esp-idf/components/hal/emac_hal.c
Ondrej Kosta d2b1202d5a feat(esp_eth): added HW Time Stamping support for ESP32P4
Added mechanism to L2 TAP to retreive time stamp

Added PTP time synchronization example
2024-11-07 15:01:24 +08:00

500 lines
20 KiB
C

/*
* SPDX-FileCopyrightText: 2021-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "hal/emac_hal.h"
#include "hal/emac_ll.h"
#if SOC_EMAC_IEEE1588V2_SUPPORTED
#include "esp_rom_sys.h"
#define EMAC_PTP_INIT_TIMEOUT_US (10)
#endif // SOC_EMAC_IEEE1588V2_SUPPORTED
static esp_err_t emac_hal_flush_trans_fifo(emac_hal_context_t *hal)
{
emac_ll_flush_trans_fifo_enable(hal->dma_regs, true);
/* no other writes to the Operation Mode register until the flush tx fifo bit is cleared */
for (uint32_t i = 0; i < 1000; i++) {
if (emac_ll_get_flush_trans_fifo(hal->dma_regs) == 0) {
return ESP_OK;
}
}
return ESP_ERR_TIMEOUT;
}
void emac_hal_init(emac_hal_context_t *hal)
{
hal->dma_regs = &EMAC_DMA;
hal->mac_regs = &EMAC_MAC;
#if CONFIG_IDF_TARGET_ESP32
hal->ext_regs = &EMAC_EXT;
#else
hal->ext_regs = NULL;
#endif
#if SOC_EMAC_IEEE1588V2_SUPPORTED
hal->ptp_regs = &EMAC_PTP;
#endif
}
void emac_hal_set_csr_clock_range(emac_hal_context_t *hal, int freq)
{
/* Tell MAC system clock Frequency in MHz, which will determine the frequency range of MDC(1MHz~2.5MHz) */
if (freq >= 20000000 && freq < 35000000) {
emac_ll_set_csr_clock_division(hal->mac_regs, 2); // CSR clock/16
} else if (freq >= 35000000 && freq < 60000000) {
emac_ll_set_csr_clock_division(hal->mac_regs, 3); // CSR clock/26
} else if (freq >= 60000000 && freq < 100000000) {
emac_ll_set_csr_clock_division(hal->mac_regs, 0); // CSR clock/42
} else if (freq >= 100000000 && freq < 150000000) {
emac_ll_set_csr_clock_division(hal->mac_regs, 1); // CSR clock/62
} else if (freq >= 150000000 && freq < 250000000) {
emac_ll_set_csr_clock_division(hal->mac_regs, 4); // CSR clock/102
} else {
emac_ll_set_csr_clock_division(hal->mac_regs, 5); // CSR clock/124
}
}
void emac_hal_set_rx_tx_desc_addr(emac_hal_context_t *hal, eth_dma_rx_descriptor_t *rx_desc, eth_dma_tx_descriptor_t *tx_desc)
{
emac_ll_set_rx_desc_addr(hal->dma_regs, (uint32_t)rx_desc);
emac_ll_set_tx_desc_addr(hal->dma_regs, (uint32_t)tx_desc);
}
void emac_hal_init_mac_default(emac_hal_context_t *hal)
{
/* MACCR Configuration */
/* Enable the watchdog on the receiver, frame longer than 2048 Bytes is not allowed */
emac_ll_watchdog_enable(hal->mac_regs, true);
/* Enable the jabber timer on the transmitter, frame longer than 2048 Bytes is not allowed */
emac_ll_jabber_enable(hal->mac_regs, true);
/* minimum IFG between frames during transmission is 96 bit times */
emac_ll_set_inter_frame_gap(hal->mac_regs, EMAC_LL_INTERFRAME_GAP_96BIT);
/* Enable Carrier Sense During Transmission */
emac_ll_carrier_sense_enable(hal->mac_regs, true);
/* Select speed: port: 10/100 Mbps, here set default 100M, afterwards, will reset by auto-negotiation */
emac_ll_set_port_speed(hal->mac_regs, ETH_SPEED_100M);
