914 lines
32 KiB
C

/*
* SPDX-FileCopyrightText: 2023-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "soc/adc_periph.h"
#include "soc/adc_struct.h"
#include "soc/clk_tree_defs.h"
#include "soc/hp_sys_clkrst_struct.h"
#include "soc/lpperi_struct.h"
#include "soc/regi2c_saradc.h"
#include "hal/misc.h"
#include "hal/assert.h"
#include "hal/adc_types.h"
#include "hal/adc_types_private.h"
#include "hal/regi2c_ctrl.h"
#include "hal/sar_ctrl_ll.h"
#include "soc/lp_adc_struct.h"
#ifdef __cplusplus
extern "C" {
#endif
#define ADC_LL_EVENT_ADC1_ONESHOT_DONE BIT(31)
#define ADC_LL_EVENT_ADC2_ONESHOT_DONE BIT(30)
#define LP_ADC_FORCE_XPD_SAR_FSM 0 // Use FSM to control power down
#define LP_ADC_FORCE_XPD_SAR_PD 2 // Force power down
#define LP_ADC_FORCE_XPD_SAR_PU 3 // Force power up
/*---------------------------------------------------------------
Oneshot
---------------------------------------------------------------*/
#define ADC_LL_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_SAR_CLK_DIV_DEFAULT(PERIPH_NUM) (1)
#define ADC_LL_DELAY_CYCLE_AFTER_DONE_SIGNAL (0)
/*---------------------------------------------------------------
DMA
---------------------------------------------------------------*/
#define ADC_LL_DIGI_DATA_INVERT_DEFAULT(PERIPH_NUM) (0)
#define ADC_LL_FSM_RSTB_WAIT_DEFAULT (8)
#define ADC_LL_FSM_START_WAIT_DEFAULT (5)
#define ADC_LL_FSM_STANDBY_WAIT_DEFAULT (100)
#define ADC_LL_SAMPLE_CYCLE_DEFAULT (2)
#define ADC_LL_DIGI_SAR_CLK_DIV_DEFAULT (1)
#define ADC_LL_CLKM_DIV_NUM_DEFAULT 15
#define ADC_LL_CLKM_DIV_B_DEFAULT 1
#define ADC_LL_CLKM_DIV_A_DEFAULT 0
#define ADC_LL_DEFAULT_CONV_LIMIT_EN 0
#define ADC_LL_DEFAULT_CONV_LIMIT_NUM 10
#define ADC_LL_POWER_MANAGE_SUPPORTED 1 //ESP32P4 supported to manage power mode
/*---------------------------------------------------------------
PWDET (Power Detect)
---------------------------------------------------------------*/
#define ADC_LL_PWDET_CCT_DEFAULT (4)
typedef enum {
ADC_LL_CTRL_RTC = 0, ///< For ADC1 and ADC2. Select RTC controller.
ADC_LL_CTRL_ULP = 1, ///< For ADC1 and ADC2. Select ULP controller.
ADC_LL_CTRL_DIG = 2, ///< For ADC1 and ADC2. Select DIG controller.
ADC_LL_CTRL_PWDET = 3, ///< For ADC2. Select PWDET controller.
} adc_ll_controller_t;
typedef enum {
ADC_LL_POWER_BY_FSM = SAR_CTRL_LL_POWER_FSM, /*!< ADC XPD controlled by FSM. Used for polling mode */
ADC_LL_POWER_SW_ON = SAR_CTRL_LL_POWER_ON, /*!< ADC XPD controlled by SW. power on. Used for DMA mode */
ADC_LL_POWER_SW_OFF = SAR_CTRL_LL_POWER_OFF, /*!< ADC XPD controlled by SW. power off. */
} adc_ll_power_t;
/**
* @brief ADC digital controller (DMA mode) work mode.
*
* @note The conversion mode affects the sampling frequency:
* SINGLE_UNIT_1: When the measurement is triggered, only ADC1 is sampled once.
* SINGLE_UNIT_2: When the measurement is triggered, only ADC2 is sampled once.
* BOTH_UNIT : When the measurement is triggered, ADC1 and ADC2 are sampled at the same time.
* ALTER_UNIT : When the measurement is triggered, ADC1 or ADC2 samples alternately.
