207 lines
10 KiB
ReStructuredText
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

.. _i2c-slave-v1:
I2C Slave v1.0
=================
.. warning::
该 I2C 从机驱动程序 v1.0 将在 ESP-IDF v6.0 中删除。我们建议你通过 :ref:`CONFIG_I2C_ENABLE_SLAVE_DRIVER_VERSION_2` 使用 I2C 驱动程序 v2.0。
通过 :cpp:func:`i2c_new_slave_device` 安装 I2C 从机驱动程序后,{IDF_TARGET_NAME} 就可以作为从站与其他 I2C Master 通信了。
安装 I2C 从机设备
~~~~~~~~~~~~~~~~~~~
I2C 从机设备需要 :cpp:type:`i2c_slave_config_t` 指定的配置:
.. list::
- :cpp:member:`i2c_slave_config_t::i2c_port` 设置控制器使用的 I2C 端口。
- :cpp:member:`i2c_slave_config_t::sda_io_num` 设置串行数据总线 (SDA) 的 GPIO 编号。
- :cpp:member:`i2c_slave_config_t::scl_io_num` 设置串行时钟总线 (SCL) 的 GPIO 编号。
- :cpp:member:`i2c_slave_config_t::clk_source` 选择 I2C 总线的时钟源。可用时钟列表见 :cpp:type:`i2c_clock_source_t`。有关不同时钟源对功耗的影响,请参阅 `电源管理 <#power-management>`__
- :cpp:member:`i2c_slave_config_t::send_buf_depth` 设置发送 buffer 的长度。
- :cpp:member:`i2c_slave_config_t::slave_addr` 设置从机地址。
- :cpp:member:`i2c_slave_config_t::intr_priority` 设置中断的优先级。如果设置为 ``0`` ,则驱动程序将使用低或中优先级的中断(优先级可设为 1、2 或 3 中的一个),若未设置,则将使用 :cpp:member:`i2c_slave_config_t::intr_priority` 指示的优先级。请使用数字形式1、2、3不要用位掩码形式(1<<1)、(1<<2)、(1<<3))。请注意,中断优先级一旦设置完成,在调用 :cpp:func:`i2c_del_slave_bus` 之前都无法更改。
- :cpp:member:`i2c_slave_config_t::addr_bit_len`。如果需要从机设备具有 10 位地址,则将该成员变量设为 ``I2C_ADDR_BIT_LEN_10``
:SOC_I2C_SLAVE_CAN_GET_STRETCH_CAUSE: - :cpp:member:`i2c_slave_config_t::stretch_en`。如果要启用从机控制器拉伸功能,请将该成员变量设为 true。有关 I2C 拉伸的工作原理,请参阅 [`TRM <{IDF_TARGET_TRM_EN_URL}#i2c>`__]。
:SOC_I2C_SLAVE_CAN_GET_STRETCH_CAUSE: - :cpp:member:`i2c_slave_config_t::broadcast_en`。如果要启用从机广播,请将该成员变量设为 true。当从机设备接收到来自主机设备的通用调用地址 0x00且后面的读写位为 0 时,无论从机设备自身地址如何,都会响应主机设备。
:SOC_I2C_SLAVE_SUPPORT_I2CRAM_ACCESS: - :cpp:member:`i2c_slave_config_t::access_ram_en`。如果要启用 non-FIFO 模式,请将该成员变量设为 true则 I2C 数据 FIFO 可用作 RAM并将同步打开双地址。
:SOC_I2C_SLAVE_SUPPORT_SLAVE_UNMATCH: - :cpp:member:`i2c_slave_config_t::slave_unmatch_en`。将该成员变量设为 true将启用从机设备不匹配中断。如果主机设备发送的命令地址与从机设备地址不匹配则会触发不匹配中断。
一旦填充好 :cpp:type:`i2c_slave_config_t` 结构体的必要参数,就可调用 :cpp:func:`i2c_new_slave_device` 来分配和初始化 I2C 主机总线。如果函数运行正确,则将返回一个 I2C 总线句柄。若没有可用的 I2C 端口,此函数将返回 :c:macro:`ESP_ERR_NOT_FOUND` 错误。
.. code:: c
i2c_slave_config_t i2c_slv_config = {
.addr_bit_len = I2C_ADDR_BIT_LEN_7,
.clk_source = I2C_CLK_SRC_DEFAULT,
.i2c_port = TEST_I2C_PORT,
.send_buf_depth = 256,
.scl_io_num = I2C_SLAVE_SCL_IO,
.sda_io_num = I2C_SLAVE_SDA_IO,
.slave_addr = 0x58,
};
i2c_slave_dev_handle_t slave_handle;