/* Allow the reception of frames when the TX_EN signal is asserted in Half-Duplex mode */
emac_ll_recv_own_enable(hal->mac_regs, true);
/* Disable internal loopback mode */
emac_ll_loopback_enable(hal->mac_regs, false);
/* Select duplex mode: here set default full duplex, afterwards, will reset by auto-negotiation */
emac_ll_set_duplex(hal->mac_regs, ETH_DUPLEX_FULL);
/* Select the checksum mode for received frame payload's TCP/UDP/ICMP headers */
emac_ll_checksum_offload_mode(hal->mac_regs, ETH_CHECKSUM_HW);
/* Enable MAC retry transmission when a collision occurs in half duplex mode */
emac_ll_retry_enable(hal->mac_regs, true);
/* MAC passes all incoming frames to host, without modifying them */
emac_ll_auto_pad_crc_strip_enable(hal->mac_regs, false);
/* Set Back-Off limit time before retry a transmission after a collision */
emac_ll_set_back_off_limit(hal->mac_regs, EMAC_LL_BACKOFF_LIMIT_10);
/* Disable deferral check, MAC defers until the CRS signal goes inactive */
emac_ll_deferral_check_enable(hal->mac_regs, false);
/* Set preamble length 7 Bytes */
emac_ll_set_preamble_length(hal->mac_regs, EMAC_LL_PREAMBLE_LENGTH_7);
/* MACFFR Configuration */
/* Receiver module passes only those frames to the Application that pass the SA or DA address filter */
emac_ll_receive_all_enable(hal->mac_regs, false);
/* Disable source address filter */
emac_ll_set_src_addr_filter(hal->mac_regs, EMAC_LL_SOURCE_ADDR_FILTER_DISABLE);
emac_ll_sa_inverse_filter_enable(hal->mac_regs, false);
/* MAC blocks all control frames */
emac_ll_set_pass_ctrl_frame_mode(hal->mac_regs, EMAC_LL_CONTROL_FRAME_BLOCKALL);
/* AFM module passes all received broadcast frames and multicast frames */
emac_ll_broadcast_frame_enable(hal->mac_regs, true);
emac_ll_pass_all_multicast_enable(hal->mac_regs, true);
/* Address Check block operates in normal filtering mode for the DA address */
emac_ll_da_inverse_filter_enable(hal->mac_regs, false);
/* Disable Promiscuous Mode */
emac_ll_promiscuous_mode_enable(hal->mac_regs, false);
}
void emac_hal_enable_flow_ctrl(emac_hal_context_t *hal, bool enable)
{
/* MACFCR Configuration */
if (enable) {
/* Pause time */
emac_ll_set_pause_time(hal->mac_regs, EMAC_LL_PAUSE_TIME);
/* Enable generation of Zero-Quanta Pause Control frames */
emac_ll_zero_quanta_pause_enable(hal->mac_regs, true);
/* Threshold of the PAUSE to be checked for automatic retransmission of PAUSE Frame */
emac_ll_set_pause_low_threshold(hal->mac_regs, EMAC_LL_PAUSE_LOW_THRESHOLD_MINUS_28);
/* Don't allow MAC detect Pause frames with MAC address0 unicast address and unique multicast address */
emac_ll_unicast_pause_frame_detect_enable(hal->mac_regs, false);
/* Enable MAC to decode the received Pause frame and disable its transmitter for a specific time */
emac_ll_receive_flow_ctrl_enable(hal->mac_regs, true);
/* Enable MAC to transmit Pause frames in full duplex mode or the MAC back-pressure operation in half duplex mode */
emac_ll_transmit_flow_ctrl_enable(hal->mac_regs, true);
} else {
emac_ll_clear(hal->mac_regs);
}
}
