esp-idf/components/sdmmc/sdmmc_sd.c

749 lines
26 KiB
C

/*
* Copyright (c) 2006 Uwe Stuehler <uwe@openbsd.org>
* Adaptations to ESP-IDF Copyright (c) 2016-2024 Espressif Systems (Shanghai) PTE LTD
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <inttypes.h>
#include "esp_check.h"
#include "esp_timer.h"
#include "esp_cache.h"
#include "esp_private/sdmmc_common.h"
static const char* TAG = "sdmmc_sd";
esp_err_t sdmmc_init_sd_if_cond(sdmmc_card_t* card)
{
/* SEND_IF_COND (CMD8) command is used to identify SDHC/SDXC cards.
* SD v1 and non-SD cards will not respond to this command.
*/
uint32_t host_ocr = get_host_ocr(card->host.io_voltage);
esp_err_t err = sdmmc_send_cmd_send_if_cond(card, host_ocr);
if (err == ESP_OK) {
ESP_LOGD(TAG, "SDHC/SDXC card");
host_ocr |= SD_OCR_SDHC_CAP;
} else if (err == ESP_ERR_TIMEOUT) {
ESP_LOGD(TAG, "CMD8 timeout; not an SD v2.00 card");
} else if (host_is_spi(card) && err == ESP_ERR_NOT_SUPPORTED) {
ESP_LOGD(TAG, "CMD8 rejected; not an SD v2.00 card");
} else {
ESP_LOGE(TAG, "%s: send_if_cond (1) returned 0x%x", __func__, err);
return err;
}
card->ocr = host_ocr;
return ESP_OK;
}
esp_err_t sdmmc_init_sd_blocklen(sdmmc_card_t* card)
{
/* SDSC cards support configurable data block lengths.
* We don't use this feature and set the block length to 512 bytes,
* same as the block length for SDHC cards.
*/
if ((card->ocr & SD_OCR_SDHC_CAP) == 0) {
esp_err_t err = sdmmc_send_cmd_set_blocklen(card, &card->csd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: set_blocklen returned 0x%x", __func__, err);
return err;
}
}
return ESP_OK;
}
esp_err_t sdmmc_init_sd_scr(sdmmc_card_t* card)
{
esp_err_t err;
/* Get the contents of SCR register: bus width and the version of SD spec
* supported by the card.
* In SD mode, this is the first command which uses D0 line. Errors at
* this step usually indicate connection issue or lack of pull-up resistor.
*/
err = sdmmc_send_cmd_send_scr(card, &card->scr);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_scr (1) returned 0x%x", __func__, err);
return err;
}
if ((card->scr.bus_width & SCR_SD_BUS_WIDTHS_4BIT)
&& (card->host.flags & SDMMC_HOST_FLAG_4BIT)) {
card->log_bus_width = 2;
} else {
card->log_bus_width = 0;
}
return ESP_OK;
}
esp_err_t sdmmc_init_sd_ssr(sdmmc_card_t* card)
{
esp_err_t err = ESP_OK;
/* Get the contents of SSR register: SD additional information
* ACMD13 to read 512byte SD status information
*/
uint32_t* sd_ssr = NULL;
size_t actual_size = 0;
sd_ssr = heap_caps_calloc(1, SD_SSR_SIZE, MALLOC_CAP_DMA);
if (!sd_ssr) {
ESP_LOGE(TAG, "%s: not enough mem, err=0x%x", __func__, ESP_ERR_NO_MEM);
return ESP_ERR_NO_MEM;
}
actual_size = heap_caps_get_allocated_size(sd_ssr);
sdmmc_command_t cmd = {
.data = sd_ssr,
.datalen = SD_SSR_SIZE,
.buflen = actual_size,
.blklen = SD_SSR_SIZE,
.opcode = SD_APP_SD_STATUS,
.arg = 0,
.flags = SCF_CMD_ADTC | SCF_RSP_R1 | SCF_CMD_READ
};
// read SD status register
err = sdmmc_send_app_cmd(card, &cmd);
