Merge branch 'feat/h21_introduce_step8' into 'master'

feat(esp32h21): introduce hello world to ESP32H21 (stage8)

See merge request espressif/esp-idf!35874
This commit is contained in:
Gao Xu 2024-12-31 10:39:21 +08:00
commit 54f501a2fc
63 changed files with 3087 additions and 2289 deletions

View File

@ -11,6 +11,7 @@ extra_default_build_targets:
- esp32c61
bypass_check_test_targets:
- esp32h21
#
# These lines would

View File

@ -0,0 +1,308 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/** Simplified memory map for the bootloader.
* Make sure the bootloader can load into main memory without overwriting itself.
*
* ESP32-H21 ROM static data usage is as follows:
* - 0x4083ba78 - 0x4084d380: Shared buffers, used in UART/USB/SPI download mode only
* - 0x4084d380 - 0x4084f380: PRO CPU stack, can be reclaimed as heap after RTOS startup
* - 0x4084f380 - 0x4084fee0: ROM .bss and .data used in startup code or nonos/early boot (can be freed when IDF runs)
* - 0x4084fee0 - 0x40850000: ROM .bss and .data used in startup code and when IDF runs (cannot be freed)
*
* The 2nd stage bootloader can take space up to the end of ROM shared
* buffers area (0x4084d380).
*/
/* We consider 0x3fcdc710 to be the last usable address for 2nd stage bootloader stack overhead, dram_seg,
* and work out iram_seg and iram_loader_seg addresses from there, backwards.
*/
/* These lengths can be adjusted, if necessary: */
bootloader_usable_dram_end = 0x40849a78;
bootloader_stack_overhead = 0x2000; /* For safety margin between bootloader data section and startup stacks */
bootloader_dram_seg_len = 0x5000;
bootloader_iram_loader_seg_len = 0x7000;
bootloader_iram_seg_len = 0x2500;
/* Start of the lower region is determined by region size and the end of the higher region */
bootloader_dram_seg_end = bootloader_usable_dram_end - bootloader_stack_overhead;
bootloader_dram_seg_start = bootloader_dram_seg_end - bootloader_dram_seg_len;
bootloader_iram_loader_seg_start = bootloader_dram_seg_start - bootloader_iram_loader_seg_len;
bootloader_iram_seg_start = bootloader_iram_loader_seg_start - bootloader_iram_seg_len;
MEMORY
{
iram_seg (RWX) : org = bootloader_iram_seg_start, len = bootloader_iram_seg_len
iram_loader_seg (RWX) : org = bootloader_iram_loader_seg_start, len = bootloader_iram_loader_seg_len
dram_seg (RW) : org = bootloader_dram_seg_start, len = bootloader_dram_seg_len
}
/* The app may use RAM for static allocations up to the start of iram_loader_seg.
* If you have changed something above and this assert fails:
* 1. Check what the new value of bootloader_iram_loader_seg start is.
* 2. Update the value in this assert.
* 3. Update SRAM_DRAM_END in components/esp_system/ld/esp32h21/memory.ld.in to the same value.
*/
ASSERT(bootloader_iram_loader_seg_start == 0x4083ba78, "bootloader_iram_loader_seg_start inconsistent with SRAM_DRAM_END");
/* Default entry point: */
ENTRY(call_start_cpu0);
SECTIONS
{
.iram_loader.text :
{
. = ALIGN (16);
_loader_text_start = ABSOLUTE(.);
*(.stub .gnu.warning .gnu.linkonce.literal.* .gnu.linkonce.t.*.literal .gnu.linkonce.t.*)
*(.iram1 .iram1.*) /* catch stray IRAM_ATTR */
*liblog.a:(.literal .text .literal.* .text.*)
/* we use either libgcc or compiler-rt, so put similar entries for them here */
*libgcc.a:(.literal .text .literal.* .text.*)
