cb = {.on_trans_eof = i2s_dma_tx_callback};
        /* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the  callback function */
        gdma_register_tx_event_callbacks(handle->dma.dma_chan, &cb, handle);
    } else {
        dma_cfg.direction = GDMA_CHANNEL_DIRECTION_RX;
        /* Register a new GDMA rx channel */
        ESP_RETURN_ON_ERROR(gdma_new_channel(&dma_cfg, &handle->dma.dma_chan), TAG, "Register rx dma channel error");
        ESP_RETURN_ON_ERROR(gdma_connect(handle->dma.dma_chan, trig), TAG, "Connect rx dma channel error");
        gdma_rx_event_callbacks_t cb = {.on_recv_eof = i2s_dma_rx_callback};
        /* Set callback function for GDMA, the interrupt is triggered by GDMA, then the GDMA ISR will call the  callback function */
        gdma_register_rx_event_callbacks(handle->dma.dma_chan, &cb, handle);
    }
#else
    intr_flag |= ESP_INTR_FLAG_SHARED;
    /* Initialize I2S module interrupt */
    if (handle->dir == I2S_DIR_TX) {
        esp_intr_alloc_intrstatus(i2s_periph_signal[port_id].irq, intr_flag,
                                    (uint32_t)i2s_ll_get_interrupt_status_reg(handle->controller->hal.dev), I2S_LL_TX_EVENT_MASK,
                                    i2s_dma_tx_callback, handle, &handle->dma.dma_chan);
    } else {
        esp_intr_alloc_intrstatus(i2s_periph_signal[port_id].irq, intr_flag,
                                    (uint32_t)i2s_ll_get_interrupt_status_reg(handle->controller->hal.dev), I2S_LL_RX_EVENT_MASK,
                                    i2s_dma_rx_callback, handle, &handle->dma.dma_chan);
    }
    /* Start DMA */
    i2s_ll_enable_dma(handle->controller->hal.dev, true);
#endif // SOC_GDMA_SUPPORTED
    return ESP_OK;
}

void i2s_gpio_check_and_set(gpio_num_t gpio, uint32_t signal_idx, bool is_input, bool is_invert)
{
    /* Ignore the pin if pin = I2S_GPIO_UNUSED */
    if (gpio != I2S_GPIO_UNUSED) {
        gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
        if (is_input) {
            /* Set direction, for some GPIOs, the input function are not enabled as default */
            gpio_set_direction(gpio, GPIO_MODE_INPUT);
            esp_rom_gpio_connect_in_signal(gpio, signal_idx, is_invert);
        } else {
            gpio_set_direction(gpio, GPIO_MODE_OUTPUT);
            esp_rom_gpio_connect_out_signal(gpio, signal_idx, is_invert, 0);
        }
    }
}

void i2s_gpio_loopback_set(gpio_num_t gpio, uint32_t out_sig_idx, uint32_t in_sig_idx)
{
    if (gpio != I2S_GPIO_UNUSED) {
        gpio_hal_iomux_func_sel(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
        gpio_set_direction(gpio, GPIO_MODE_INPUT_OUTPUT);
        esp_rom_gpio_connect_out_signal(gpio, out_sig_idx, 0, 0);
        esp_rom_gpio_connect_in_signal(gpio, in_sig_idx, 0);
    }
}