*/
typedef enum {
ADC_LL_DIGI_CONV_ONLY_ADC1 = 0, // Only use ADC1 for conversion
ADC_LL_DIGI_CONV_ONLY_ADC2 = 1, // Only use ADC2 for conversion
ADC_LL_DIGI_CONV_BOTH_UNIT = 2, // Use Both ADC1 and ADC2 for conversion simultaneously
ADC_LL_DIGI_CONV_ALTER_UNIT = 3 // Use both ADC1 and ADC2 for conversion by turn. e.g. ADC1 -> ADC2 -> ADC1 -> ADC2 .....
} adc_ll_digi_convert_mode_t;
typedef struct {
union {
struct {
uint8_t atten: 2;
uint8_t channel: 3;
uint8_t unit: 1;
uint8_t reserved: 2;
};
uint8_t val;
};
} __attribute__((packed)) adc_ll_digi_pattern_table_t;
/*---------------------------------------------------------------
Digital controller setting
---------------------------------------------------------------*/
/**
* Set adc fsm interval parameter for digital controller. These values are fixed for same platforms.
*
* @param rst_wait cycles between DIG ADC controller reset ADC sensor and start ADC sensor.
* @param start_wait Delay time after open xpd.
* @param standby_wait Delay time to close xpd.
*/
static inline void adc_ll_digi_set_fsm_time(uint32_t rst_wait, uint32_t start_wait, uint32_t standby_wait)
{
// Internal FSM reset wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.fsm_wait, rstb_wait, rst_wait);
// Internal FSM start wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.fsm_wait, xpd_wait, start_wait);
// Internal FSM standby wait time
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.fsm_wait, standby_wait, standby_wait);
}
/**
* Set adc sample cycle for digital controller.
*
* @note Normally, please use default value.
* @param sample_cycle Cycles between DIG ADC controller start ADC sensor and beginning to receive data from sensor.
* Range: 2 ~ 0xFF.
*/
static inline void adc_ll_set_sample_cycle(uint32_t sample_cycle)
{
/* Peripheral reg i2c has powered up in rtc_init, write directly */
REGI2C_WRITE_MASK(I2C_SAR_ADC, ADC_SAR1_SAMPLE_CYCLE_ADDR, sample_cycle);
}
/**
* Set SAR ADC module clock division factor.
* SAR ADC clock divided from digital controller clock.
*
* @param div Division factor.
*/
static inline void adc_ll_digi_set_clk_div(uint32_t div)
{
/* ADC clock divided from digital controller clock clk */
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.ctrl_reg, sar_clk_div, div);
}
/**
* Set adc max conversion number for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param meas_num Max conversion number. Range: 0 ~ 255.
*/
static inline void adc_ll_digi_set_convert_limit_num(uint32_t meas_num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.ctrl2, max_meas_num, meas_num);
}
/**
* Enable max conversion number detection for digital controller.
* If the number of ADC conversion is equal to the maximum, the conversion is stopped.
*
* @param enable true: enable; false: disable
*/
static inline void adc_ll_digi_convert_limit_enable(bool enable)
{
ADC.ctrl2.meas_num_limit = enable;
}
/**
* Set adc conversion mode for digital controller.
*
* @param mode Conversion mode select.
*/
static inline void adc_ll_digi_set_convert_mode(adc_ll_digi_convert_mode_t mode)
{
if (mode == ADC_LL_DIGI_CONV_ONLY_ADC1) {
ADC.ctrl_reg.work_mode = 0;
ADC.ctrl_reg.sar_sel = 0;
} else if (mode == ADC_LL_DIGI_CONV_ONLY_ADC2) {
ADC.ctrl_reg.work_mode = 0;
ADC.ctrl_reg.sar_sel = 1;
} else if (mode == ADC_LL_DIGI_CONV_BOTH_UNIT) {
ADC.ctrl_reg.work_mode = 1;
} else if (mode == ADC_LL_DIGI_CONV_ALTER_UNIT) {
ADC.ctrl_reg.work_mode = 2;
}
ADC.ctrl_reg.data_sar_sel = 1;
}
/**
* Set ADC digital controller clock division factor. The clock divided from `APLL` or `APB` clock.
* Expression: controller_clk = (APLL or APB) / (div_num + div_a / div_b + 1).