if (err != ESP_OK) {
free(sd_ssr);
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
err = sdmmc_decode_ssr(sd_ssr, &card->ssr);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: error sdmmc_decode_ssr returned 0x%x", __func__, err);
}
free(sd_ssr);
return err;
}
esp_err_t sdmmc_init_sd_bus_width(sdmmc_card_t* card)
{
int width = 1;
if (card->log_bus_width == 2) {
width = 4;
} else if (card->log_bus_width == 3) {
width = 8;
}
esp_err_t err = sdmmc_send_cmd_set_bus_width(card, width);
if (err != ESP_OK) {
ESP_LOGE(TAG, "set_bus_width failed (0x%x)", err);
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_init_sd_wait_data_ready(sdmmc_card_t* card)
{
/* Wait for the card to be ready for data transfers */
uint32_t status = 0;
uint32_t count = 0;
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_INIT_WAIT_DATA_READY_TIMEOUT_US) {
ESP_LOGE(TAG, "init wait data ready - timeout");
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
esp_err_t err = sdmmc_send_cmd_send_status(card, &status);
if (err != ESP_OK) {
return err;
}
if (++count % 16 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%" PRIu32 ")", count);
}
}
return ESP_OK;
}
esp_err_t sdmmc_send_cmd_switch_func(sdmmc_card_t* card,
uint32_t mode, uint32_t group, uint32_t function,
sdmmc_switch_func_rsp_t* resp)
{
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
return ESP_ERR_NOT_SUPPORTED;
}
if (group == 0 ||
group > SD_SFUNC_GROUP_MAX ||
function > SD_SFUNC_FUNC_MAX) {
return ESP_ERR_INVALID_ARG;
}
if (mode > 1) {
return ESP_ERR_INVALID_ARG;
}
uint32_t group_shift = (group - 1) << 2;
/* all functions which should not be affected are set to 0xf (no change) */
uint32_t other_func_mask = (0x00ffffff & ~(0xf << group_shift));
uint32_t func_val = (function << group_shift) | other_func_mask;
size_t datalen = sizeof(sdmmc_switch_func_rsp_t);
sdmmc_command_t cmd = {
.opcode = MMC_SWITCH,
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.blklen = sizeof(sdmmc_switch_func_rsp_t),
.data = resp->data,
.datalen = datalen,
.buflen = datalen,
.arg = (!!mode << 31) | func_val
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, err);
return err;
}
sdmmc_flip_byte_order(resp->data, sizeof(sdmmc_switch_func_rsp_t));
uint32_t resp_ver = SD_SFUNC_VER(resp->data);
if (resp_ver == 0) {
/* busy response is never sent */
} else if (resp_ver == 1) {
if (SD_SFUNC_BUSY(resp->data, group) & (1 << function)) {
ESP_LOGD(TAG, "%s: response indicates function %" PRIu32 ":%" PRIu32 " is busy",
__func__, group, function);
return ESP_ERR_INVALID_STATE;
}
} else {
ESP_LOGD(TAG, "%s: got an invalid version of SWITCH_FUNC response: 0x%02" PRIx32,
__func__, resp_ver);
return ESP_ERR_INVALID_RESPONSE;
}
return ESP_OK;
}
esp_err_t sdmmc_enter_higher_speed_mode(sdmmc_card_t* card)
{
/* This will determine if the card supports SWITCH_FUNC command,
* and high speed mode. If the cards supports both, this will enable
* high speed mode at the card side.