esp_err_t i2s_check_set_mclk(i2s_port_t id, gpio_num_t gpio_num, bool is_apll, bool is_invert)
{
    if (gpio_num == I2S_GPIO_UNUSED) {
        return ESP_OK;
    }
#if CONFIG_IDF_TARGET_ESP32
    ESP_RETURN_ON_FALSE((gpio_num == GPIO_NUM_0 || gpio_num == GPIO_NUM_1 || gpio_num == GPIO_NUM_3),
                        ESP_ERR_INVALID_ARG, TAG,
                        "ESP32 only support to set GPIO0/GPIO1/GPIO3 as mclk signal, error GPIO number:%d", gpio_num);
    bool is_i2s0 = id == I2S_NUM_0;
    if (gpio_num == GPIO_NUM_0) {
        gpio_hal_iomux_func_sel(PERIPHS_IO_MUX_GPIO0_U, FUNC_GPIO0_CLK_OUT1);
        gpio_ll_iomux_pin_ctrl(is_apll ? 0xFFF6 : (is_i2s0 ? 0xFFF0 : 0xFFFF));
    } else if (gpio_num == GPIO_NUM_1) {
        gpio_hal_iomux_func_sel(PERIPHS_IO_MUX_U0TXD_U, FUNC_U0TXD_CLK_OUT3);
        gpio_ll_iomux_pin_ctrl(is_apll ? 0xF6F6 : (is_i2s0 ? 0xF0F0 : 0xF0FF));
    } else {
        gpio_hal_iomux_func_sel(PERIPHS_IO_MUX_U0RXD_U, FUNC_U0RXD_CLK_OUT2);
        gpio_ll_iomux_pin_ctrl(is_apll ? 0xFF66 : (is_i2s0 ? 0xFF00 : 0xFF0F));
    }
#else
    ESP_RETURN_ON_FALSE(GPIO_IS_VALID_GPIO(gpio_num), ESP_ERR_INVALID_ARG, TAG, "mck_io_num invalid");
    i2s_gpio_check_and_set(gpio_num, i2s_periph_signal[id].mck_out_sig, false, is_invert);
#endif
    ESP_LOGD(TAG, "MCLK is pinned to GPIO%d on I2S%d", id, gpio_num);
    return ESP_OK;
}

/*---------------------------------------------------------------------------
                            I2S bus Public APIs
 ----------------------------------------------------------------------------
    Scope: Public
 ----------------------------------------------------------------------------*/
esp_err_t i2s_new_channel(const i2s_chan_config_t *chan_cfg, i2s_chan_handle_t *tx_handle, i2s_chan_handle_t *rx_handle)
{
#if CONFIG_I2S_ENABLE_DEBUG_LOG
    esp_log_level_set(TAG, ESP_LOG_DEBUG);
#endif
    /* Parameter validity check */
    I2S_NULL_POINTER_CHECK(TAG, chan_cfg);
    I2S_NULL_POINTER_CHECK(TAG, tx_handle || rx_handle);
    ESP_RETURN_ON_FALSE(chan_cfg->id < SOC_I2S_NUM || chan_cfg->id == I2S_NUM_AUTO, ESP_ERR_INVALID_ARG, TAG, "invalid I2S port id");
    ESP_RETURN_ON_FALSE(chan_cfg->dma_desc_num >= 2, ESP_ERR_INVALID_ARG, TAG, "there should be at least 2 DMA buffers");

    esp_err_t ret = ESP_OK;
    i2s_controller_t *i2s_obj = NULL;
    i2s_port_t id = chan_cfg->id;
    bool channel_found = false;
    uint8_t chan_search_mask = 0;
    chan_search_mask |= tx_handle ? I2S_DIR_TX : 0;
    chan_search_mask |= rx_handle ? I2S_DIR_RX : 0;