void emac_hal_init_dma_default(emac_hal_context_t *hal, emac_hal_dma_config_t *hal_config)
{
/* DMAOMR Configuration */
/* Enable Dropping of TCP/IP Checksum Error Frames */
emac_ll_drop_tcp_err_frame_enable(hal->dma_regs, true);
#if CONFIG_IDF_TARGET_ESP32P4
/* Disable Receive Store Forward (Rx FIFO is only 256B) */
emac_ll_recv_store_forward_enable(hal->dma_regs, false);
#else
/* Enable Receive Store Forward */
emac_ll_recv_store_forward_enable(hal->dma_regs, true);
#endif
/* Enable Flushing of Received Frames because of the unavailability of receive descriptors or buffers */
emac_ll_flush_recv_frame_enable(hal->dma_regs, true);
/* Disable Transmit Store Forward */
emac_ll_trans_store_forward_enable(hal->dma_regs, false);
/* Flush Transmit FIFO */
emac_hal_flush_trans_fifo(hal);
/* Transmit Threshold Control */
emac_ll_set_transmit_threshold(hal->dma_regs, EMAC_LL_TRANSMIT_THRESHOLD_CONTROL_64);
/* Disable Forward Error Frame */
emac_ll_forward_err_frame_enable(hal->dma_regs, false);
/* Disable forward undersized good frame */
emac_ll_forward_undersized_good_frame_enable(hal->dma_regs, false);
/* Receive Threshold Control */
emac_ll_set_recv_threshold(hal->dma_regs, EMAC_LL_RECEIVE_THRESHOLD_CONTROL_64);
/* Allow the DMA to process a second frame of Transmit data even before obtaining the status for the first frame */
emac_ll_opt_second_frame_enable(hal->dma_regs, true);
/* DMABMR Configuration */
/* Enable Mixed Burst */
emac_ll_mixed_burst_enable(hal->dma_regs, true);
/* Enable Address Aligned Beates */
emac_ll_addr_align_enable(hal->dma_regs, true);
/* Don't use Separate PBL */
emac_ll_use_separate_pbl_enable(hal->dma_regs, false);
/* Set Rx/Tx DMA Burst Length */
emac_ll_set_prog_burst_len(hal->dma_regs, hal_config->dma_burst_len);
/* Enable Enhanced Descriptor,8 Words(32 Bytes) */
emac_ll_enhance_desc_enable(hal->dma_regs, true);
/* Specifies the number of word to skip between two unchained descriptors (Ring mode) */
emac_ll_set_desc_skip_len(hal->dma_regs, 0);
/* DMA Arbitration Scheme */
emac_ll_fixed_arbitration_enable(hal->dma_regs, false);
/* Set priority ratio in the weighted round-robin arbitration between Rx DMA and Tx DMA */
emac_ll_set_priority_ratio(hal->dma_regs, EMAC_LL_DMA_ARBITRATION_ROUNDROBIN_RXTX_1_1);
}
void emac_hal_set_phy_cmd(emac_hal_context_t *hal, uint32_t phy_addr, uint32_t phy_reg, bool write)
{
/* Write the result value into the MII Address register */
emac_ll_set_phy_addr(hal->mac_regs, phy_addr);
/* Set the PHY register address */
emac_ll_set_phy_reg(hal->mac_regs, phy_reg);
/* Set as write mode */
emac_ll_write_enable(hal->mac_regs, write);
/* Set MII busy bit */
emac_ll_set_busy(hal->mac_regs, true);
}
void emac_hal_set_address(emac_hal_context_t *hal, uint8_t *mac_addr)
{
/* Make sure mac address is unicast type */
if (!(mac_addr[0] & 0x01)) {
emac_ll_set_addr(hal->mac_regs, mac_addr);
}
}
#if SOC_EMAC_IEEE1588V2_SUPPORTED
static inline uint32_t subsecond2nanosecond(emac_hal_context_t *hal, uint32_t subsecond)
{