*libclang_rt.builtins.a:(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_clock_loader.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_common_loader.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_flash.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_random.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_random*.*(.literal.bootloader_random_disable .text.bootloader_random_disable)
*libbootloader_support.a:bootloader_efuse.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_utility.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_sha.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_console_loader.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_panic.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:bootloader_soc.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:esp_image_format.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:flash_encrypt.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:flash_encryption_secure_features.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:flash_partitions.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:secure_boot.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:secure_boot_secure_features.*(.literal .text .literal.* .text.*)
*libbootloader_support.a:secure_boot_signatures_bootloader.*(.literal .text .literal.* .text.*)
*libmicro-ecc.a:*.*(.literal .text .literal.* .text.*)
*libspi_flash.a:*.*(.literal .text .literal.* .text.*)
*libhal.a:wdt_hal_iram.*(.literal .text .literal.* .text.*)
*libhal.a:mmu_hal.*(.literal .text .literal.* .text.*)
*libhal.a:cache_hal.*(.literal .text .literal.* .text.*)
*libhal.a:efuse_hal.*(.literal .text .literal.* .text.*)
*libesp_hw_support.a:rtc_clk.*(.literal .text .literal.* .text.*)
*libesp_hw_support.a:rtc_time.*(.literal .text .literal.* .text.*)
*libesp_hw_support.a:regi2c_ctrl.*(.literal .text .literal.* .text.*)
*libefuse.a:*.*(.literal .text .literal.* .text.*)
*(.fini.literal)
*(.fini)
*(.gnu.version)
_loader_text_end = ABSOLUTE(.);
} > iram_loader_seg
.iram.text :
{
. = ALIGN (16);
*(.entry.text)
*(.init.literal)
*(.init)
} > iram_seg
/* Shared RAM */
.dram0.bss (NOLOAD) :
{
. = ALIGN (8);
_dram_start = ABSOLUTE(.);
_bss_start = ABSOLUTE(.);
*(.dynsbss)
*(.sbss)
*(.sbss.*)
*(.gnu.linkonce.sb.*)
*(.scommon)
*(.sbss2)
*(.sbss2.*)
*(.gnu.linkonce.sb2.*)
*(.dynbss)
*(.bss)
*(.bss.*)
*(.gnu.linkonce.b.*)
*(COMMON)
. = ALIGN (8);
_bss_end = ABSOLUTE(.);
} > dram_seg
.dram0.bootdesc : ALIGN(0x10)
{
_data_start = ABSOLUTE(.);
*(.data_bootloader_desc .data_bootloader_desc.*) /* Should be the first. Bootloader version info. DO NOT PUT ANYTHING BEFORE IT! */
} > dram_seg
.dram0.data :
{
*(.dram1 .dram1.*) /* catch stray DRAM_ATTR */
*(.data)
*(.data.*)
*(.gnu.linkonce.d.*)
*(.data1)
*(.sdata)
*(.sdata.*)
*(.gnu.linkonce.s.*)
*(.gnu.linkonce.s2.*)
*(.jcr)
_data_end = ABSOLUTE(.);
} > dram_seg
.dram0.rodata :
{
_rodata_start = ABSOLUTE(.);
*(.rodata)
*(.rodata.*)
*(.gnu.linkonce.r.*)
*(.rodata1)
*(.sdata2 .sdata2.* .srodata .srodata.*)
__XT_EXCEPTION_TABLE_ = ABSOLUTE(.);
*(.xt_except_table)
*(.gcc_except_table)
*(.gnu.linkonce.e.*)
*(.gnu.version_r)
*(.eh_frame_hdr)
*(.eh_frame)
. = (. + 3) & ~ 3;
/* C++ constructor and destructor tables, properly ordered: */
__init_array_start = ABSOLUTE(.);
KEEP (*crtbegin.*(.ctors))
KEEP (*(EXCLUDE_FILE (*crtend.*) .ctors))
KEEP (*(SORT(.ctors.*)))
KEEP (*(.ctors))
__init_array_end = ABSOLUTE(.);
KEEP (*crtbegin.*(.dtors))
KEEP (*(EXCLUDE_FILE (*crtend.*) .dtors))
KEEP (*(SORT(.dtors.*)))
KEEP (*(.dtors))
/* C++ exception handlers table: */
__XT_EXCEPTION_DESCS_ = ABSOLUTE(.);
*(.xt_except_desc)