*/
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
return ESP_ERR_NOT_SUPPORTED;
}
sdmmc_switch_func_rsp_t *response = NULL;
esp_err_t err = ESP_FAIL;
response = heap_caps_malloc(sizeof(*response), MALLOC_CAP_DMA);
if (!response) {
ESP_LOGE(TAG, "%s: not enough mem, err=0x%x", __func__, ESP_ERR_NO_MEM);
return ESP_ERR_NO_MEM;
}
err = sdmmc_send_cmd_switch_func(card, 0, SD_ACCESS_MODE, 0, response);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (1) returned 0x%x", __func__, err);
goto out;
}
uint32_t supported_mask = SD_SFUNC_SUPPORTED(response->data, 1);
ESP_LOGV(TAG, "%s: access mode supported_mask: 0x%"PRIx32, __func__, supported_mask);
if (((card->host.flags & SDMMC_HOST_FLAG_DDR) != 0) && (card->is_uhs1 == 1)) {
//UHS-I DDR50
ESP_LOGV(TAG, "%s: to switch to DDR50", __func__);
if ((supported_mask & BIT(SD_ACCESS_MODE_DDR50)) == 0) {
err = ESP_ERR_NOT_SUPPORTED;
goto out;
}
err = sdmmc_send_cmd_switch_func(card, 1, SD_ACCESS_MODE, SD_ACCESS_MODE_DDR50, response);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (2) returned 0x%x", __func__, err);
goto out;
}
card->is_ddr = 1;
err = (*card->host.set_bus_ddr_mode)(card->host.slot, true);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: failed to switch bus to DDR mode (0x%x)", __func__, err);
return err;
}
} else if (card->host.max_freq_khz == SDMMC_FREQ_SDR104) {
//UHS-I SDR104
ESP_LOGV(TAG, "%s: to switch to SDR104", __func__);
if ((supported_mask & BIT(SD_ACCESS_MODE_SDR104)) == 0) {
err = ESP_ERR_NOT_SUPPORTED;
goto out;
}
err = sdmmc_send_cmd_switch_func(card, 1, SD_ACCESS_MODE, SD_ACCESS_MODE_SDR104, response);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (2) returned 0x%x", __func__, err);
goto out;
}
} else if (card->host.max_freq_khz == SDMMC_FREQ_SDR50) {
//UHS-I SDR50
ESP_LOGV(TAG, "%s: to switch to SDR50", __func__);
if ((supported_mask & BIT(SD_ACCESS_MODE_SDR50)) == 0) {
err = ESP_ERR_NOT_SUPPORTED;
goto out;
}
err = sdmmc_send_cmd_switch_func(card, 1, SD_ACCESS_MODE, SD_ACCESS_MODE_SDR50, response);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (2) returned 0x%x", __func__, err);
goto out;
}
} else {
ESP_LOGV(TAG, "%s: to switch to SDR25", __func__);
if ((supported_mask & BIT(SD_ACCESS_MODE_SDR25)) == 0) {
err = ESP_ERR_NOT_SUPPORTED;
goto out;
}
err = sdmmc_send_cmd_switch_func(card, 1, SD_ACCESS_MODE, SD_ACCESS_MODE_SDR25, response);
if (err != ESP_OK) {
ESP_LOGD(TAG, "%s: sdmmc_send_cmd_switch_func (2) returned 0x%x", __func__, err);
goto out;
}
}
out:
free(response);
return err;
}
static const uint8_t s_tuning_block_pattern[] = {
0xff, 0x0f, 0xff, 0x00, 0xff, 0xcc, 0xc3, 0xcc,
0xc3, 0x3c, 0xcc, 0xff, 0xfe, 0xff, 0xfe, 0xef,
0xff, 0xdf, 0xff, 0xdd, 0xff, 0xfb, 0xff, 0xfb,
0xbf, 0xff, 0x7f, 0xff, 0x77, 0xf7, 0xbd, 0xef,
0xff, 0xf0, 0xff, 0xf0, 0x0f, 0xfc, 0xcc, 0x3c,
0xcc, 0x33, 0xcc, 0xcf, 0xff, 0xef, 0xff, 0xee,
0xff, 0xfd, 0xff, 0xfd, 0xdf, 0xff, 0xbf, 0xff,
0xbb, 0xff, 0xf7, 0xff, 0xf7, 0x7f, 0x7b, 0xde,
};
/**
* Find consecutive successful sampling points.