*
* @param div_num Division factor. Range: 0 ~ 255.
* @param div_b Division factor. Range: 1 ~ 63.
* @param div_a Division factor. Range: 0 ~ 63.
*/
static inline void adc_ll_digi_controller_clk_div(uint32_t div_num, uint32_t div_b, uint32_t div_a)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(HP_SYS_CLKRST.peri_clk_ctrl23, reg_adc_clk_div_num, div_num);
HP_SYS_CLKRST.peri_clk_ctrl23.reg_adc_clk_div_numerator = div_a;
HP_SYS_CLKRST.peri_clk_ctrl23.reg_adc_clk_div_denominator = div_b;
}
/**
* Enable clock and select clock source for ADC digital controller.
*
* @param clk_src clock source for ADC digital controller.
*/
static inline void adc_ll_digi_clk_sel(adc_continuous_clk_src_t clk_src)
{
switch (clk_src) {
case ADC_DIGI_CLK_SRC_XTAL:
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 0;
break;
case ADC_DIGI_CLK_SRC_RC_FAST:
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 1;
break;
case ADC_DIGI_CLK_SRC_PLL_F80M:
HP_SYS_CLKRST.peri_clk_ctrl22.reg_adc_clk_src_sel = 2;
break;
default:
HAL_ASSERT(false && "unsupported clock");
}
// Enable ADC_CTRL_CLK (i.e. digital domain clock)
ADC.ctrl_reg.sar_clk_gated = 1;
}
/**
* Disable clock for ADC digital controller.
*/
static inline void adc_ll_digi_controller_clk_disable(void)
{
ADC.ctrl_reg.sar_clk_gated = 0;
}
/**
* Reset adc digital controller filter.
*
* @param idx Filter index
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_filter_reset(adc_digi_iir_filter_t idx, adc_unit_t adc_n)
{
(void)adc_n;
ADC.filter_ctrl0.filter_reset = 1;
ADC.filter_ctrl0.filter_reset = 0;
}
/**
* Set adc digital controller filter coeff.
*
* @param idx filter index
* @param adc_n adc unit
* @param channel adc channel
* @param coeff filter coeff
*/
static inline void adc_ll_digi_filter_set_factor(adc_digi_iir_filter_t idx, adc_unit_t adc_n, adc_channel_t channel, adc_digi_iir_filter_coeff_t coeff)
{
uint32_t factor_reg_val = 0;
switch (coeff) {
case ADC_DIGI_IIR_FILTER_COEFF_2:
factor_reg_val = 1;
break;
case ADC_DIGI_IIR_FILTER_COEFF_4:
factor_reg_val = 2;
break;
case ADC_DIGI_IIR_FILTER_COEFF_8:
factor_reg_val = 3;
break;
case ADC_DIGI_IIR_FILTER_COEFF_16:
factor_reg_val = 4;
break;
case ADC_DIGI_IIR_FILTER_COEFF_64:
factor_reg_val = 6;
break;
default:
HAL_ASSERT(false);
}
if (idx == ADC_DIGI_IIR_FILTER_0) {
ADC.filter_ctrl0.filter_channel0 = ((adc_n + 1) << 3) | (channel & 0x7);
ADC.filter_ctrl1.filter_factor0 = factor_reg_val;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
ADC.filter_ctrl0.filter_channel1 = ((adc_n + 1) << 3) | (channel & 0x7);
ADC.filter_ctrl1.filter_factor1 = factor_reg_val;
}
}
/**
* Enable adc digital controller filter.
* Filtering the ADC data to obtain smooth data at higher sampling rates.
*
* @param idx filter index
* @param adc_n ADC unit
* @param enable Enable / Disable
*/
static inline void adc_ll_digi_filter_enable(adc_digi_iir_filter_t idx, adc_unit_t adc_n, bool enable)
{
(void)adc_n;
if (!enable) {
if (idx == ADC_DIGI_IIR_FILTER_0) {
ADC.filter_ctrl0.filter_channel0 = 0xF;
ADC.filter_ctrl1.filter_factor0 = 0;
} else if (idx == ADC_DIGI_IIR_FILTER_1) {
ADC.filter_ctrl0.filter_channel1 = 0xF;
ADC.filter_ctrl1.filter_factor1 = 0;
}
}
//nothing to do to enable, after adc_ll_digi_filter_set_factor, it's enabled.