    /* Channel will be registered to one i2s port automatically if id is I2S_NUM_AUTO
     * Otherwise, the channel will be registered to the specific port. */
    if (id == I2S_NUM_AUTO) {
        for (int i = 0; i < SOC_I2S_NUM && !channel_found; i++) {
            i2s_obj = i2s_acquire_controller_obj(i);
            if (!i2s_obj) {
                continue;
            }
            channel_found = i2s_take_available_channel(i2s_obj, chan_search_mask);
        }
        ESP_RETURN_ON_FALSE(i2s_obj, ESP_ERR_NOT_FOUND, TAG, "get i2s object failed");
    } else {
        i2s_obj = i2s_acquire_controller_obj(id);
        ESP_RETURN_ON_FALSE(i2s_obj, ESP_ERR_NOT_FOUND, TAG, "get i2s object failed");
        channel_found = i2s_take_available_channel(i2s_obj, chan_search_mask);
    }
    ESP_GOTO_ON_FALSE(channel_found, ESP_ERR_NOT_FOUND, err, TAG, "no available channel found");
    /* Register and specify the tx handle */
    if (tx_handle) {
        ESP_GOTO_ON_ERROR(i2s_register_channel(i2s_obj, I2S_DIR_TX, chan_cfg->dma_desc_num),
                          err, TAG, "register I2S tx channel failed");
        i2s_obj->tx_chan->role = chan_cfg->role;
        i2s_obj->tx_chan->dma.auto_clear = chan_cfg->auto_clear;
        i2s_obj->tx_chan->dma.desc_num = chan_cfg->dma_desc_num;
        i2s_obj->tx_chan->dma.frame_num = chan_cfg->dma_frame_num;
        i2s_obj->tx_chan->start = i2s_tx_channel_start;
        i2s_obj->tx_chan->stop = i2s_tx_channel_stop;
        *tx_handle = i2s_obj->tx_chan;
        ESP_LOGD(TAG, "tx channel is registered on I2S%d successfully", i2s_obj->id);
    }
    /* Register and specify the rx handle */
    if (rx_handle) {
        ESP_GOTO_ON_ERROR(i2s_register_channel(i2s_obj, I2S_DIR_RX, chan_cfg->dma_desc_num),
                          err, TAG, "register I2S rx channel failed");
        i2s_obj->rx_chan->role = chan_cfg->role;
        i2s_obj->rx_chan->dma.desc_num = chan_cfg->dma_desc_num;
        i2s_obj->rx_chan->dma.frame_num = chan_cfg->dma_frame_num;
        i2s_obj->rx_chan->start = i2s_rx_channel_start;
        i2s_obj->rx_chan->stop = i2s_rx_channel_stop;
        *rx_handle = i2s_obj->rx_chan;
        ESP_LOGD(TAG, "rx channel is registered on I2S%d successfully", i2s_obj->id);
    }

    if ((tx_handle != NULL) && (rx_handle != NULL)) {
        i2s_obj->full_duplex = true;
    }

    return ESP_OK;
    /* i2s_obj allocated but register channel failed */
err:
    /* if the controller object has no channel, find the corresponding global object and destroy it */
    if (i2s_obj != NULL && i2s_obj->rx_chan == NULL && i2s_obj->tx_chan == NULL) {
        for (int i = 0; i < SOC_I2S_NUM; i++) {
            if (i2s_obj == g_i2s.controller[i]) {
                i2s_destroy_controller_obj(&g_i2s.controller[i]);
                break;
            }
        }
    }
    return ret;
}

esp_err_t i2s_del_channel(i2s_chan_handle_t handle)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    ESP_RETURN_ON_FALSE(handle->state < I2S_CHAN_STATE_RUNNING, ESP_ERR_INVALID_STATE, TAG, "the channel can't be deleted unless it is disabled");
    i2s_controller_t *i2s_obj = handle->controller;
    int __attribute__((unused)) id = i2s_obj->id;
    i2s_dir_t __attribute__((unused)) dir = handle->dir;
    bool is_bound = true;