* e.g. array: {1, 1, 0, 0, 1, 1, 1, 0}
* out_length: 3
* outout_end_index: 6
*/
static void find_max_consecutive_success_points(int *array, size_t size, size_t *out_length, uint32_t *out_end_index)
{
uint32_t max = 0;
uint32_t match_num = 0;
uint32_t i = 0;
uint32_t end = 0;
while (i < size) {
if (array[i] == 1) {
match_num++;
} else {
if (match_num > max) {
max = match_num;
end = i - 1;
}
match_num = 0;
}
i++;
}
*out_length = match_num > max ? match_num : max;
*out_end_index = match_num == size ? size : end;
}
static esp_err_t read_tuning_block(sdmmc_card_t *card)
{
esp_err_t ret = ESP_FAIL;
size_t tuning_block_size = sizeof(s_tuning_block_pattern);
ESP_LOGV(TAG, "tuning_block_size: %zu", tuning_block_size);
uint8_t *databuf = NULL;
databuf = heap_caps_calloc(1, tuning_block_size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL);
ESP_RETURN_ON_FALSE(databuf, ESP_ERR_NO_MEM, TAG, "no mem for tuning block databuf");
sdmmc_command_t cmd = {
.opcode = MMC_SEND_TUNING_BLOCK,
.flags = SCF_CMD_ADTC | SCF_CMD_READ | SCF_RSP_R1,
.blklen = tuning_block_size,
.data = (void *) databuf,
.datalen = 1 * tuning_block_size,
.buflen = tuning_block_size,
};
ret = sdmmc_send_cmd(card, &cmd);
if (ret != ESP_OK) {
ESP_LOGW(TAG, "%s: sdmmc_send_cmd returned 0x%x", __func__, ret);
return ret;
}
uint32_t status = 0;
size_t count = 0;
int64_t yield_delay_us = 100 * 1000; // initially 100ms
int64_t t0 = esp_timer_get_time();
int64_t t1 = 0;
while (!host_is_spi(card) && !(status & MMC_R1_READY_FOR_DATA)) {
t1 = esp_timer_get_time();
if (t1 - t0 > SDMMC_READY_FOR_DATA_TIMEOUT_US) {
ESP_LOGW(TAG, "read sectors dma - timeout");
return ESP_ERR_TIMEOUT;
}
if (t1 - t0 > yield_delay_us) {
yield_delay_us *= 2;
vTaskDelay(1);
}
ret = sdmmc_send_cmd_send_status(card, &status);
if (ret != ESP_OK) {
ESP_LOGW(TAG, "%s: sdmmc_send_cmd_send_status returned 0x%x", __func__, ret);
return ret;
}
if (++count % 16 == 0) {
ESP_LOGV(TAG, "waiting for card to become ready (%d)", count);
}
}
bool success = false;
if (memcmp(s_tuning_block_pattern, databuf, tuning_block_size) == 0) {
success = true;
}
return success ? ESP_OK : ESP_FAIL;
}
esp_err_t sdmmc_do_timing_tuning(sdmmc_card_t *card)
{
esp_err_t ret = ESP_FAIL;
ESP_RETURN_ON_FALSE(!host_is_spi(card), ESP_ERR_NOT_SUPPORTED, TAG, "sdspi not supported timing tuning");
ESP_RETURN_ON_FALSE(card->host.set_input_delay, ESP_ERR_NOT_SUPPORTED, TAG, "input phase delay feature isn't supported");
int results[SDMMC_DELAY_PHASE_AUTO] = {};
int slot = card->host.slot;
for (int i = SDMMC_DELAY_PHASE_0; i < SDMMC_DELAY_PHASE_AUTO; i++) {
ESP_RETURN_ON_ERROR((*card->host.set_input_delay)(slot, i), TAG, "failed to set input delay");
ret = read_tuning_block(card);
if (ret == ESP_OK) {
results[i] += 1;
}
}
for (int i = 0; i < 4; i++) {
ESP_LOGV(TAG, "results[%d]: %d", i, results[i]);
}
size_t consecutive_len = 0;
uint32_t end = 0;
find_max_consecutive_success_points(results, SDMMC_DELAY_PHASE_AUTO, &consecutive_len, &end);
sdmmc_delay_phase_t proper_delay_phase = SDMMC_DELAY_PHASE_AUTO;
if (consecutive_len == 1) {
proper_delay_phase = end;
} else if (consecutive_len <= SDMMC_DELAY_PHASE_AUTO) {
proper_delay_phase = end / 2;
} else {
assert(false && "exceeds max tuning point");
}
ESP_LOGV(TAG, "%s: proper_delay_phase: %d\n", __func__, proper_delay_phase);
if (proper_delay_phase != SDMMC_DELAY_PHASE_AUTO) {
ESP_RETURN_ON_ERROR((*card->host.set_input_delay)(slot, proper_delay_phase), TAG, "failed to set input delay");
}
return ESP_OK;
}
esp_err_t sdmmc_select_driver_strength(sdmmc_card_t *card, sdmmc_driver_strength_t driver_strength)
{
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
return ESP_ERR_NOT_SUPPORTED;
}
esp_err_t ret = ESP_FAIL;
sdmmc_switch_func_rsp_t *response = NULL;
response = heap_caps_calloc(1, sizeof(*response), MALLOC_CAP_DMA);
ESP_RETURN_ON_FALSE(response, ESP_ERR_NO_MEM, TAG, "no mem for response buf");
ret = sdmmc_send_cmd_switch_func(card, 1, SD_DRIVER_STRENGTH, driver_strength, response);