}
/**
* Set pattern table length for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 16 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 16 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param patt_len Items range: 1 ~ 16.
*/
static inline void adc_ll_digi_set_pattern_table_len(adc_unit_t adc_n, uint32_t patt_len)
{
if (adc_n == ADC_UNIT_1) {
ADC.ctrl_reg.sar1_patt_len = patt_len - 1;
} else { // adc_n == ADC_UNIT_2
ADC.ctrl_reg.sar2_patt_len = patt_len - 1;
}
}
/**
* Set pattern table for digital controller.
* The pattern table that defines the conversion rules for each SAR ADC. Each table has 12 items, in which channel selection,
* resolution and attenuation are stored. When the conversion is started, the controller reads conversion rules from the
* pattern table one by one. For each controller the scan sequence has at most 12 different rules before repeating itself.
*
* @param adc_n ADC unit.
* @param pattern_index Items index. Range: 0 ~ 11.
* @param pattern Stored conversion rules.
*/
static inline void adc_ll_digi_set_pattern_table(adc_unit_t adc_n, uint32_t pattern_index, adc_digi_pattern_config_t table)
{
uint32_t tab;
uint8_t index = pattern_index / 4;
uint8_t offset = (pattern_index % 4) * 6;
adc_ll_digi_pattern_table_t pattern = {0};
pattern.val = (table.atten & 0x3) | ((table.channel & 0xF) << 2);
if (table.unit == ADC_UNIT_1){
tab = ADC.sar1_patt_tab[index].sar1_patt_tab; //Read old register value
tab &= (~(0xFC0000 >> offset)); //Clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; //Fill in the new data
ADC.sar1_patt_tab[index].sar1_patt_tab = tab; //Write back
} else {
tab = ADC.sar2_patt_tab[index].sar2_patt_tab; //Read old register value
tab &= (~(0xFC0000 >> offset)); //clear old data
tab |= ((uint32_t)(pattern.val & 0x3F) << 18) >> offset; //Fill in the new data
ADC.sar2_patt_tab[index].sar2_patt_tab = tab; //Write back
}
}
/**
* Reset the pattern table pointer, then take the measurement rule from table header in next measurement.
*
* @param adc_n ADC unit.
*/
static inline void adc_ll_digi_clear_pattern_table(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
ADC.ctrl_reg.sar1_patt_p_clear = 1;
ADC.ctrl_reg.sar1_patt_p_clear = 0;
} else { // adc_n == ADC_UNIT_2
ADC.ctrl_reg.sar2_patt_p_clear = 1;
ADC.ctrl_reg.sar2_patt_p_clear = 0;
}
}
/**
* ADC Digital controller output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_ll_digi_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
ADC.ctrl2.sar1_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
ADC.ctrl2.sar2_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Set the interval clock cycle for the digital controller to trigger the measurement.
* Expression: `trigger_meas_freq` = `controller_clk` / 2 / interval.
*
* @note The trigger interval should not be smaller than the sampling time of the SAR ADC.
* @param cycle The clock cycle (trigger interval) of the measurement. Range: 30 ~ 4095.
*/
static inline void adc_ll_digi_set_trigger_interval(uint32_t cycle)
{
ADC.ctrl2.timer_target = cycle;
}
/**
* Set DMA eof num of adc digital controller.
* If the number of measurements reaches `dma_eof_num`, then `dma_in_suc_eof` signal is generated.
*
* @param num eof num of DMA.
*/
static inline void adc_ll_digi_dma_set_eof_num(uint32_t num)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(ADC.dma_conf, apb_adc_eof_num, num);
}
/**
* Enable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_enable(void)
{
ADC.dma_conf.apb_adc_trans = 1;
}
/**
* Disable output data to DMA from adc digital controller.
*/
static inline void adc_ll_digi_dma_disable(void)
{
ADC.dma_conf.apb_adc_trans = 0;
}
/**
* Reset adc digital controller.