#if SOC_I2S_HW_VERSION_2
    if (dir == I2S_DIR_TX) {
        i2s_ll_tx_disable_clock(handle->controller->hal.dev);
    } else {
        i2s_ll_rx_disable_clock(handle->controller->hal.dev);
    }
#endif
#if SOC_I2S_SUPPORTS_APLL
    if (handle->apll_en) {
        /* Must switch back to D2CLK on ESP32-S2,
         * because the clock of some registers are bound to APLL,
         * otherwise, once APLL is disabled, the registers can't be updated anymore */
        if (handle->dir == I2S_DIR_TX) {
            i2s_ll_tx_clk_set_src(handle->controller->hal.dev, I2S_CLK_SRC_DEFAULT);
        } else {
            i2s_ll_rx_clk_set_src(handle->controller->hal.dev, I2S_CLK_SRC_DEFAULT);
        }
        periph_rtc_apll_release();
    }
#endif
#if CONFIG_PM_ENABLE
    if (handle->pm_lock) {
        esp_pm_lock_delete(handle->pm_lock);
    }
#endif
    if (handle->mode_info) {
        free(handle->mode_info);
    }
    if (handle->dma.desc) {
        i2s_free_dma_desc(handle);
    }
#if CONFIG_I2S_ISR_IRAM_SAFE
    if (handle->msg_que_storage) {
        free(handle->msg_que_storage);
    }
    if (handle->msg_que_struct) {
        free(handle->msg_que_struct);
    }
    if (handle->mutex) {
        free(handle->mutex_struct);
    }
    if (handle->binary_struct) {
        free(handle->binary_struct);
    }
#endif
    if (handle->msg_queue) {
        vQueueDelete(handle->msg_queue);
    }
    if (handle->mutex) {
        vSemaphoreDelete(handle->mutex);
    }
    if (handle->binary) {
        vSemaphoreDelete(handle->binary);
    }
#if SOC_I2S_HW_VERSION_1
    i2s_obj->chan_occupancy = 0;
#else
    i2s_obj->chan_occupancy &= ~(uint32_t)dir;
#endif
    if (handle->dma.dma_chan) {
#if SOC_GDMA_SUPPORTED
        gdma_disconnect(handle->dma.dma_chan);
        gdma_del_channel(handle->dma.dma_chan);
#else
        esp_intr_free(handle->dma.dma_chan);
#endif
    }
    if (handle == i2s_obj->tx_chan) {
        free(i2s_obj->tx_chan);
        i2s_obj->tx_chan = NULL;
        i2s_obj->full_duplex = false;
    } else if (handle == i2s_obj->rx_chan) {
        free(i2s_obj->rx_chan);
        i2s_obj->rx_chan = NULL;
        i2s_obj->full_duplex = false;
    } else {
        /* Indicate the delete channel is an unbound free channel */
        is_bound = false;
        free(handle);
    }

    /* If the delete channel was bound to a controller before,
       we need to destroy this controller object if there is no channel any more */
    if (is_bound) {
        if (!(i2s_obj->tx_chan) && !(i2s_obj->rx_chan)) {
            i2s_destroy_controller_obj(&g_i2s.controller[i2s_obj->id]);
        }
        ESP_LOGD(TAG, "%s channel on I2S%d deleted", dir == I2S_DIR_TX ? "tx" : "rx", id);
    }

    return ESP_OK;
}

esp_err_t i2s_channel_get_info(i2s_chan_handle_t handle, i2s_chan_info_t *chan_info)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    I2S_NULL_POINTER_CHECK(TAG, chan_info);

    /* Find whether the handle is a registered i2s handle or still available */
    for (int i = 0; i < SOC_I2S_NUM; i++) {
        if (g_i2s.controller[i] != NULL) {
            if (g_i2s.controller[i]->tx_chan == handle ||
                g_i2s.controller[i]->rx_chan == handle) {
                goto found;
            }
        }
    }
    return ESP_ERR_NOT_FOUND;
found:
    /* Assign the handle information */
    xSemaphoreTake(handle->mutex, portMAX_DELAY);
    chan_info->id = handle->controller->id;
    chan_info->dir = handle->dir;
    chan_info->role = handle->role;
    chan_info->mode = handle->mode;
    if (handle->controller->full_duplex) {
        if (handle->dir == I2S_DIR_TX) {
            chan_info->pair_chan = handle->controller->rx_chan;
        } else {
            chan_info->pair_chan = handle->controller->tx_chan;
        }
    } else {
        chan_info->pair_chan = NULL;
    }
    xSemaphoreGive(handle->mutex);