if (emac_ll_is_ts_digital_roll_set(hal->ptp_regs)) {
return subsecond;
}
uint64_t val = subsecond * 1000000000ll; // 1 s = 10e9 ns
val >>= 31; // Sub-Second register is 31 bit
return (uint32_t)val;
}
static inline uint32_t nanosecond2subsecond(emac_hal_context_t *hal, uint32_t nanosecond)
{
if (emac_ll_is_ts_digital_roll_set(hal->ptp_regs)) {
return nanosecond;
}
uint64_t val = (uint64_t)nanosecond << 31;
val /= 1000000000ll;
return (uint32_t)val;
}
esp_err_t emac_hal_get_rxdesc_timestamp(emac_hal_context_t *hal, eth_dma_rx_descriptor_t *rxdesc, uint32_t *seconds, uint32_t *nano_seconds)
{
if (!rxdesc->RDES0.TSAvailIPChecksumErrGiantFrame) {
return ESP_ERR_INVALID_STATE;
}
if (seconds) {
*seconds = rxdesc->TimeStampHigh;
}
if (nano_seconds) {
*nano_seconds = subsecond2nanosecond(hal, rxdesc->TimeStampLow);
}
rxdesc->RDES0.TSAvailIPChecksumErrGiantFrame = 0;
return ESP_OK;
}
esp_err_t emac_hal_get_txdesc_timestamp(emac_hal_context_t *hal, eth_dma_tx_descriptor_t *txdesc, uint32_t *seconds, uint32_t *nano_seconds)
{
if (txdesc->TDES0.Own == EMAC_LL_DMADESC_OWNER_DMA || !txdesc->TDES0.TxTimestampStatus) {
return ESP_ERR_INVALID_STATE;
}
if (seconds) {
*seconds = txdesc->TimeStampHigh;
}
if (nano_seconds) {
*nano_seconds = subsecond2nanosecond(hal, txdesc->TimeStampLow);
}
txdesc->TDES0.TxTimestampStatus = 0;
return ESP_OK;
}
esp_err_t emac_hal_ptp_start(emac_hal_context_t *hal, const emac_hal_ptp_config_t *config)
{
uint8_t base_increment;
// Enable time stamping frame filtering (applicable to receive)
emac_ll_ts_ptp_ether_enable(hal->ptp_regs, true);
// Process frames with v2 format
emac_ll_ptp_v2_proc_enable(hal->ptp_regs, true);
/* Un-mask the Time stamp trigger interrupt */
emac_ll_enable_corresponding_emac_intr(hal->mac_regs, EMAC_LL_CONFIG_ENABLE_MAC_INTR_MASK);
/* Enable the timestamp feature */
emac_ll_ts_enable(hal->ptp_regs, true);
/* Set digital or binary rollover */
if (config->roll == ETH_PTP_DIGITAL_ROLLOVER) {
emac_ll_ts_digital_roll_enable(hal->ptp_regs, true);
} else {
emac_ll_ts_digital_roll_enable(hal->ptp_regs, false);
}
/* Set sub second increment based on the required PTP accuracy */
if (emac_ll_is_ts_digital_roll_set(hal->ptp_regs)) {
/**
* tick(ns) 10^9
* ———————————— = ————————————— ==> Increment = tick
* Increment 10^9
*/
base_increment = config->ptp_req_accuracy_ns;
} else {
/**
* tick(ns) 10^9 tick * 2^31 tick
* ———————————— = ————————————— ==> Increment = ————————————— ≈ —————————
* Increment 2^31 10^9 0.465
*/
base_increment = config->ptp_req_accuracy_ns / 0.465;
}
emac_ll_set_ts_sub_second_incre_val(hal->ptp_regs, base_increment);
/* Set Update Mode */
emac_ll_set_ts_update_method(hal->ptp_regs, config->upd_method);
int32_t to = 0;
/* If you are using the Fine correction method */
if (config->upd_method == ETH_PTP_UPDATE_METHOD_FINE) {
/**
* 2^32 2^32 TsysClk(ns)
* Addend = ——————— = —————————————————————————— = 2^32 * ——————————————
* ratio SysClk(MHz)/PTPaccur(MHz) Taccur(ns)
*/
uint32_t base_addend = (1ll << 32) * config->ptp_clk_src_period_ns / config->ptp_req_accuracy_ns;