*(.gnu.linkonce.h.*)
__XT_EXCEPTION_DESCS_END__ = ABSOLUTE(.);
*(.xt_except_desc_end)
*(.dynamic)
*(.gnu.version_d)
_rodata_end = ABSOLUTE(.);
/* Literals are also RO data. */
_lit4_start = ABSOLUTE(.);
*(*.lit4)
*(.lit4.*)
*(.gnu.linkonce.lit4.*)
_lit4_end = ABSOLUTE(.);
. = ALIGN(4);
_dram_end = ABSOLUTE(.);
} > dram_seg
.iram.text :
{
_stext = .;
_text_start = ABSOLUTE(.);
*(.literal .text .literal.* .text.* .stub .gnu.warning .gnu.linkonce.literal.* .gnu.linkonce.t.*.literal .gnu.linkonce.t.*)
*(.iram .iram.*) /* catch stray IRAM_ATTR */
*(.fini.literal)
*(.fini)
*(.gnu.version)
/** CPU will try to prefetch up to 16 bytes of
* of instructions. This means that any configuration (e.g. MMU, PMS) must allow
* safe access to up to 16 bytes after the last real instruction, add
* dummy bytes to ensure this
*/
. += 16;
_text_end = ABSOLUTE(.);
_etext = .;
} > iram_seg
.riscv.attributes 0: { *(.riscv.attributes) }
/* DWARF 1 */
.debug 0 : { *(.debug) }
.line 0 : { *(.line) }
/* GNU DWARF 1 extensions */
.debug_srcinfo 0 : { *(.debug_srcinfo) }
.debug_sfnames 0 : { *(.debug_sfnames) }
/* DWARF 1.1 and DWARF 2 */
.debug_aranges 0 : { *(.debug_aranges) }
.debug_pubnames 0 : { *(.debug_pubnames) }
/* DWARF 2 */
.debug_info 0 : { *(.debug_info .gnu.linkonce.wi.*) }
.debug_abbrev 0 : { *(.debug_abbrev) }
.debug_line 0 : { *(.debug_line) }
.debug_frame 0 : { *(.debug_frame) }
.debug_str 0 : { *(.debug_str) }
.debug_loc 0 : { *(.debug_loc) }
.debug_macinfo 0 : { *(.debug_macinfo) }
.debug_pubtypes 0 : { *(.debug_pubtypes) }
/* DWARF 3 */
.debug_ranges 0 : { *(.debug_ranges) }
/* SGI/MIPS DWARF 2 extensions */
.debug_weaknames 0 : { *(.debug_weaknames) }
.debug_funcnames 0 : { *(.debug_funcnames) }
.debug_typenames 0 : { *(.debug_typenames) }
.debug_varnames 0 : { *(.debug_varnames) }
/* GNU DWARF 2 extensions */
.debug_gnu_pubnames 0 : { *(.debug_gnu_pubnames) }
.debug_gnu_pubtypes 0 : { *(.debug_gnu_pubtypes) }
/* DWARF 4 */
.debug_types 0 : { *(.debug_types) }
/* DWARF 5 */
.debug_addr 0 : { *(.debug_addr) }
.debug_line_str 0 : { *(.debug_line_str) }
.debug_loclists 0 : { *(.debug_loclists) }
.debug_macro 0 : { *(.debug_macro) }
.debug_names 0 : { *(.debug_names) }
.debug_rnglists 0 : { *(.debug_rnglists) }
.debug_str_offsets 0 : { *(.debug_str_offsets) }
.comment 0 : { *(.comment) }
.note.GNU-stack 0: { *(.note.GNU-stack) }
/**
* Discarding .rela.* sections results in the following mapping:
* .rela.text.* -> .text.*
* .rela.data.* -> .data.*
* And so forth...
*/
/DISCARD/ : { *(.rela.*) }
}
/**
* Appendix: Memory Usage of ROM bootloader
*
* 0x4083ba78 ------------------> _dram0_0_start
* | |
* | |
* | | 1. Large buffers that are only used in certain boot modes, see shared_buffers.h
* | |
* | |
* 0x4084d380 ------------------> __stack_sentry
* | |
* | | 2. Startup pro cpu stack (freed when IDF app is running)
* | |
* 0x4084f380 ------------------> __stack (pro cpu)
* | |
* | |
* | | 3. Shared memory only used in startup code or nonos/early boot*
* | | (can be freed when IDF runs)
* | |
* | |
* 0x4084fee0 ------------------> _dram0_rtos_reserved_start
* | |
* | |
* | | 4. Shared memory used in startup code and when IDF runs
* | |
* | |
* 0x4084ffc0 ------------------> _dram0_rtos_reserved_end
* | |
* 0x4084ffc8 ------------------> _data_start_interface
* | |
* | | 5. End of DRAM is the 'interface' data with constant addresses (ECO compatible)
* | |
* 0x40850000 ------------------> _data_end_interface
*/