*/
static inline void adc_ll_digi_reset(void)
{
ADC.dma_conf.apb_adc_reset_fsm = 1;
ADC.dma_conf.apb_adc_reset_fsm = 0;
}
/**
* Enable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_enable(void)
{
ADC.ctrl2.timer_sel = 1;
ADC.ctrl2.timer_en = 1;
}
/**
* Disable digital controller timer to trigger the measurement.
*/
static inline void adc_ll_digi_trigger_disable(void)
{
ADC.ctrl2.timer_en = 0;
}
/*---------------------------------------------------------------
PWDET(Power detect) controller setting
---------------------------------------------------------------*/
/**
* Set adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @param cct Range: 0 ~ 7.
*/
static inline void adc_ll_pwdet_set_cct(uint32_t cct)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
LP_ADC.meas2_mux.sar2_pwdet_cct = cct;
}
/**
* Get adc cct for PWDET controller.
*
* @note Capacitor tuning of the PA power monitor. cct set to the same value with PHY.
* @return cct Range: 0 ~ 7.
*/
static inline uint32_t adc_ll_pwdet_get_cct(void)
{
/* Capacitor tuning of the PA power monitor. cct set to the same value with PHY. */
return LP_ADC.meas2_mux.sar2_pwdet_cct;
}
/*---------------------------------------------------------------
Common setting
---------------------------------------------------------------*/
/**
* @brief Enable the ADC clock
* @param enable true to enable, false to disable
*/
static inline void adc_ll_enable_bus_clock(bool enable)
{
HP_SYS_CLKRST.soc_clk_ctrl2.reg_adc_apb_clk_en = enable;
HP_SYS_CLKRST.peri_clk_ctrl23.reg_adc_clk_en = enable;
}
// HP_SYS_CLKRST.soc_clk_ctrl2 are shared registers, so this function must be used in an atomic way
#define adc_ll_enable_bus_clock(...) (void)__DECLARE_RCC_ATOMIC_ENV; adc_ll_enable_bus_clock(__VA_ARGS__)
/**
* @brief Reset ADC module
*/
static inline void adc_ll_reset_register(void)
{
HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_adc = 1;
HP_SYS_CLKRST.hp_rst_en2.reg_rst_en_adc = 0;
}
// HP_SYS_CLKRST.hp_rst_en2 is a shared register, so this function must be used in an atomic way
#define adc_ll_reset_register(...) (void)__DECLARE_RCC_ATOMIC_ENV; adc_ll_reset_register(__VA_ARGS__)
/**
* Set ADC digital controller power management.
*
* @param adc_n ADC unit.
* @param manage Set ADC power status.
*/
static inline void adc_ll_digi_set_power_manage(adc_unit_t adc_n, adc_ll_power_t manage)
{
if (adc_n == ADC_UNIT_1) {
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_LL_POWER_SW_ON) {
ADC.ctrl_reg.sar_clk_gated = 1;
ADC.ctrl_reg.xpd_sar1_force = LP_ADC_FORCE_XPD_SAR_PU;
} else if (manage == ADC_LL_POWER_BY_FSM) {
ADC.ctrl_reg.sar_clk_gated = 1;
ADC.ctrl_reg.xpd_sar1_force = LP_ADC_FORCE_XPD_SAR_FSM;
} else if (manage == ADC_LL_POWER_SW_OFF) {
ADC.ctrl_reg.sar_clk_gated = 0;
ADC.ctrl_reg.xpd_sar1_force = LP_ADC_FORCE_XPD_SAR_PD;
}
} else {
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_LL_POWER_SW_ON) {
ADC.ctrl_reg.sar_clk_gated = 1;
ADC.ctrl_reg.xpd_sar2_force = LP_ADC_FORCE_XPD_SAR_PU;
} else if (manage == ADC_LL_POWER_BY_FSM) {
ADC.ctrl_reg.sar_clk_gated = 1;
ADC.ctrl_reg.xpd_sar2_force = LP_ADC_FORCE_XPD_SAR_FSM;
} else if (manage == ADC_LL_POWER_SW_OFF) {
ADC.ctrl_reg.sar_clk_gated = 0;
ADC.ctrl_reg.xpd_sar2_force = LP_ADC_FORCE_XPD_SAR_PD;
}
}
}
/**
* Set ADC module power management.
*
* @param adc_n ADC unit.
* @param manage Set ADC power status.