ESP_GOTO_ON_ERROR(ret, out, TAG, "%s: sdmmc_send_cmd_switch_func (1) returned 0x%x", __func__, ret);
uint32_t supported_mask = SD_SFUNC_SELECTED(response->data, SD_DRIVER_STRENGTH);
ESP_GOTO_ON_FALSE(supported_mask != 0xf, ESP_ERR_NOT_SUPPORTED, out, TAG, "switch group1 result fail");
ESP_LOGV(TAG, "driver strength: supported_mask: 0x%"PRIx32, supported_mask);
ESP_GOTO_ON_FALSE(supported_mask == driver_strength, ESP_ERR_INVALID_ARG, out, TAG, "fail to switch to type 0x%x", driver_strength);
out:
free(response);
return ret;
}
esp_err_t sdmmc_enable_hs_mode_and_check(sdmmc_card_t* card)
{
/* All cards should support at least default speed */
card->max_freq_khz = SDMMC_FREQ_DEFAULT;
if (card->host.max_freq_khz <= card->max_freq_khz) {
/* Host is configured to use low frequency, don't attempt to switch */
card->max_freq_khz = card->host.max_freq_khz;
return ESP_OK;
}
/* Try to enabled HS mode */
esp_err_t err = sdmmc_enter_higher_speed_mode(card);
if (err != ESP_OK) {
return err;
}
/* HS mode has been enabled on the card.
* Read CSD again, it should now indicate that the card supports
* 50MHz clock.
* Since SEND_CSD is allowed only in standby mode, and the card is currently in data transfer
* mode, deselect the card first, then get the CSD, then select the card again. This step is
* not required in SPI mode, since CMD7 (select_card) is not supported.
*/
const bool is_spi = host_is_spi(card);
if (!is_spi) {
err = sdmmc_send_cmd_select_card(card, 0);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: select_card (1) returned 0x%x", __func__, err);
return err;
}
}
err = sdmmc_send_cmd_send_csd(card, &card->csd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_csd returned 0x%x", __func__, err);
return err;
}
if (!is_spi) {
err = sdmmc_send_cmd_select_card(card, card->rca);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: select_card (2) returned 0x%x", __func__, err);
return err;
}
}
ESP_LOGD(TAG, "%s: after enabling HS mode, tr_speed=%d", __func__, card->csd.tr_speed);
card->max_freq_khz = MIN(card->host.max_freq_khz, SDMMC_FREQ_SDR104);
return ESP_OK;
}
static esp_err_t sdmmc_init_sd_uhs1_volt_sw_cb(void* arg, int voltage_mv)
{
sdmmc_card_t* card = (sdmmc_card_t*)arg;
ESP_LOGV(TAG, "%s: Voltage switch callback (%umv)", __func__, voltage_mv);
return sd_pwr_ctrl_set_io_voltage(card->host.pwr_ctrl_handle, voltage_mv);
}
esp_err_t sdmmc_init_sd_uhs1(sdmmc_card_t* card)
{
sdmmc_command_t cmd = {
.opcode = SD_SWITCH_VOLTAGE,
.arg = 0,
.flags = SCF_CMD_AC | SCF_RSP_R1,
.volt_switch_cb = &sdmmc_init_sd_uhs1_volt_sw_cb,
.volt_switch_cb_arg = card
};
esp_err_t err = sdmmc_send_cmd(card, &cmd);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_cmd returned 0x%x", __func__, err);
}
card->is_uhs1 = 1;
return err;
}
esp_err_t sdmmc_select_current_limit(sdmmc_card_t *card, sdmmc_current_limit_t current_limit)
{
if (card->scr.sd_spec < SCR_SD_SPEC_VER_1_10 ||
((card->csd.card_command_class & SD_CSD_CCC_SWITCH) == 0)) {
return ESP_ERR_NOT_SUPPORTED;
}
esp_err_t ret = ESP_FAIL;
sdmmc_switch_func_rsp_t *response = NULL;
response = heap_caps_calloc(1, sizeof(*response), MALLOC_CAP_DMA);
ESP_RETURN_ON_FALSE(response, ESP_ERR_NO_MEM, TAG, "no mem for response buf");
ret = sdmmc_send_cmd_switch_func(card, 1, SD_CURRENT_LIMIT, current_limit, response);
ESP_GOTO_ON_ERROR(ret, out, TAG, "%s: sdmmc_send_cmd_switch_func (1) returned 0x%x", __func__, ret);
uint32_t supported_mask = SD_SFUNC_SELECTED(response->data, SD_CURRENT_LIMIT);
ESP_GOTO_ON_FALSE(supported_mask != 0xf, ESP_ERR_NOT_SUPPORTED, out, TAG, "switch group4 result fail");
ESP_LOGV(TAG, "current limit: supported_mask: 0x%"PRIx32, supported_mask);
ESP_GOTO_ON_FALSE(supported_mask == current_limit, ESP_ERR_INVALID_ARG, out, TAG, "fail to switch to type 0x%x", current_limit);
out:
free(response);
return ret;
}
esp_err_t sdmmc_check_scr(sdmmc_card_t* card)
{
/* If frequency switch has been performed, read SCR register one more time
* and compare the result with the previous one. Use this simple check as
* an indicator of potential signal integrity issues.