View File

@ -0,0 +1,6 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/* No definition for ESP32-H21 target */

View File

@ -0,0 +1,286 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <assert.h>
#include "string.h"
#include "sdkconfig.h"
#include "esp_err.h"
#include "esp_log.h"
#include "esp_rom_gpio.h"
#include "flash_qio_mode.h"
#include "bootloader_flash_config.h"
#include "bootloader_flash_priv.h"
#include "bootloader_init.h"
#include "hal/mmu_hal.h"
#include "hal/cache_hal.h"
#include "hal/cache_ll.h"
#include "soc/pcr_reg.h"
static const char *TAG = "boot.esp32h21";
void bootloader_flash_update_id()
{
esp_rom_spiflash_chip_t *chip = &rom_spiflash_legacy_data->chip;
chip->device_id = bootloader_read_flash_id();
}
void bootloader_flash_update_size(uint32_t size)
{
rom_spiflash_legacy_data->chip.chip_size = size;
}
void IRAM_ATTR bootloader_flash_cs_timing_config()
{
SET_PERI_REG_MASK(SPI_MEM_USER_REG(0), SPI_MEM_CS_HOLD_M | SPI_MEM_CS_SETUP_M);
SET_PERI_REG_BITS(SPI_MEM_CTRL2_REG(0), SPI_MEM_CS_HOLD_TIME_V, 0, SPI_MEM_CS_HOLD_TIME_S);
SET_PERI_REG_BITS(SPI_MEM_CTRL2_REG(0), SPI_MEM_CS_SETUP_TIME_V, 0, SPI_MEM_CS_SETUP_TIME_S);
}
void IRAM_ATTR bootloader_flash_clock_config(const esp_image_header_t *pfhdr)
{
uint32_t spi_clk_div = 0;
switch (pfhdr->spi_speed) {
case ESP_IMAGE_SPI_SPEED_DIV_1:
spi_clk_div = 1;
break;
case ESP_IMAGE_SPI_SPEED_DIV_2:
spi_clk_div = 2;
break;
case ESP_IMAGE_SPI_SPEED_DIV_3:
spi_clk_div = 3;
break;
case ESP_IMAGE_SPI_SPEED_DIV_4:
spi_clk_div = 4;
break;
default:
break;
}
esp_rom_spiflash_config_clk(spi_clk_div, 0);
}
void IRAM_ATTR bootloader_configure_spi_pins(int drv)
{
uint8_t clk_gpio_num = MSPI_IOMUX_PIN_NUM_CLK;
uint8_t q_gpio_num = MSPI_IOMUX_PIN_NUM_MISO;
uint8_t d_gpio_num = MSPI_IOMUX_PIN_NUM_MOSI;
uint8_t cs0_gpio_num = MSPI_IOMUX_PIN_NUM_CS0;
uint8_t hd_gpio_num = MSPI_IOMUX_PIN_NUM_HD;
uint8_t wp_gpio_num = MSPI_IOMUX_PIN_NUM_WP;
esp_rom_gpio_pad_set_drv(clk_gpio_num, drv);
esp_rom_gpio_pad_set_drv(q_gpio_num, drv);
esp_rom_gpio_pad_set_drv(d_gpio_num, drv);
esp_rom_gpio_pad_set_drv(cs0_gpio_num, drv);
esp_rom_gpio_pad_set_drv(hd_gpio_num, drv);
esp_rom_gpio_pad_set_drv(wp_gpio_num, drv);
}
static void IRAM_ATTR bootloader_flash_clock_init(void)
{
// At this moment, BBPLL should be enabled, safe to switch MSPI clock source to PLL_F64M (default clock src) to raise speed
REG_SET_FIELD(PCR_MSPI_CONF_REG, PCR_MSPI_CLK_SEL, 2);
}
static void update_flash_config(const esp_image_header_t *bootloader_hdr)
{
uint32_t size;
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
size = 1;
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
size = 2;
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
size = 4;
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
size = 8;
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
size = 16;
break;
default:
size = 2;
}
// Set flash chip size
esp_rom_spiflash_config_param(rom_spiflash_legacy_data->chip.device_id, size * 0x100000, 0x10000, 0x1000, 0x100, 0xffff); // TODO: set mode
}
static void print_flash_info(const esp_image_header_t *bootloader_hdr)
{
ESP_EARLY_LOGD(TAG, "magic %02x", bootloader_hdr->magic);
ESP_EARLY_LOGD(TAG, "segments %02x", bootloader_hdr->segment_count);
ESP_EARLY_LOGD(TAG, "spi_mode %02x", bootloader_hdr->spi_mode);
ESP_EARLY_LOGD(TAG, "spi_speed %02x", bootloader_hdr->spi_speed);
ESP_EARLY_LOGD(TAG, "spi_size %02x", bootloader_hdr->spi_size);
const char *str;
switch (bootloader_hdr->spi_speed) {
case ESP_IMAGE_SPI_SPEED_DIV_2:
str = "32MHz";
break;
case ESP_IMAGE_SPI_SPEED_DIV_3:
str = "21.3MHz";
break;
case ESP_IMAGE_SPI_SPEED_DIV_4:
str = "16MHz";
break;
case ESP_IMAGE_SPI_SPEED_DIV_1:
str = "64MHz";