ESP_ERROR_CHECK(i2c_new_slave_device(&i2c_slv_config, &slave_handle));
卸载 I2C 从机设备
~~~~~~~~~~~~~~~~~~
如果不再需要之前安装的 I2C 总线,建议调用 :cpp:func:`i2c_del_slave_device` 来回收资源,以释放底层硬件。
I2C 从机控制器
^^^^^^^^^^^^^^
通过调用 :cpp:func:`i2c_new_slave_device` 安装好 I2C 从机驱动程序后,{IDF_TARGET_NAME} 就可以作为从机与其他 I2C 主机进行通信了。
I2C 从机写入
~~~~~~~~~~~~~
I2C 从机的发送 buffer 可作为 FIFO 来存储要发送的数据。在主机请求这些数据前,它们会一直排队。可通过调用 :cpp:func:`i2c_slave_transmit` 来传输数据。
将数据写入 FIFO 的简单示例:
.. code:: c
uint8_t *data_wr = (uint8_t *) malloc(DATA_LENGTH);
i2c_slave_config_t i2c_slv_config = {
.addr_bit_len = I2C_ADDR_BIT_LEN_7, // 7 位地址
.clk_source = I2C_CLK_SRC_DEFAULT, // 设置时钟源
.i2c_port = TEST_I2C_PORT, // 设置 I2C 端口编号
.send_buf_depth = 256, // 设置 TX buffer 长度
.scl_io_num = I2C_SLAVE_SCL_IO, // SCL 管脚编号
.sda_io_num = I2C_SLAVE_SDA_IO, // SDA 管脚编号
.slave_addr = 0x58, // 从机地址
};
i2c_slave_dev_handle_t slave_handle;
ESP_ERROR_CHECK(i2c_new_slave_device(&i2c_slv_config, &slave_handle));
for (int i = 0; i < DATA_LENGTH; i++) {
data_wr[i] = i;
}
ESP_ERROR_CHECK(i2c_slave_transmit(slave_handle, data_wr, DATA_LENGTH, 10000));
I2C 从机读取
~~~~~~~~~~~~~
每当主机将数据写入从机,从机都会自动将数据存储在接收 buffer 中,从而使从机应用程序能自由调用 :cpp:func:`i2c_slave_receive`:cpp:func:`i2c_slave_receive` 为非阻塞接口,因此要想知道接收是否完成,需注册回调函数 :cpp:func:`i2c_slave_register_event_callbacks`
.. code:: c
static IRAM_ATTR bool i2c_slave_rx_done_callback(i2c_slave_dev_handle_t channel, const i2c_slave_rx_done_event_data_t *edata, void *user_data)
{
BaseType_t high_task_wakeup = pdFALSE;
QueueHandle_t receive_queue = (QueueHandle_t)user_data;
xQueueSendFromISR(receive_queue, edata, &high_task_wakeup);
return high_task_wakeup == pdTRUE;
}
uint8_t *data_rd = (uint8_t *) malloc(DATA_LENGTH);
uint32_t size_rd = 0;
i2c_slave_config_t i2c_slv_config = {
.addr_bit_len = I2C_ADDR_BIT_LEN_7,
.clk_source = I2C_CLK_SRC_DEFAULT,
.i2c_port = TEST_I2C_PORT,
.send_buf_depth = 256,
.scl_io_num = I2C_SLAVE_SCL_IO,
.sda_io_num = I2C_SLAVE_SDA_IO,
.slave_addr = 0x58,
};
i2c_slave_dev_handle_t slave_handle;
ESP_ERROR_CHECK(i2c_new_slave_device(&i2c_slv_config, &slave_handle));
s_receive_queue = xQueueCreate(1, sizeof(i2c_slave_rx_done_event_data_t));
i2c_slave_event_callbacks_t cbs = {
.on_recv_done = i2c_slave_rx_done_callback,
};
ESP_ERROR_CHECK(i2c_slave_register_event_callbacks(slave_handle, &cbs, s_receive_queue));
i2c_slave_rx_done_event_data_t rx_data;
ESP_ERROR_CHECK(i2c_slave_receive(slave_handle, data_rd, DATA_LENGTH));
xQueueReceive(s_receive_queue, &rx_data, pdMS_TO_TICKS(10000));
// 接收完成。