*/
sdmmc_scr_t scr_tmp = { 0 };
esp_err_t err = sdmmc_send_cmd_send_scr(card, &scr_tmp);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: send_scr returned 0x%x", __func__, err);
return err;
}
if (memcmp(&card->scr, &scr_tmp, sizeof(scr_tmp)) != 0) {
ESP_LOGE(TAG, "got corrupted data after increasing clock frequency");
return ESP_ERR_INVALID_RESPONSE;
}
return ESP_OK;
}
esp_err_t sdmmc_init_spi_crc(sdmmc_card_t* card)
{
/* In SD mode, CRC checks of data transfers are mandatory and performed
* by the hardware. In SPI mode, CRC16 of data transfers is optional and
* needs to be enabled.
*/
assert(host_is_spi(card));
esp_err_t err = sdmmc_send_cmd_crc_on_off(card, true);
if (err != ESP_OK) {
ESP_LOGE(TAG, "%s: sdmmc_send_cmd_crc_on_off returned 0x%x", __func__, err);
return err;
}
return ESP_OK;
}
esp_err_t sdmmc_decode_cid(sdmmc_response_t resp, sdmmc_cid_t* out_cid)
{
out_cid->mfg_id = SD_CID_MID(resp);
out_cid->oem_id = SD_CID_OID(resp);
SD_CID_PNM_CPY(resp, out_cid->name);
out_cid->revision = SD_CID_REV(resp);
out_cid->serial = SD_CID_PSN(resp);
out_cid->date = SD_CID_MDT(resp);
return ESP_OK;
}
esp_err_t sdmmc_decode_csd(sdmmc_response_t response, sdmmc_csd_t* out_csd)
{
out_csd->csd_ver = SD_CSD_CSDVER(response);
switch (out_csd->csd_ver) {
case SD_CSD_CSDVER_2_0:
out_csd->capacity = SD_CSD_V2_CAPACITY(response);
out_csd->read_block_len = SD_CSD_V2_BL_LEN;
break;
case SD_CSD_CSDVER_1_0:
out_csd->capacity = SD_CSD_CAPACITY(response);
out_csd->read_block_len = SD_CSD_READ_BL_LEN(response);
break;
default:
ESP_LOGE(TAG, "unknown SD CSD structure version 0x%x", out_csd->csd_ver);
return ESP_ERR_NOT_SUPPORTED;
}
out_csd->card_command_class = SD_CSD_CCC(response);
int read_bl_size = 1 << out_csd->read_block_len;
out_csd->sector_size = MIN(read_bl_size, 512);
if (out_csd->sector_size < read_bl_size) {
out_csd->capacity *= read_bl_size / out_csd->sector_size;
}
int speed = SD_CSD_SPEED(response);
ESP_LOGV(TAG, "%s: speed: 0x%x", __func__, speed);
switch (speed) {
case SD_CSD_SPEED_50_MHZ:
out_csd->tr_speed = 50000000;
break;
case SD_CSD_SPEED_100_MHZ:
out_csd->tr_speed = 100000000;
break;
case SD_CSD_SPEED_200_MHZ:
out_csd->tr_speed = 200000000;
break;
default:
out_csd->tr_speed = 25000000;
break;
}
return ESP_OK;
}
esp_err_t sdmmc_decode_scr(uint32_t *raw_scr, sdmmc_scr_t* out_scr)
{
sdmmc_response_t resp = { 0 };
resp[1] = __builtin_bswap32(raw_scr[0]);
resp[0] = __builtin_bswap32(raw_scr[1]);
int ver = SCR_STRUCTURE(resp);
if (ver != 0) {
return ESP_ERR_NOT_SUPPORTED;