break;
default:
str = "16MHz";
break;
}
ESP_EARLY_LOGI(TAG, "SPI Speed : %s", str);
/* SPI mode could have been set to QIO during boot already,
so test the SPI registers not the flash header */
esp_rom_spiflash_read_mode_t spi_mode = bootloader_flash_get_spi_mode();
switch (spi_mode) {
case ESP_ROM_SPIFLASH_QIO_MODE:
str = "QIO";
break;
case ESP_ROM_SPIFLASH_QOUT_MODE:
str = "QOUT";
break;
case ESP_ROM_SPIFLASH_DIO_MODE:
str = "DIO";
break;
case ESP_ROM_SPIFLASH_DOUT_MODE:
str = "DOUT";
break;
case ESP_ROM_SPIFLASH_FASTRD_MODE:
str = "FAST READ";
break;
default:
str = "SLOW READ";
break;
}
ESP_EARLY_LOGI(TAG, "SPI Mode : %s", str);
switch (bootloader_hdr->spi_size) {
case ESP_IMAGE_FLASH_SIZE_1MB:
str = "1MB";
break;
case ESP_IMAGE_FLASH_SIZE_2MB:
str = "2MB";
break;
case ESP_IMAGE_FLASH_SIZE_4MB:
str = "4MB";
break;
case ESP_IMAGE_FLASH_SIZE_8MB:
str = "8MB";
break;
case ESP_IMAGE_FLASH_SIZE_16MB:
str = "16MB";
break;
default:
str = "2MB";
break;
}
ESP_EARLY_LOGI(TAG, "SPI Flash Size : %s", str);
}
static void IRAM_ATTR bootloader_init_flash_configure(void)
{
bootloader_flash_clock_init();
bootloader_configure_spi_pins(1);
bootloader_flash_cs_timing_config();
}
static void bootloader_spi_flash_resume(void)
{
bootloader_execute_flash_command(CMD_RESUME, 0, 0, 0);
esp_rom_spiflash_wait_idle(&g_rom_flashchip);
}
esp_err_t bootloader_init_spi_flash(void)
{
bootloader_init_flash_configure();
bootloader_spi_flash_resume();
bootloader_flash_unlock();
#if CONFIG_ESPTOOLPY_FLASHMODE_QIO || CONFIG_ESPTOOLPY_FLASHMODE_QOUT
bootloader_enable_qio_mode();
#endif
print_flash_info(&bootloader_image_hdr);
cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
update_flash_config(&bootloader_image_hdr);
cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
//ensure the flash is write-protected
bootloader_enable_wp();
return ESP_OK;
}
#if CONFIG_APP_BUILD_TYPE_RAM && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
static void bootloader_flash_set_spi_mode(const esp_image_header_t* pfhdr)
{
esp_rom_spiflash_read_mode_t mode;
switch(pfhdr->spi_mode) {
case ESP_IMAGE_SPI_MODE_QIO:
mode = ESP_ROM_SPIFLASH_QIO_MODE;
break;
case ESP_IMAGE_SPI_MODE_QOUT:
mode = ESP_ROM_SPIFLASH_QOUT_MODE;
break;
case ESP_IMAGE_SPI_MODE_DIO:
mode = ESP_ROM_SPIFLASH_DIO_MODE;
break;
case ESP_IMAGE_SPI_MODE_FAST_READ:
mode = ESP_ROM_SPIFLASH_FASTRD_MODE;
break;
case ESP_IMAGE_SPI_MODE_SLOW_READ:
mode = ESP_ROM_SPIFLASH_SLOWRD_MODE;
break;
default:
mode = ESP_ROM_SPIFLASH_DIO_MODE;
}
esp_rom_spiflash_config_readmode(mode);
}
void bootloader_flash_hardware_init(void)
{
esp_rom_spiflash_attach(0, false);
//init cache hal
cache_hal_init();
//init mmu
mmu_hal_init();
// update flash ID
bootloader_flash_update_id();
// Check and run XMC startup flow
esp_err_t ret = bootloader_flash_xmc_startup();
assert(ret == ESP_OK);
/* Alternative of bootloader_init_spi_flash */
// RAM app doesn't have headers in the flash. Make a default one for it.
esp_image_header_t WORD_ALIGNED_ATTR hdr = {
.spi_mode = ESP_IMAGE_SPI_MODE_DIO,
.spi_speed = ESP_IMAGE_SPI_SPEED_DIV_2,
.spi_size = ESP_IMAGE_FLASH_SIZE_2MB,
};
bootloader_configure_spi_pins(1);
bootloader_flash_set_spi_mode(&hdr);
bootloader_flash_clock_config(&hdr);
bootloader_flash_clock_init();
bootloader_flash_cs_timing_config();
bootloader_spi_flash_resume();
bootloader_flash_unlock();
cache_hal_disable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
update_flash_config(&hdr);
cache_hal_enable(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_ALL);
//ensure the flash is write-protected
bootloader_enable_wp();
}
#endif //CONFIG_APP_BUILD_TYPE_RAM && !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP

View File

@ -9,7 +9,7 @@
#include "soc/chip_revision.h"
#include "hal/efuse_hal.h"
#if !CONFIG_IDF_TARGET_ESP32C6 && !CONFIG_IDF_TARGET_ESP32H2 && !CONFIG_IDF_TARGET_ESP32P4 && !CONFIG_IDF_TARGET_ESP32C5 &&! CONFIG_IDF_TARGET_ESP32C61 // TODO: IDF-5645
#if !CONFIG_IDF_TARGET_ESP32C6 && !CONFIG_IDF_TARGET_ESP32H2 && !CONFIG_IDF_TARGET_ESP32P4 && !CONFIG_IDF_TARGET_ESP32C5 &&! CONFIG_IDF_TARGET_ESP32C61 &&! CONFIG_IDF_TARGET_ESP32H21 // TODO: IDF-5645
#include "soc/rtc_cntl_reg.h"
#else
#include "soc/lp_wdt_reg.h"
@ -123,6 +123,19 @@ __attribute__((weak)) void bootloader_clock_configure(void)
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */
SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_WAKEUP_INT_CLR); /* SLP_REJECT */
SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_SLEEP_REJECT_INT_CLR); /* SLP_WAKEUP */
#elif CONFIG_IDF_TARGET_ESP32H21
// CLR ENA
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */
CLEAR_PERI_REG_MASK(LP_ANA_LP_INT_ENA_REG, LP_ANA_BOD_MODE0_LP_INT_ENA); /* BROWN_OUT */
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_LP_WDT_INT_ENA); /* WDT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_WAKEUP_INT_ENA); /* SLP_REJECT */
CLEAR_PERI_REG_MASK(PMU_HP_INT_ENA_REG, PMU_SOC_SLEEP_REJECT_INT_ENA); /* SLP_WAKEUP */
// SET CLR
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_SUPER_WDT_INT_CLR); /* SWD */
SET_PERI_REG_MASK(LP_ANA_LP_INT_CLR_REG, LP_ANA_BOD_MODE0_LP_INT_CLR); /* BROWN_OUT */
SET_PERI_REG_MASK(LP_WDT_INT_CLR_REG, LP_WDT_LP_WDT_INT_CLR); /* WDT */
SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_WAKEUP_INT_CLR); /* SLP_REJECT */
SET_PERI_REG_MASK(PMU_HP_INT_CLR_REG, PMU_SOC_SLEEP_REJECT_INT_CLR);
#elif CONFIG_IDF_TARGET_ESP32P4
// CLR ENA
CLEAR_PERI_REG_MASK(LP_WDT_INT_ENA_REG, LP_WDT_SUPER_WDT_INT_ENA); /* SWD */

View File

@ -1,5 +1,5 @@
/*
* SPDX-FileCopyrightText: 2019-2022 Espressif Systems (Shanghai) CO LTD
* SPDX-FileCopyrightText: 2019-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
@ -18,6 +18,7 @@ IRAM_ATTR uint32_t bootloader_common_get_chip_ver_pkg(void)
int bootloader_clock_get_rated_freq_mhz(void)
{
//TODO: IDF-6570, need refactor
#ifdef CONFIG_IDF_TARGET_ESP32
return efuse_hal_get_rated_freq_mhz();
@ -40,6 +41,10 @@ int bootloader_clock_get_rated_freq_mhz(void)
//IDF-6570
return 96;
#elif CONFIG_IDF_TARGET_ESP32H21
//TODO: [ESP32H21] IDF-11556, please check
return 96;
#elif CONFIG_IDF_TARGET_ESP32P4
return 400;