    return ESP_OK;
}


esp_err_t i2s_channel_enable(i2s_chan_handle_t handle)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);

    esp_err_t ret = ESP_OK;

    xSemaphoreTake(handle->mutex, portMAX_DELAY);
    ESP_GOTO_ON_FALSE(handle->state == I2S_CHAN_STATE_READY, ESP_ERR_INVALID_STATE, err, TAG, "the channel has already enabled or not initialized");
#if CONFIG_PM_ENABLE
    esp_pm_lock_acquire(handle->pm_lock);
#endif
    handle->start(handle);
    handle->state = I2S_CHAN_STATE_RUNNING;
    /* Reset queue */
    xQueueReset(handle->msg_queue);
    xSemaphoreGive(handle->mutex);
    /* Give the binary semaphore to enable reading / writing task */
    xSemaphoreGive(handle->binary);

    ESP_LOGD(TAG, "i2s %s channel enabled", handle->dir == I2S_DIR_TX ? "tx" : "rx");
    return ret;

err:
    xSemaphoreGive(handle->mutex);
    return ret;
}

esp_err_t i2s_channel_disable(i2s_chan_handle_t handle)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    esp_err_t ret = ESP_OK;

    xSemaphoreTake(handle->mutex, portMAX_DELAY);
    ESP_GOTO_ON_FALSE(handle->state > I2S_CHAN_STATE_READY, ESP_ERR_INVALID_STATE, err, TAG, "the channel has not been enabled yet");
    /* Update the state to force quit the current reading/writing operation */
    handle->state = I2S_CHAN_STATE_READY;
    /* Waiting for reading/wrinting operation quit
     * It should be acquired before assigning the pointer to NULL,
     * otherwise may cause NULL pointer panic while reading/writing threads haven't release the lock */
    xSemaphoreTake(handle->binary, portMAX_DELAY);
    /* Reset the descriptor pointer */
    handle->dma.curr_ptr = NULL;
    handle->dma.rw_pos = 0;
    handle->stop(handle);
#if CONFIG_PM_ENABLE
    esp_pm_lock_release(handle->pm_lock);
#endif
    xSemaphoreGive(handle->mutex);
    ESP_LOGD(TAG, "i2s %s channel disabled", handle->dir == I2S_DIR_TX ? "tx" : "rx");
    return ret;

err:
    xSemaphoreGive(handle->mutex);
    return ret;
}

esp_err_t i2s_channel_preload_data(i2s_chan_handle_t tx_handle, const void *src, size_t size, size_t *bytes_loaded)
{
    I2S_NULL_POINTER_CHECK(TAG, tx_handle);
    ESP_RETURN_ON_FALSE(tx_handle->dir == I2S_DIR_TX, ESP_ERR_INVALID_ARG, TAG, "this channel is not tx channel");
    ESP_RETURN_ON_FALSE(tx_handle->state == I2S_CHAN_STATE_READY, ESP_ERR_INVALID_STATE, TAG, "data can only be preloaded when the channel is READY");

    uint8_t *data_ptr = (uint8_t *)src;
    size_t remain_bytes = size;
    size_t total_loaded_bytes = 0;

    xSemaphoreTake(tx_handle->mutex, portMAX_DELAY);

    /* The pre-load data will be loaded from the first descriptor */
    if (tx_handle->dma.curr_ptr == NULL) {
        tx_handle->dma.curr_ptr = tx_handle->dma.desc[0];
        tx_handle->dma.rw_pos = 0;
    }
    lldesc_t *desc_ptr = (lldesc_t *)tx_handle->dma.curr_ptr;

