esp-idf/components/bootloader_support/src/bootloader_random_esp32c6.c
Mahavir Jain f38f77a7fc
fix(rng): avoid clearing PMU_PERIF_I2C_RSTB in random disable API for C6
This configuration bit is required for ADC operation as well and hence
should not be cleared in the RNG API sequence.

Ideally, the ADC driver should take care of initializing this bit but
still the RNG layer change is required because of interleaved API usage
scenario described in following linked issue.

Closes https://github.com/espressif/esp-idf/issues/14124
Closes https://github.com/espressif/esp-idf/issues/14280
2024-08-12 08:26:05 +05:30

97 lines
4.0 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* SPDX-FileCopyrightText: 2022-2023 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "sdkconfig.h"
#include "bootloader_random.h"
#include "soc/soc.h"
#include "soc/pcr_reg.h"
#include "soc/apb_saradc_reg.h"
#include "soc/pmu_reg.h"
#include "hal/regi2c_ctrl.h"
#include "soc/regi2c_saradc.h"
#include "esp_log.h"
static const uint32_t SAR2_CHANNEL = 9;
static const uint32_t PATTERN_BIT_WIDTH = 6;
static const uint32_t SAR1_ATTEN = 1;
static const uint32_t SAR2_ATTEN = 1;
void bootloader_random_enable(void)
{
// pull SAR ADC out of reset
REG_SET_BIT(PCR_SARADC_CONF_REG, PCR_SARADC_RST_EN);
REG_CLR_BIT(PCR_SARADC_CONF_REG, PCR_SARADC_RST_EN);
// enable SAR ADC APB clock
REG_SET_BIT(PCR_SARADC_CONF_REG, PCR_SARADC_REG_CLK_EN);
// enable ADC_CTRL_CLK (SAR ADC function clock)
REG_SET_BIT(PCR_SARADC_CLKM_CONF_REG, PCR_SARADC_CLKM_EN);
// select XTAL clock (40 MHz) source for ADC_CTRL_CLK
REG_SET_FIELD(PCR_SARADC_CLKM_CONF_REG, PCR_SARADC_CLKM_SEL, 0);
// set the clock divider for ADC_CTRL_CLK to default value (in case it has been changed)
REG_SET_FIELD(PCR_SARADC_CLKM_CONF_REG, PCR_SARADC_CLKM_DIV_NUM, 0);
// some ADC sensor registers are in power group PERIF_I2C and need to be enabled via PMU
SET_PERI_REG_MASK(PMU_RF_PWC_REG, PMU_PERIF_I2C_RSTB);
SET_PERI_REG_MASK(PMU_RF_PWC_REG, PMU_XPD_PERIF_I2C);
// Config ADC circuit (Analog part) with I2C(HOST ID 0x69) and chose internal voltage as sampling source
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR , 2);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR , 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 1);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, 0x08);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, 0x66);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, 0x08);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, 0x66);
// create patterns and set them in pattern table
uint32_t pattern_one = (SAR2_CHANNEL << 2) | SAR2_ATTEN; // we want channel 9 with max attenuation
uint32_t pattern_two = (SAR2_CHANNEL << 2) | SAR1_ATTEN; // we want channel 9 with max attenuation
uint32_t pattern_table = 0 | (pattern_two << 3 * PATTERN_BIT_WIDTH) | pattern_one << 2 * PATTERN_BIT_WIDTH;
REG_WRITE(APB_SARADC_SAR_PATT_TAB1_REG, pattern_table);
// set pattern length to 2 (APB_SARADC_SAR_PATT_LEN counts from 0)
REG_SET_FIELD(APB_SARADC_CTRL_REG, APB_SARADC_SARADC_SAR_PATT_LEN, 1);
// Same as in C3
REG_SET_FIELD(APB_SARADC_CTRL_REG, APB_SARADC_SARADC_SAR_CLK_DIV, 15);
// set timer expiry (timer is ADC_CTRL_CLK)
REG_SET_FIELD(APB_SARADC_CTRL2_REG, APB_SARADC_SARADC_TIMER_TARGET, 200);
// enable timer
REG_SET_BIT(APB_SARADC_CTRL2_REG, APB_SARADC_SARADC_TIMER_EN);
}
void bootloader_random_disable(void)
{
// disable timer
REG_CLR_BIT(APB_SARADC_CTRL2_REG, APB_SARADC_SARADC_TIMER_EN);
// Write reset value of this register
REG_WRITE(APB_SARADC_SAR_PATT_TAB1_REG, 0xFFFFFF);
// Revert ADC I2C configuration and initial voltage source setting
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_HIGH_ADDR, 0x60);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR2_INITIAL_CODE_LOW_ADDR, 0x0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_HIGH_ADDR, 0x60);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_INITIAL_CODE_LOW_ADDR, 0x0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_DTEST_RTC_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC_ENT_RTC_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC1_ENCAL_REF_ADDR, 0);
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SARADC2_ENCAL_REF_ADDR, 0);
// disable ADC_CTRL_CLK (SAR ADC function clock)
REG_WRITE(PCR_SARADC_CLKM_CONF_REG, 0x00404000);
// Set PCR_SARADC_CONF_REG to initial state
REG_WRITE(PCR_SARADC_CONF_REG, 0x5);
}