This commit fixes an issue with gdbstub, where it would list threads with TIDs 1 to N in qfThreadInfo/qsThreadInfo responses, and then would tell GDB that the current TID is 0 in the qC response. This caused an assertion failure in GDB, because it couldn't find the thread structure corresponding to TID 0: src/gdb/gdb/thread.c:93: internal-error: thread_info* inferior_thread(): Assertion `tp' failed. The issue was caused by the logic of qfThreadInfo/qsThreadInfo. If the "paniced" task index was 1, the code would report it in the response to qfThreadInfo, and then mistakenly skip task with index 0 in qsThreadInfo, due to the use of pre-increment instead of a post-increment. With that issue fixed, GDB assertion doesn't happen anymore. However the code contained a deeper problem, which manifested itself in the fact that GDB would incorrectly show task index 0 as the current task, after the above fix. Previous version of the code assumed that when GDB requests the thread list, it uses the first thread returned by the target as the "default" thread, and subsequently shows the user that the program is stopped in that thread. This assumption was incorrect. In fact, after connecting to a remote target, GDB obtains information about the "default" or "current" thread from two sources: 1. the 'thread' special register indicated in the status response ($T00thread;00000001#ee) 2. if the target has only sent the plain stop response ($T00#ee), GDB would ask for the current thread using a qC packet. With that in mind, it is not necessary to report the paniced task as the first task in qfThreadInfo response. We can simply returns the tasks in their natural order, and then indicate the current task in the qS packet response. However even that change does not fully resolve the issues with task list. The previous version of this code also incorrectly interpreted the meaning of GDB TIDs -1 and 0. When GDB sends an "Hg0" command early in the connection process, it doesn't expect the server to set task 0 as the current task, as the code assumed. Rather, it tells the server to "set any (arbitrary) task as the current one", and the most logical thing to do for the server that is already in "stopped" state is to keep the current task selection. Since TID 0 has a special meaning in GDB remote protocol, gdbstub code is now modified to map task indices (which start from 0) to GDB TIDs. GDB TIDs are arbitrary, and for simplicity we keep the same order and start counting them from 1. The summary of all the above changes is: 1. Use "task index + 1" as the TID reported to GDB 2. Report the tasks in natural order; don't complicate the code to make the paniced task first in the list. 3. Centralize modification of 'current_task_index' and 'regfile' in the new 'set_active_task' function, to improve encapsulation.
Espressif IoT Development Framework
ESP-IDF is the development framework for Espressif SoCs (released after 20161) provided for Windows, Linux and macOS.
Developing With ESP-IDF
Setting Up ESP-IDF
See https://idf.espressif.com/ for links to detailed instructions on how to set up the ESP-IDF depending on chip you use.
Note: Each SoC series and each ESP-IDF release has its own documentation. Please see Section Versions on how to find documentation and how to checkout specific release of ESP-IDF.
Non-GitHub forks
ESP-IDF uses relative locations as its submodules URLs (.gitmodules). So they link to GitHub.
If ESP-IDF is forked to a Git repository which is not on GitHub, you will need to run the script
tools/set-submodules-to-github.sh after git clone.
The script sets absolute URLs for all submodules, allowing git submodule update --init --recursive
to complete.
If cloning ESP-IDF from GitHub, this step is not needed.
Finding a Project
As well as the esp-idf-template project mentioned in Getting Started, ESP-IDF comes with some example projects in the examples directory.
Once you've found the project you want to work with, change to its directory and you can configure and build it.
To start your own project based on an example, copy the example project directory outside of the ESP-IDF directory.
Quick Reference
See the Getting Started guide links above for a detailed setup guide. This is a quick reference for common commands when working with ESP-IDF projects:
Setup Build Environment
(See the Getting Started guide listed above for a full list of required steps with more details.)
- Install host build dependencies mentioned in the Getting Started guide.
- Run the install script to set up the build environment. The options include
install.bat
orinstall.ps1
for Windows, andinstall.sh
orinstall.fish
for Unix shells. - Run the export script on Windows (
export.bat
) or source it on Unix (source export.sh
) in every shell environment before using ESP-IDF.
Configuring the Project
idf.py set-target <chip_name>
sets the target of the project to<chip_name>
. Runidf.py set-target
without any arguments to see a list of supported targets.idf.py menuconfig
opens a text-based configuration menu where you can configure the project.
Compiling the Project
idf.py build
... will compile app, bootloader and generate a partition table based on the config.
Flashing the Project
When the build finishes, it will print a command line to use esptool.py to flash the chip. However you can also do this automatically by running:
idf.py -p PORT flash
Replace PORT with the name of your serial port (like COM3
on Windows, /dev/ttyUSB0
on Linux, or /dev/cu.usbserial-X
on MacOS. If the -p
option is left out, idf.py flash
will try to flash the first available serial port.
This will flash the entire project (app, bootloader and partition table) to a new chip. The settings for serial port flashing can be configured with idf.py menuconfig
.
You don't need to run idf.py build
before running idf.py flash
, idf.py flash
will automatically rebuild anything which needs it.
Viewing Serial Output
The idf.py monitor
target uses the idf_monitor tool to display serial output from Espressif SoCs. idf_monitor also has a range of features to decode crash output and interact with the device. Check the documentation page for details.
Exit the monitor by typing Ctrl-].
To build, flash and monitor output in one pass, you can run:
idf.py flash monitor
Compiling & Flashing Only the App
After the initial flash, you may just want to build and flash just your app, not the bootloader and partition table:
idf.py app
- build just the app.idf.py app-flash
- flash just the app.
idf.py app-flash
will automatically rebuild the app if any source files have changed.
(In normal development there's no downside to reflashing the bootloader and partition table each time, if they haven't changed.)
Erasing Flash
The idf.py flash
target does not erase the entire flash contents. However it is sometimes useful to set the device back to a totally erased state, particularly when making partition table changes or OTA app updates. To erase the entire flash, run idf.py erase_flash
.
This can be combined with other targets, ie idf.py -p PORT erase_flash flash
will erase everything and then re-flash the new app, bootloader and partition table.
Resources
-
Documentation for the latest version: https://docs.espressif.com/projects/esp-idf/. This documentation is built from the docs directory of this repository.
-
The esp32.com forum is a place to ask questions and find community resources.
-
Check the Issues section on github if you find a bug or have a feature request. Please check existing Issues before opening a new one.
-
If you're interested in contributing to ESP-IDF, please check the Contributions Guide.
1: ESP8266 and ESP8285 are not supported in ESP-IDF. See RTOS SDK instead.