emac_ll_set_ts_addend_val(hal->ptp_regs, base_addend);
emac_ll_ts_addend_do_update(hal->ptp_regs);
while (!emac_ll_is_ts_addend_update_done(hal->ptp_regs) && to < EMAC_PTP_INIT_TIMEOUT_US) {
esp_rom_delay_us(1);
to++;
}
if (to >= EMAC_PTP_INIT_TIMEOUT_US) {
return ESP_ERR_TIMEOUT;
}
}
/* Initialize timestamp */
emac_ll_set_ts_update_second_val(hal->ptp_regs, 0);
emac_ll_set_ts_update_sub_second_val(hal->ptp_regs, 0);
emac_ll_ts_init_do(hal->ptp_regs);
to = 0;
while (!emac_ll_is_ts_init_done(hal->ptp_regs) && to < EMAC_PTP_INIT_TIMEOUT_US) {
esp_rom_delay_us(1);
to++;
}
if (to >= EMAC_PTP_INIT_TIMEOUT_US) {
return ESP_ERR_TIMEOUT;
}
return ESP_OK;
}
esp_err_t emac_hal_ptp_stop(emac_hal_context_t *hal)
{
/* Disable the timestamp feature */
emac_ll_ts_enable(hal->ptp_regs, false);
return ESP_OK;
}
esp_err_t emac_hal_ptp_adj_inc(emac_hal_context_t *hal, int32_t adj_ppb)
{
if (emac_ll_get_ts_update_method(hal->ptp_regs) != ETH_PTP_UPDATE_METHOD_FINE ||
!emac_ll_is_ts_addend_update_done(hal->ptp_regs)) {
return ESP_ERR_INVALID_STATE;
}
/**
* Sysclk(MHz) * ppb Sysclk * ppb
* var = ————————————————— = ———————————————
* 10^9 10^9
*
* 2^32 * PTPClk(MHz) 2^32 * PTPClk(MHz)
* old = ————————————————————————— => SysClk = ——————————————————————
* SysClk(MHz) old
*
* 2^32 * PTPClk(MHz) 2^32 * PTPClk(MHz) 2^32 * PTPClk(MHz)
* new = ———————————————————— = —————————————————————————— = ———————————————————————————————————— =
* SysClk(MHz) - var Sysclk * ppb 2^32 * PTPClk(MHz) ( ppb )
* SysClk - ——————————————— ———————————————————— - (1 - ——————)
* 10^9 old ( 10^9 )
*
* old old * 10^9
* = ————————————— = —————————————
* ppb 10^9 - ppb
* 1 - ——————
* 10^9
*/
static uint32_t addend_base = 0;
if (addend_base == 0) {
addend_base = emac_ll_get_ts_addend_val(hal->ptp_regs);
}
if (adj_ppb > 5120000) {
adj_ppb = 5120000;
}
if (adj_ppb < -5120000) {
adj_ppb = -5120000;
}
/* calculate the rate by which you want to speed up or slow down the system time increments */
int64_t addend_new = (int64_t)addend_base * 1000000000ll;
addend_new /= 1000000000ll - adj_ppb;
emac_ll_set_ts_addend_val(hal->ptp_regs, addend_new);
emac_ll_ts_addend_do_update(hal->ptp_regs);
return ESP_OK;
}
esp_err_t emac_hal_adj_freq_factor(emac_hal_context_t *hal, double scale_factor)
{
if (emac_ll_get_ts_update_method(hal->ptp_regs) != ETH_PTP_UPDATE_METHOD_FINE ||
!emac_ll_is_ts_addend_update_done(hal->ptp_regs)) {
return ESP_ERR_INVALID_STATE;
}
uint32_t addend_new = (emac_ll_get_ts_addend_val(hal->ptp_regs) * scale_factor);
emac_ll_set_ts_addend_val(hal->ptp_regs, addend_new);
emac_ll_ts_addend_do_update(hal->ptp_regs);
return ESP_OK;
}
esp_err_t emac_hal_ptp_time_add(emac_hal_context_t *hal, uint32_t off_sec, uint32_t off_nsec, bool sign)
{
emac_ll_set_ts_update_second_val(hal->ptp_regs, off_sec);
emac_ll_set_ts_update_sub_second_val(hal->ptp_regs, nanosecond2subsecond(hal, off_nsec));
if (sign) {
emac_ll_ts_update_time_add(hal->ptp_regs);
} else {
emac_ll_ts_update_time_sub(hal->ptp_regs);