View File

@ -0,0 +1,173 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include "sdkconfig.h"
#include "esp_attr.h"
#include "esp_log.h"
#include "esp_image_format.h"
#include "flash_qio_mode.h"
#include "esp_rom_gpio.h"
#include "esp_rom_uart.h"
#include "esp_rom_sys.h"
#include "esp_rom_spiflash.h"
#include "soc/gpio_sig_map.h"
#include "soc/io_mux_reg.h"
#include "soc/assist_debug_reg.h"
#include "esp_cpu.h"
#include "soc/rtc.h"
#include "soc/spi_periph.h"
#include "soc/cache_reg.h"
#include "soc/io_mux_reg.h"
#include "soc/pcr_reg.h"
#include "rom/ets_sys.h"
#include "bootloader_common.h"
#include "bootloader_init.h"
#include "bootloader_clock.h"
#include "bootloader_flash_config.h"
#include "bootloader_mem.h"
#include "esp_private/regi2c_ctrl.h"
#include "soc/regi2c_lp_bias.h"
#include "soc/regi2c_bias.h"
#include "bootloader_console.h"
#include "bootloader_flash_priv.h"
#include "bootloader_soc.h"
#include "esp_private/bootloader_flash_internal.h"
#include "esp_efuse.h"
#include "hal/mmu_hal.h"
#include "hal/cache_hal.h"
#include "hal/lpwdt_ll.h"
#include "soc/lp_wdt_reg.h"
#include "soc/pmu_reg.h"
#include "hal/efuse_hal.h"
#include "hal/regi2c_ctrl_ll.h"
static const char *TAG = "boot.esp32h21";
static void wdt_reset_cpu0_info_enable(void)
{
REG_SET_BIT(PCR_ASSIST_CONF_REG, PCR_ASSIST_CLK_EN);
REG_CLR_BIT(PCR_ASSIST_CONF_REG, PCR_ASSIST_RST_EN);
REG_WRITE(ASSIST_DEBUG_CORE_0_RCD_EN_REG, ASSIST_DEBUG_CORE_0_RCD_PDEBUGEN | ASSIST_DEBUG_CORE_0_RCD_RECORDEN);
}
static void wdt_reset_info_dump(int cpu)
{
(void) cpu;
// saved PC was already printed by the ROM bootloader.
// nothing to do here.
}
static void bootloader_check_wdt_reset(void)
{
int wdt_rst = 0;
soc_reset_reason_t rst_reason = esp_rom_get_reset_reason(0);
if (rst_reason == RESET_REASON_CORE_RTC_WDT || rst_reason == RESET_REASON_CORE_MWDT0 || rst_reason == RESET_REASON_CORE_MWDT1 ||
rst_reason == RESET_REASON_CPU0_MWDT0 || rst_reason == RESET_REASON_CPU0_MWDT1 || rst_reason == RESET_REASON_CPU0_RTC_WDT) {
ESP_EARLY_LOGW(TAG, "PRO CPU has been reset by WDT.");
wdt_rst = 1;
}
if (wdt_rst) {
// if reset by WDT dump info from trace port
wdt_reset_info_dump(0);
}
wdt_reset_cpu0_info_enable();
}
static void bootloader_super_wdt_auto_feed(void)
{
REG_WRITE(LP_WDT_SWD_WPROTECT_REG, LP_WDT_SWD_WKEY_VALUE);
REG_SET_BIT(LP_WDT_SWD_CONFIG_REG, LP_WDT_SWD_AUTO_FEED_EN);
REG_WRITE(LP_WDT_SWD_WPROTECT_REG, 0);
}
static inline void bootloader_hardware_init(void)
{
/* Disable RF pll by default */
CLEAR_PERI_REG_MASK(PMU_RF_PWC_REG, PMU_XPD_RFPLL);
SET_PERI_REG_MASK(PMU_RF_PWC_REG, PMU_XPD_FORCE_RFPLL);
//TODO: [ESP32H21] IDF-11550, regi2c atomic clock
regi2c_ctrl_ll_master_enable_clock(true); // keep ana i2c mst clock always enabled in bootloader
regi2c_ctrl_ll_master_configure_clock();
}
static inline void bootloader_ana_reset_config(void)
{
//Enable super WDT reset.
bootloader_ana_super_wdt_reset_config(true);
//Enable BOD reset (mode1)
//TODO: [ESP32H21] IDF-11530
// brownout_ll_ana_reset_enable(true);
}
esp_err_t bootloader_init(void)
{
esp_err_t ret = ESP_OK;
bootloader_hardware_init();
bootloader_ana_reset_config();
bootloader_super_wdt_auto_feed();
// In RAM_APP, memory will be initialized in `call_start_cpu0`
#if !CONFIG_APP_BUILD_TYPE_RAM
// protect memory region
bootloader_init_mem();
/* check that static RAM is after the stack */
assert(&_bss_start <= &_bss_end);
assert(&_data_start <= &_data_end);
// clear bss section
bootloader_clear_bss_section();
#endif // !CONFIG_APP_BUILD_TYPE_RAM
// init eFuse virtual mode (read eFuses to RAM)
#ifdef CONFIG_EFUSE_VIRTUAL
ESP_LOGW(TAG, "eFuse virtual mode is enabled. If Secure boot or Flash encryption is enabled then it does not provide any security. FOR TESTING ONLY!");
#ifndef CONFIG_EFUSE_VIRTUAL_KEEP_IN_FLASH
esp_efuse_init_virtual_mode_in_ram();
#endif
#endif
// config clock
bootloader_clock_configure();
// initialize console, from now on, we can use esp_log
bootloader_console_init();
/* print 2nd bootloader banner */
bootloader_print_banner();
#if !CONFIG_APP_BUILD_TYPE_RAM
//init cache hal
cache_hal_init();
//init mmu
mmu_hal_init();
// update flash ID
bootloader_flash_update_id();
// Check and run XMC startup flow
if ((ret = bootloader_flash_xmc_startup()) != ESP_OK) {
ESP_LOGE(TAG, "failed when running XMC startup flow, reboot!");
return ret;
}
// read bootloader header
if ((ret = bootloader_read_bootloader_header()) != ESP_OK) {
return ret;
}
// read chip revision and check if it's compatible to bootloader
if ((ret = bootloader_check_bootloader_validity()) != ESP_OK) {
return ret;
}
// initialize spi flash
if ((ret = bootloader_init_spi_flash()) != ESP_OK) {
return ret;
}
#endif // !CONFIG_APP_BUILD_TYPE_RAM
// check whether a WDT reset happened
bootloader_check_wdt_reset();
// config WDT
bootloader_config_wdt();
// enable RNG early entropy source
bootloader_enable_random();
return ret;
}