*/
static inline void adc_ll_set_power_manage(adc_unit_t adc_n, adc_ll_power_t manage)
{
adc_ll_digi_set_power_manage(adc_n, manage);
if (adc_n == ADC_UNIT_1) {
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_LL_POWER_SW_ON) {
LPPERI.clk_en.ck_en_lp_adc = 1;
LP_ADC.force_wpd_sar.force_xpd_sar1 = LP_ADC_FORCE_XPD_SAR_PU;
} else if (manage == ADC_LL_POWER_BY_FSM) {
LPPERI.clk_en.ck_en_lp_adc = 1;
LP_ADC.force_wpd_sar.force_xpd_sar1 = LP_ADC_FORCE_XPD_SAR_FSM;
} else if (manage == ADC_LL_POWER_SW_OFF) {
LP_ADC.force_wpd_sar.force_xpd_sar1 = LP_ADC_FORCE_XPD_SAR_PD;
LPPERI.clk_en.ck_en_lp_adc = 0;
}
} else {
/* Bit1 0:Fsm 1: SW mode
Bit0 0:SW mode power down 1: SW mode power on */
if (manage == ADC_LL_POWER_SW_ON) {
LPPERI.clk_en.ck_en_lp_adc = 1;
LP_ADC.force_wpd_sar.force_xpd_sar2 = LP_ADC_FORCE_XPD_SAR_PU;
} else if (manage == ADC_LL_POWER_BY_FSM) {
LPPERI.clk_en.ck_en_lp_adc = 1;
LP_ADC.force_wpd_sar.force_xpd_sar2 = LP_ADC_FORCE_XPD_SAR_FSM;
} else if (manage == ADC_LL_POWER_SW_OFF) {
LP_ADC.force_wpd_sar.force_xpd_sar2 = LP_ADC_FORCE_XPD_SAR_PD;
LPPERI.clk_en.ck_en_lp_adc = 0;
}
}
}
/**
* Set ADC module controller.
* There are five SAR ADC controllers:
* Two digital controller: Continuous conversion mode (DMA). High performance with multiple channel scan modes;
* Two RTC controller: Single conversion modes (Polling). For low power purpose working during deep sleep;
* the other is dedicated for Power detect (PWDET / PKDET), Only support ADC2.
*
* @param adc_n ADC unit.
* @param ctrl ADC controller.
*/
__attribute__((always_inline))
static inline void adc_ll_set_controller(adc_unit_t adc_n, adc_ll_controller_t ctrl)
{
if (adc_n == ADC_UNIT_1) {
switch (ctrl) {
case ADC_LL_CTRL_RTC:
LP_ADC.meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
LP_ADC.meas1_mux.sar1_dig_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas1_ctrl2.meas1_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_DIG:
LP_ADC.meas1_mux.sar1_dig_force = 1; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas1_ctrl2.meas1_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas1_ctrl2.sar1_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
} else { // adc_n == ADC_UNIT_2
switch (ctrl) {
case ADC_LL_CTRL_RTC:
LP_ADC.meas2_mux.sar2_rtc_force = 1; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_ULP:
LP_ADC.meas2_mux.sar2_rtc_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas2_ctrl2.meas2_start_force = 0; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 0; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
case ADC_LL_CTRL_DIG:
LP_ADC.meas2_mux.sar2_rtc_force = 0; // 1: Select digital control; 0: Select RTC control.
LP_ADC.meas2_ctrl2.meas2_start_force = 1; // 1: SW control RTC ADC start; 0: ULP control RTC ADC start.
LP_ADC.meas2_ctrl2.sar2_en_pad_force = 1; // 1: SW control RTC ADC bit map; 0: ULP control RTC ADC bit map;
break;
default:
break;
}
}
}
/*---------------------------------------------------------------
Oneshot Read
---------------------------------------------------------------*/
static inline void adc_ll_vref_output(adc_unit_t adc, adc_channel_t channel, bool en)
{
abort();
}
/**
* Set adc output data format for RTC controller.
*
* @note ESP32P4 RTC controller only support 12bit.
* @param adc_n ADC unit.
* @param bits Output data bits width option.