}
out_scr->sd_spec = SCR_SD_SPEC(resp);
out_scr->erase_mem_state = SCR_DATA_STAT_AFTER_ERASE(resp);
out_scr->bus_width = SCR_SD_BUS_WIDTHS(resp);
return ESP_OK;
}
static const uint32_t s_au_to_size_kb[] = {
0, 16, 32, 64,
128, 256, 512, 1024,
2 * 1024, 4 * 1024,
8 * 1024, 12 * 1024,
16 * 1024, 24 * 1024,
32 * 1024, 64 * 1024
};
_Static_assert(sizeof(s_au_to_size_kb)/sizeof(s_au_to_size_kb[0]) == 16, "invalid number of elements in s_au_to_size_kb");
esp_err_t sdmmc_decode_ssr(uint32_t *raw_ssr, sdmmc_ssr_t* out_ssr)
{
uint32_t ssr[(SD_SSR_SIZE/sizeof(uint32_t))] = { 0 };
size_t j = (SD_SSR_SIZE/sizeof(uint32_t) - 1);
for(size_t i = 0; i < (SD_SSR_SIZE/sizeof(uint32_t)); i++) {
ssr[j - i] = __builtin_bswap32(raw_ssr[i]);
}
out_ssr->cur_bus_width = SSR_DAT_BUS_WIDTH(ssr);
out_ssr->discard_support = SSR_DISCARD_SUPPORT(ssr);
out_ssr->fule_support = SSR_FULE_SUPPORT(ssr);
uint32_t au = SSR_AU_SIZE(ssr);
out_ssr->alloc_unit_kb = s_au_to_size_kb[au];
out_ssr->erase_timeout = SSR_ERASE_TIMEOUT(ssr);
out_ssr->erase_size_au = SSR_ERASE_SIZE(ssr);
out_ssr->erase_offset = SSR_ERASE_OFFSET(ssr);
return ESP_OK;
}
uint32_t sdmmc_sd_get_erase_timeout_ms(const sdmmc_card_t* card, int arg, size_t erase_size_kb)
{
if (arg == SDMMC_SD_DISCARD_ARG) {
return SDMMC_SD_DISCARD_TIMEOUT;
} else if (arg == SDMMC_SD_ERASE_ARG) {
if (card->ssr.alloc_unit_kb != 0 &&
card->ssr.erase_size_au != 0 &&
card->ssr.erase_timeout != 0 &&
card->ssr.erase_offset != 0) {
/* Card supports erase timeout estimation. See the erase timeout equation in SD spec. */
uint32_t timeout_sec = card->ssr.erase_offset +
card->ssr.erase_timeout * (erase_size_kb + card->ssr.alloc_unit_kb - 1) /
(card->ssr.erase_size_au * card->ssr.alloc_unit_kb);
ESP_LOGD(TAG, "%s: erase timeout %" PRIu32 " s (erasing %" PRIu32 " kB, ES=%" PRIu32 ", ET=%" PRIu32 ", EO=%" PRIu32 ", AU=%" PRIu32 " kB)",
__func__, timeout_sec, (uint32_t) erase_size_kb, (uint32_t) card->ssr.erase_size_au,
(uint32_t) card->ssr.erase_timeout, (uint32_t) card->ssr.erase_offset, (uint32_t) card->ssr.alloc_unit_kb);
return timeout_sec * 1000;
} else {
uint32_t timeout_ms = SDMMC_SD_DISCARD_TIMEOUT * erase_size_kb / card->csd.sector_size;
timeout_ms = MAX(1000, timeout_ms);
ESP_LOGD(TAG, "%s: erase timeout %" PRIu32 " s (erasing %" PRIu32 " kB, %" PRIu32 " ms per sector)",
__func__, (uint32_t) (timeout_ms / 1000), (uint32_t) erase_size_kb, (uint32_t) SDMMC_SD_DISCARD_TIMEOUT);
return timeout_ms;
}
} else {
assert(false && "unexpected SD erase argument");
return 0;
}
}