.. only:: SOC_I2C_SLAVE_SUPPORT_I2CRAM_ACCESS
将数据放入 I2C 从机 RAM 中
~~~~~~~~~~~~~~~~~~~~~~~~~~~
如上所述I2C 从机 FIFO 可被用作 RAM即可以通过地址字段直接访问 RAM。例如可参照下图将数据写入第三个 RAM 块。请注意,在进行操作前需要先将 :cpp:member:`i2c_slave_config_t::access_ram_en` 设为 true。
.. figure:: ../../../_static/diagrams/i2c/i2c_slave_write_slave_ram.png
:align: center
:alt: 将数据放入 I2C 从机 RAM 中
将数据放入 I2C 从机 RAM 中
.. code:: c
uint8_t data_rd[DATA_LENGTH_RAM] = {0};
i2c_slave_config_t i2c_slv_config = {
.addr_bit_len = I2C_ADDR_BIT_LEN_7,
.clk_source = I2C_CLK_SRC_DEFAULT,
.i2c_port = TEST_I2C_PORT,
.send_buf_depth = 256,
.scl_io_num = I2C_SLAVE_SCL_IO,
.sda_io_num = I2C_SLAVE_SDA_IO,
.slave_addr = 0x58,
.flags.access_ram_en = true,
};
// 主机将数据写入从机。
i2c_slave_dev_handle_t slave_handle;
ESP_ERROR_CHECK(i2c_new_slave_device(&i2c_slv_config, &slave_handle));
ESP_ERROR_CHECK(i2c_slave_read_ram(slave_handle, 0x5, data_rd, DATA_LENGTH_RAM));
ESP_ERROR_CHECK(i2c_del_slave_device(slave_handle));
从 I2C 从机 RAM 中获取数据
~~~~~~~~~~~~~~~~~~~~~~~~~~~
数据可被存储在相对从机一定偏移量的 RAM 中,且主机可直接通过 RAM 地址读取这些数据。例如,如果数据被存储在第三个 RAM 块中,则主机可参照下图读取这些数据。请注意,在操作前需要先将 :cpp:member:`i2c_slave_config_t::access_ram_en` 设为 true。
.. figure:: ../../../_static/diagrams/i2c/i2c_slave_read_slave_ram.png
:align: center
:alt: 从 I2C 从机 RAM 中获取数据
从 I2C 从机 RAM 中获取数据
.. code:: c
uint8_t data_wr[DATA_LENGTH_RAM] = {0};
i2c_slave_config_t i2c_slv_config = {
.addr_bit_len = I2C_ADDR_BIT_LEN_7,
.clk_source = I2C_CLK_SRC_DEFAULT,
.i2c_port = TEST_I2C_PORT,
.send_buf_depth = 256,
.scl_io_num = I2C_SLAVE_SCL_IO,
.sda_io_num = I2C_SLAVE_SDA_IO,
.slave_addr = 0x58,
.flags.access_ram_en = true,
};
i2c_slave_dev_handle_t slave_handle;
ESP_ERROR_CHECK(i2c_new_slave_device(&i2c_slv_config, &slave_handle));
ESP_ERROR_CHECK(i2c_slave_write_ram(slave_handle, 0x2, data_wr, DATA_LENGTH_RAM));
ESP_ERROR_CHECK(i2c_del_slave_device(slave_handle));
I2C 从机回调
~~~~~~~~~~~~~
当 I2C 从机总线触发中断时,将生成特定事件并通知 CPU。如果需要在发生这些事件时调用某些函数可通过 :cpp:func:`i2c_slave_register_event_callbacks` 将这些函数挂接到中断服务程序 (ISR) 上。由于注册的回调函数是在中断上下文中被调用的,所以应确保这些函数不会导致延迟(例如,确保仅从函数中调用带有 ``ISR`` 后缀的 FreeRTOS API。回调函数需要返回一个布尔值告诉调用者是否唤醒了高优先级任务。
I2C 从机事件回调函数列表见 :cpp:type:`i2c_slave_event_callbacks_t`
.. list::
- :cpp:member:`i2c_slave_event_callbacks_t::on_recv_done` 可设置用于“接收完成”事件的回调函数。该函数原型在 :cpp:type:`i2c_slave_received_callback_t` 中声明。
:SOC_I2C_SLAVE_CAN_GET_STRETCH_CAUSE: - :cpp:member:`i2c_slave_event_callbacks_t::on_stretch_occur` 可设置用于“时钟拉伸”事件的回调函数。该函数原型在 :cpp:type:`i2c_slave_stretch_callback_t` 中声明。