    /* Loop until no bytes in source buff remain or the descriptors are full */
    while (remain_bytes) {
        size_t bytes_can_load = remain_bytes > (tx_handle->dma.buf_size - tx_handle->dma.rw_pos) ?
                            (tx_handle->dma.buf_size - tx_handle->dma.rw_pos) : remain_bytes;
        /* When all the descriptors has loaded data, no more bytes can be loaded, break directly */
        if (bytes_can_load == 0) {
            break;
        }
        /* Load the data from the last loaded position */
        memcpy((uint8_t *)(desc_ptr->buf + tx_handle->dma.rw_pos), data_ptr, bytes_can_load);
        data_ptr += bytes_can_load;             // Move forward the data pointer
        total_loaded_bytes += bytes_can_load;   // Add to the total loaded bytes
        remain_bytes -= bytes_can_load;         // Update the remaining bytes to be loaded
        tx_handle->dma.rw_pos += bytes_can_load;   // Move forward the dma buffer position
        /* When the current position reach the end of the dma buffer */
        if (tx_handle->dma.rw_pos == tx_handle->dma.buf_size) {
            /* If the next descriptor is not the first descriptor, keep load to the first descriptor
             * otherwise all descriptor has been loaded, break directly, the dma buffer position
             * will remain at the end of the last dma buffer */
            if (desc_ptr->empty != (uint32_t)tx_handle->dma.desc[0]) {
                desc_ptr = (lldesc_t *)desc_ptr->empty;
                tx_handle->dma.curr_ptr =  (void *)desc_ptr;
                tx_handle->dma.rw_pos = 0;
            } else {
                break;
            }
        }
    }
    *bytes_loaded = total_loaded_bytes;

    xSemaphoreGive(tx_handle->mutex);

    return ESP_OK;
}

esp_err_t i2s_channel_write(i2s_chan_handle_t handle, const void *src, size_t size, size_t *bytes_written, uint32_t timeout_ms)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    ESP_RETURN_ON_FALSE(handle->dir == I2S_DIR_TX, ESP_ERR_INVALID_ARG, TAG, "this channel is not tx channel");

    esp_err_t ret = ESP_OK;
    char *data_ptr;
    char *src_byte;
    size_t bytes_can_write;
    if (bytes_written) {
        *bytes_written = 0;
    }

    /* The binary semaphore can only be taken when the channel has been enabled and no other writing operation in progress */
    ESP_RETURN_ON_FALSE(xSemaphoreTake(handle->binary, pdMS_TO_TICKS(timeout_ms)) == pdTRUE, ESP_ERR_INVALID_STATE, TAG, "The channel is not enabled");
    src_byte = (char *)src;
    while (size > 0 && handle->state == I2S_CHAN_STATE_RUNNING) {
        if (handle->dma.rw_pos == handle->dma.buf_size || handle->dma.curr_ptr == NULL) {
            if (xQueueReceive(handle->msg_queue, &(handle->dma.curr_ptr), pdMS_TO_TICKS(timeout_ms)) == pdFALSE) {
                ret = ESP_ERR_TIMEOUT;
                break;
            }
            handle->dma.rw_pos = 0;
        }
        data_ptr = (char *)handle->dma.curr_ptr;
        data_ptr += handle->dma.rw_pos;
        bytes_can_write = handle->dma.buf_size - handle->dma.rw_pos;
        if (bytes_can_write > size) {
            bytes_can_write = size;
        }
        memcpy(data_ptr, src_byte, bytes_can_write);
        size -= bytes_can_write;
        src_byte += bytes_can_write;
        handle->dma.rw_pos += bytes_can_write;
        if (bytes_written) {
            (*bytes_written) += bytes_can_write;
        }
    }
    xSemaphoreGive(handle->binary);

    return ret;
}

esp_err_t i2s_channel_read(i2s_chan_handle_t handle, void *dest, size_t size, size_t *bytes_read, uint32_t timeout_ms)
{
    I2S_NULL_POINTER_CHECK(TAG, handle);
    ESP_RETURN_ON_FALSE(handle->dir == I2S_DIR_RX, ESP_ERR_INVALID_ARG, TAG, "this channel is not rx channel");