*/
static inline void adc_oneshot_ll_set_output_bits(adc_unit_t adc_n, adc_bitwidth_t bits)
{
//ESP32P4 only supports 12bit, leave here for compatibility
HAL_ASSERT(bits == ADC_BITWIDTH_12 || bits == ADC_BITWIDTH_DEFAULT);
}
/**
* Enable adc channel to start convert.
*
* @note Only one channel can be selected for once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_set_channel(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.meas1_ctrl2.sar1_en_pad = (1 << channel); //only one channel is selected.
} else { // adc_n == ADC_UNIT_2
LP_ADC.meas2_ctrl2.sar2_en_pad = (1 << ((channel + 2))); //only one channel is selected.
}
}
/**
* Disable adc channel to start convert.
*
* @note Only one channel can be selected in once measurement.
*
* @param adc_n ADC unit.
* @param channel ADC channel number for each ADCn.
*/
static inline void adc_oneshot_ll_disable_channel(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.meas1_ctrl2.sar1_en_pad = 0; //only one channel is selected.
} else { // adc_n == ADC_UNIT_2
LP_ADC.meas2_ctrl2.sar2_en_pad = 0; //only one channel is selected.
}
}
/**
* Start conversion once by software for RTC controller.
*
* @note It may be block to wait conversion idle for ADC1.
*
* @param adc_n ADC unit.
*/
static inline void adc_oneshot_ll_start(adc_unit_t adc_n)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.meas1_ctrl2.meas1_start_sar = 0;
LP_ADC.meas1_ctrl2.meas1_start_sar = 1;
} else { // adc_n == ADC_UNIT_2
LP_ADC.meas2_ctrl2.meas2_start_sar = 0;
LP_ADC.meas2_ctrl2.meas2_start_sar = 1;
}
}
/**
* Clear the event for each ADCn for Oneshot mode
*
* @param event ADC event
*/
static inline void adc_oneshot_ll_clear_event(uint32_t event_mask)
{
// ADC.int_clr.val |= event_mask;
}
/**
* Check the event for each ADCn for Oneshot mode
*
* @param event ADC event
*
* @return
* -true : The conversion process is finish.
* -false : The conversion process is not finish.
*/
static inline bool adc_oneshot_ll_get_event(uint32_t event)
{
bool ret = true;
if (event == ADC_LL_EVENT_ADC1_ONESHOT_DONE) {
ret = (bool)LP_ADC.meas1_ctrl2.meas1_done_sar;
} else if (event == ADC_LL_EVENT_ADC2_ONESHOT_DONE) {
ret = (bool)LP_ADC.meas2_ctrl2.meas2_done_sar;
} else {
HAL_ASSERT(false);
}
return ret;
}
/**
* Get the converted value for each ADCn for RTC controller.
*
* @param adc_n ADC unit.
* @return
* - Converted value.
*/
static inline uint32_t adc_oneshot_ll_get_raw_result(adc_unit_t adc_n)
{
uint32_t ret_val = 0;
if (adc_n == ADC_UNIT_1) {
ret_val = HAL_FORCE_READ_U32_REG_FIELD(LP_ADC.meas1_ctrl2, meas1_data_sar);
} else { // adc_n == ADC_UNIT_2
ret_val = HAL_FORCE_READ_U32_REG_FIELD(LP_ADC.meas2_ctrl2, meas2_data_sar);
}
return ret_val;
}
/**
* Analyze whether the obtained raw data is correct.
*
* @param adc_n ADC unit.
* @param raw ADC raw data input (convert value).
* @return
* - true: raw data is valid
*/
static inline bool adc_oneshot_ll_raw_check_valid(adc_unit_t adc_n, uint32_t raw)
{
/* No arbiter, don't need check data */
return true;
}
/**
* ADC module RTC output data invert or not.
*
* @param adc_n ADC unit.
* @param inv_en data invert or not.
*/
static inline void adc_oneshot_ll_output_invert(adc_unit_t adc_n, bool inv_en)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.reader1_ctrl.sar1_data_inv = inv_en; // Enable / Disable ADC data invert
} else { // adc_n == ADC_UNIT_2
LP_ADC.reader2_ctrl.sar2_data_inv = inv_en; // Enable / Disable ADC data invert
}
}
/**
* Enable oneshot conversion trigger
*
* @param adc_n ADC unit
*/
static inline void adc_oneshot_ll_enable(adc_unit_t adc_n)
{
(void)adc_n;
//For compatibility
}
/**
* Disable oneshot conversion trigger for all the ADC units
*/
static inline void adc_oneshot_ll_disable_all_unit(void)
{
//For compatibility
}
/*---------------------------------------------------------------
RTC controller setting
---------------------------------------------------------------*/
/**
* ADC SAR clock division factor setting. ADC SAR clock divided from `RTC_FAST_CLK`.