}
if (!emac_ll_is_ts_update_time_done(hal->ptp_regs)) {
return ESP_ERR_INVALID_STATE;
}
emac_ll_ts_update_time_do(hal->ptp_regs);
return ESP_OK;
}
esp_err_t emac_hal_ptp_set_sys_time(emac_hal_context_t *hal, uint32_t seconds, uint32_t nano_seconds)
{
emac_ll_set_ts_update_second_val(hal->ptp_regs, seconds);
emac_ll_set_ts_update_sub_second_val(hal->ptp_regs, nanosecond2subsecond(hal, nano_seconds));
if (!emac_ll_is_ts_init_done(hal->ptp_regs)) {
return ESP_ERR_INVALID_STATE;
}
emac_ll_ts_init_do(hal->ptp_regs);
return ESP_OK;
}
esp_err_t emac_hal_ptp_get_sys_time(emac_hal_context_t *hal, uint32_t *seconds, uint32_t *nano_seconds)
{
if (seconds == NULL || nano_seconds == NULL) {
return ESP_ERR_INVALID_ARG;
}
*seconds = emac_ll_get_ts_seconds_val(hal->ptp_regs);
*nano_seconds = subsecond2nanosecond(hal, emac_ll_get_ts_sub_seconds_val(hal->ptp_regs));
return ESP_OK;
}
esp_err_t emac_hal_ptp_set_target_time(emac_hal_context_t *hal, uint32_t seconds, uint32_t nano_seconds)
{
emac_ll_set_ts_target_second_val(hal->ptp_regs, seconds);
emac_ll_set_ts_target_sub_second_val(hal->ptp_regs, nanosecond2subsecond(hal, nano_seconds));
/* Enable the PTP Time Stamp interrupt trigger */
emac_ll_ts_target_int_trig_enable(hal->ptp_regs);
return ESP_OK;
}
#endif // SOC_EMAC_IEEE1588V2_SUPPORTED
void emac_hal_start(emac_hal_context_t *hal)
{
/* Enable Ethernet MAC and DMA Interrupt */
emac_ll_enable_corresponding_intr(hal->dma_regs, EMAC_LL_CONFIG_ENABLE_INTR_MASK);
/* Clear all pending interrupts */
emac_ll_clear_all_pending_intr(hal->dma_regs);
/* Enable transmit state machine of the MAC for transmission on the MII */
emac_ll_transmit_enable(hal->mac_regs, true);
/* Start DMA transmission */
/* Note that the EMAC Databook states the DMA could be started prior enabling
the MAC transmitter. However, it turned out that such order may cause the MAC
transmitter hangs */
emac_ll_start_stop_dma_transmit(hal->dma_regs, true);
/* Start DMA reception */
emac_ll_start_stop_dma_receive(hal->dma_regs, true);
/* Enable receive state machine of the MAC for reception from the MII */
emac_ll_receive_enable(hal->mac_regs, true);
}
esp_err_t emac_hal_stop(emac_hal_context_t *hal)
{
/* Stop DMA transmission */
emac_ll_start_stop_dma_transmit(hal->dma_regs, false);
if (emac_ll_transmit_frame_ctrl_status(hal->mac_regs) != 0x0) {
/* Previous transmit in progress */
return ESP_ERR_INVALID_STATE;
}
/* Disable transmit state machine of the MAC for transmission on the MII */
emac_ll_receive_enable(hal->mac_regs, false);
/* Disable receive state machine of the MAC for reception from the MII */
emac_ll_transmit_enable(hal->mac_regs, false);
if (emac_ll_receive_read_ctrl_state(hal->mac_regs) != 0x0) {
/* Previous receive copy in progress */
return ESP_ERR_INVALID_STATE;
}
/* Stop DMA reception */
emac_ll_start_stop_dma_receive(hal->dma_regs, false);
/* Flush Transmit FIFO */
emac_hal_flush_trans_fifo(hal);
/* Disable Ethernet MAC and DMA Interrupt */
emac_ll_disable_all_intr(hal->dma_regs);
return ESP_OK;
}