    esp_err_t ret = ESP_OK;
    uint8_t *data_ptr;
    uint8_t *dest_byte;
    int bytes_can_read;
    if (bytes_read) {
        *bytes_read = 0;
    }
    dest_byte = (uint8_t *)dest;
    /* The binary semaphore can only be taken when the channel has been enabled and no other reading operation in progress */
    ESP_RETURN_ON_FALSE(xSemaphoreTake(handle->binary, pdMS_TO_TICKS(timeout_ms)) == pdTRUE, ESP_ERR_INVALID_STATE, TAG, "The channel is not enabled");
    while (size > 0 && handle->state == I2S_CHAN_STATE_RUNNING) {
        if (handle->dma.rw_pos == handle->dma.buf_size || handle->dma.curr_ptr == NULL) {
            if (xQueueReceive(handle->msg_queue, &(handle->dma.curr_ptr), pdMS_TO_TICKS(timeout_ms)) == pdFALSE) {
                ret = ESP_ERR_TIMEOUT;
                break;
            }
            handle->dma.rw_pos = 0;
        }
        data_ptr = (uint8_t *)handle->dma.curr_ptr;
        data_ptr += handle->dma.rw_pos;
        bytes_can_read = handle->dma.buf_size - handle->dma.rw_pos;
        if (bytes_can_read > (int)size) {
            bytes_can_read = size;
        }
        memcpy(dest_byte, data_ptr, bytes_can_read);
        size -= bytes_can_read;
        dest_byte += bytes_can_read;
        handle->dma.rw_pos += bytes_can_read;
        if (bytes_read) {
            (*bytes_read) += bytes_can_read;
        }
    }
    xSemaphoreGive(handle->binary);

    return ret;
}

/*---------------------------------------------------------------------------
                            I2S Platform APIs
 ----------------------------------------------------------------------------
    Scope: This file and ADC/DAC/LCD driver
 ----------------------------------------------------------------------------*/

esp_err_t i2s_platform_acquire_occupation(int id, const char *comp_name)
{
    esp_err_t ret = ESP_OK;
    const char *occupied_comp = NULL;
    ESP_RETURN_ON_FALSE(id < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid i2s port id");
    portENTER_CRITICAL(&g_i2s.spinlock);
    if ((!g_i2s.controller[id]) && (g_i2s.comp_name[id] == NULL)) {
        g_i2s.comp_name[id] = comp_name;
        /* Enable module clock */
        periph_module_enable(i2s_periph_signal[id].module);
        i2s_ll_enable_clock(I2S_LL_GET_HW(id));
    } else {
        occupied_comp =  g_i2s.comp_name[id];
        ret = ESP_ERR_NOT_FOUND;
    }
    portEXIT_CRITICAL(&g_i2s.spinlock);
    if (occupied_comp != NULL) {
        ESP_LOGW(TAG, "i2s controller %d has been occupied by %s", id, occupied_comp);
    }
    return ret;
}

esp_err_t i2s_platform_release_occupation(int id)
{
    esp_err_t ret = ESP_OK;
    ESP_RETURN_ON_FALSE(id < SOC_I2S_NUM, ESP_ERR_INVALID_ARG, TAG, "invalid i2s port id");
    portENTER_CRITICAL(&g_i2s.spinlock);
    if (!g_i2s.controller[id]) {
        g_i2s.comp_name[id] = NULL;
        /* Disable module clock */
        periph_module_disable(i2s_periph_signal[id].module);
        i2s_ll_disable_clock(I2S_LL_GET_HW(id));
    } else {
        ret = ESP_ERR_INVALID_STATE;
    }
    portEXIT_CRITICAL(&g_i2s.spinlock);
    return ret;
}

// Only used in `test_i2s_iram.c` to write DMA buffer directly
size_t inline i2s_platform_get_dma_buffer_offset(void)
{
    /* Force to transfer address '0' into 'i2s_chan_handle_t' type,
     * then find the corresponding field , the address of this field is the offset of this type */
    return (size_t)&(((i2s_chan_handle_t)0)->dma.bufs);
}