*
* @param div Division factor.
*/
static inline void adc_ll_set_sar_clk_div(adc_unit_t adc_n, uint32_t div)
{
if (adc_n == ADC_UNIT_1) {
HAL_FORCE_MODIFY_U32_REG_FIELD(LP_ADC.reader1_ctrl, sar1_clk_div, div);
} else { // adc_n == ADC_UNIT_2
HAL_FORCE_MODIFY_U32_REG_FIELD(LP_ADC.reader2_ctrl, sar2_clk_div, div);
}
}
/**
* Reset RTC controller FSM.
*/
static inline void adc_ll_rtc_reset(void)
{
LPPERI.reset_en.rst_en_lp_adc = 1;
LPPERI.reset_en.rst_en_lp_adc = 0;
}
/**
* Set the attenuation of a particular channel on ADCn.
*
* @note For any given channel, this function must be called before the first time conversion.
*
* The default ADC full-scale voltage is 1.1V. To read higher voltages (up to the pin maximum voltage,
* usually 3.3V) requires setting >0dB signal attenuation for that ADC channel.
*
* When VDD_A is 3.3V:
*
* - 0dB attenuation (ADC_ATTEN_DB_0) gives full-scale voltage 1.1V
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) gives full-scale voltage 1.5V
* - 6dB attenuation (ADC_ATTEN_DB_6) gives full-scale voltage 2.2V
* - 11dB attenuation (ADC_ATTEN_DB_12) gives full-scale voltage 3.9V (see note below)
*
* @note The full-scale voltage is the voltage corresponding to a maximum reading (depending on ADC1 configured
* bit width, this value is: 4095 for 12-bits, 2047 for 11-bits, 1023 for 10-bits, 511 for 9 bits.)
*
* @note At 11dB attenuation the maximum voltage is limited by VDD_A, not the full scale voltage.
*
* Due to ADC characteristics, most accurate results are obtained within the following approximate voltage ranges:
*
* - 0dB attenuation (ADC_ATTEN_DB_0) between 100 and 950mV
* - 2.5dB attenuation (ADC_ATTEN_DB_2_5) between 100 and 1250mV
* - 6dB attenuation (ADC_ATTEN_DB_6) between 150 to 1750mV
* - 11dB attenuation (ADC_ATTEN_DB_12) between 150 to 2450mV
*
* For maximum accuracy, use the ADC calibration APIs and measure voltages within these recommended ranges.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @param atten The attenuation option.
*/
static inline void adc_oneshot_ll_set_atten(adc_unit_t adc_n, adc_channel_t channel, adc_atten_t atten)
{
if (adc_n == ADC_UNIT_1) {
LP_ADC.atten1.sar1_atten = ( LP_ADC.atten1.sar1_atten & ~(0x3 << (channel * 2)) ) | ((atten & 0x3) << (channel * 2));
} else { // adc_n == ADC_UNIT_2
LP_ADC.atten2.sar2_atten = ( LP_ADC.atten2.sar2_atten & ~(0x3 << ((channel + 2) * 2)) ) | ((atten & 0x3) << ((channel + 2) * 2));
}
}
/**
* Get the attenuation of a particular channel on ADCn.
*
* @param adc_n ADC unit.
* @param channel ADCn channel number.
* @return atten The attenuation option.
*/
__attribute__((always_inline))
static inline adc_atten_t adc_ll_get_atten(adc_unit_t adc_n, adc_channel_t channel)
{
if (adc_n == ADC_UNIT_1) {
return (adc_atten_t)((LP_ADC.atten1.sar1_atten >> (channel * 2)) & 0x3);
} else {
return (adc_atten_t)((LP_ADC.atten2.sar2_atten >> ((channel + 2) * 2)) & 0x3);
}
}
#ifdef __cplusplus
}
#endif