- Change pools to use mmap() for allocating regions.
- Change kore_malloc() to use pools for commonly sized objects.
(split into multiple of 2 buckets, starting at 8 bytes up to 8192).
- Rename kore_mem_free() to kore_free().
The preallocated pools will hold up to 128K of elements per block size.
In case a larger object is to be allocated kore_malloc() will use
malloc() instead.
Producing single binaries can now be done with building with
"kore build". To get started edit your build.conf and add the
following directives:
single_binary = yes
kore_source = /path/to/kore
optionally you can add kore_flavor to instruct how kore should
be built:
kore_flavor = NOTLS=1
When doing this your build.conf must also include the correct
linking options as the linking is now done fully by kore build.
The binary produced will include your configuration and takes
over a few of kore its command line flags (such as -f, -n or -r).
Make it return the original length of the input string so the caller
can check for truncation. Also guard against len being 0 as this would
not do anything with the destination string (not even NUL terminate it).
Kore will now isolate RSA private keys to a separate process (keymgr).
Worker processes that require RSA signing for TLS connections will
communicate with this keymgr process in order to do so.
This behaviour cannot be disabled and is always turned on.
Same as kore_pgsql_query_params but takes a va_list as last parameter
(non-v version takes a variable list of parameters).
Lets people write easier to call wrappers around the query calls. I use
it in a wrapper that takes next states (error, current, continue) as
arguments in a handler with multiple async queries.
No longer just call kore_string_split() on the line
but separate out the configuration directive and let
the appropriate callbacks parse things on their own.
This commit is a flag day, your old modules will almost certainly
need to be updated in order to build properly with these changes.
Summary of changes:
- Offload HTTP bodies to disk if they are large (inspired by #100).
(disabled by default)
- The http_argument_get* macros now takes an explicit http_request parameter.
- Kore will now throw 404 errors almost immediately after an HTTP request
has come in instead of waiting until all data has arrived.
API changes:
- http_argument_get* macros now require an explicit http_request parameter.
(no more magic invokations).
- http_generic_404() is gone
- http_populate_arguments() is gone
- http_body_bytes() is gone
- http_body_text() is gone
- http_body_read() has been added
- http_populate_post() has been added
- http_populate_get() has been added
- http_file_read() has been added
- http_file_rewind() has been added
- http_file_lookup() no longer takes name, fname, data and len parameters.
- http_file_lookup() now returns a struct http_file pointer.
- http_populate_multipart_form() no longer takes an secondary parameter.
New configuration options:
- http_body_disk_offload:
Number of bytes after which Kore will offload the HTTP body to
disk instead of retaining it in memory. If 0 this feature is
disabled. (Default: 0)
- http_body_disk_path:
The path where Kore will store temporary HTTP body files.
(this directory does not get created if http_body_disk_offload is 0).
New example:
The upload example has been added, demonstrating how to deal with file
uploads from a multipart form.
Kore pre-allocates a kore_buf for the full size of the
incoming HTTP body ... but also was passing the full
size to the net_recv_reset() function.
Instead of this, properly read smaller chunks from the
network and append them to the body buffer as they roll in.
Allow setting it to 0 which will disable HTTP requests
that have a body (POST/PUT).
Reduce default http_body_max to 1MB by default, 10MB seems large.
Revisit to this code inspired by #100.
Semantics for using pgsql API have changed quite heavily
with this commit. See the examples for more information.
Based on Github issue #95 by PauloMelo (paulo.melo@vintageform.pt)
with several modifications by me.
Setting the handle callback allows your application
to take care of network events for the connection.
Look at the connection state and flags to determine
if read/write is possible and go from there.
See kore_connection_handle() for more details.
* The cli tools must know when building as KORE_NO_HTTP.
* Reshuffle some structs around to avoid forward declarations.
* Move wscbs under !KORE_NO_HTTP as its for websockets.
* Remove unused members from struct connection.
Applications that use the connect callbacks for new connections
must now set the connection state themselves, see nohttp example.
This basically turns off the HTTP layer for Kore. It does not
compile in anything for HTTP.
This allows Kore to be used as a network application platform as well.
Added an example for this called nohttp.
Other changes that sneaked in while hacking on this:
* Use calloc(), kill pendantic malloc option.
* Killed off SPDY/3.1 support completely, will be superseded by http2
Note that comes with massive changes to a lot of the core API
functions provided by Kore, these might break your application.
Change the callback prototypes to:
void callback(struct kore_msg *msg, const void *data);
This allows the callbacks to receive the full kore_msg data structure
as sent over the wire (including length and id). Useful for future
additions to the kore_msg structure (such as worker origin).
Several other improvements:
* Accesslog now uses the msg framework as well.
* Websocket WEBSOCKET_BROADCAST_GLOBAL now works.
Small websocket improvement in this commit:
* Build the frame to be sent only once when broadcasting
instead of per connection we are broadcasting towards.
With this framework apps can now send messages between worker processes.
A new API function exists:
int kore_msg_register(u_int8_t id, void (*cb)(const void *, u_int32_t);
This API call allows your app to register a new message callback for a given ID.
You can then send messages on this ID to other workers using:
void kore_msg_send(u_int8_t id, void *data, u_int32_t length);
This framework will interally be used for a few things such as allowing
websocket data to broadcasted between all workers, adding unified caching
and hopefully eventually moving the access log to this as well.
Some internals have changed with this commit:
* worker_clients has been called connections.
* the parent now initializes the net, and event subsystems.
* kore_worker_websocket_broadcast() is dead.
Before Kore would spawn a task thread per task started
if none were available. This was an obvious bad idiom
but never really hit me hard until now.
Kore will now only spawn as many task threads as configured
by "task_threads" and queue up any newly started tasks ontop
of already running threads if the limit was hit.