View File

@ -0,0 +1,46 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "bootloader_sha.h"
#include <stdbool.h>
#include <string.h>
#include <assert.h>
#include <sys/param.h>
#include "rom/sha.h"
//TODO: [ESP32H21] IDF-11501
static SHA_CTX ctx;
bootloader_sha256_handle_t bootloader_sha256_start()
{
// Enable SHA hardware
ets_sha_enable();
ets_sha_init(&ctx, SHA2_256);
return &ctx; // Meaningless non-NULL value
}
void bootloader_sha256_data(bootloader_sha256_handle_t handle, const void *data, size_t data_len)
{
assert(handle != NULL);
/* H21 secure boot key field consists of 1 byte of curve identifier and 64 bytes of ECDSA public key.
* While verifying the signature block, we need to calculate the SHA of this key field which is of 65 bytes.
* ets_sha_update handles it cleanly so we can safely remove the check:
* assert(data_len % 4) == 0
*/
ets_sha_update(&ctx, data, data_len, false);
}
void bootloader_sha256_finish(bootloader_sha256_handle_t handle, uint8_t *digest)
{
assert(handle != NULL);
if (digest == NULL) {
bzero(&ctx, sizeof(ctx));
return;
}
ets_sha_finish(&ctx, digest);
}

View File

@ -0,0 +1,32 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include "soc/lp_analog_peri_reg.h"
void bootloader_ana_super_wdt_reset_config(bool enable)
{
//H21 doesn't support bypass super WDT reset
assert(enable);
REG_CLR_BIT(LP_ANA_FIB_ENABLE_REG, LP_ANALOG_PERI_LP_ANA_FIB_SUPER_WDT_RST);
}
//TODO: [ESP32H21] IDF-11534, there is a `bootloader_ana_bod_reset_config` in verify code, please check
void bootloader_ana_bod_reset_config(bool enable)
{
REG_CLR_BIT(LP_ANA_FIB_ENABLE_REG, LP_ANALOG_PERI_LP_ANA_FIB_BOD_RST);
if (enable) {
REG_SET_BIT(LP_ANA_BOD_MODE1_CNTL_REG, LP_ANA_BOD_MODE1_RESET_ENA);
} else {
REG_CLR_BIT(LP_ANA_BOD_MODE1_CNTL_REG, LP_ANA_BOD_MODE1_RESET_ENA);
}
}
//Not supported but common bootloader calls the function. Do nothing
void bootloader_ana_clock_glitch_reset_config(bool enable)
{
(void)enable;
}

View File

@ -0,0 +1,22 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <strings.h>
#include "esp_flash_encrypt.h"
#include "esp_secure_boot.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#include "esp_log.h"
#include "sdkconfig.h"
static __attribute__((unused)) const char *TAG = "flash_encrypt";
esp_err_t esp_flash_encryption_enable_secure_features(void)
{
//TODO: [ESP32H21] IDF-11499
abort();
return ESP_OK;
}

View File

@ -0,0 +1,22 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <strings.h>
#include "esp_flash_encrypt.h"
#include "esp_secure_boot.h"
#include "esp_efuse.h"
#include "esp_efuse_table.h"
#include "esp_log.h"
#include "sdkconfig.h"
static __attribute__((unused)) const char *TAG = "secure_boot";
esp_err_t esp_secure_boot_enable_secure_features(void)
{
//TODO: [ESP32H21] IDF-11500
abort();
return ESP_OK;
}

View File

@ -24,18 +24,21 @@ int esp_efuse_rtc_calib_get_ver(void)
uint32_t cali_version = 0;
// TODO: [ESP32H21] IDF-11590
abort();
return cali_version;
}
uint32_t esp_efuse_rtc_calib_get_init_code(int version, uint32_t adc_unit, int atten)
{
// TODO: [ESP32H21] IDF-11590
abort();
return 0;
}
int esp_efuse_rtc_calib_get_chan_compens(int version, uint32_t adc_unit, uint32_t adc_channel, int atten)
{
// TODO: [ESP32H21] IDF-11590
abort();
return ESP_OK;
}
esp_err_t esp_efuse_rtc_calib_get_cal_voltage(int version, uint32_t adc_unit, int atten, uint32_t* out_digi, uint32_t* out_vol_mv)

View File

@ -584,10 +584,12 @@ esp_err_t gpio_isr_register(void (*fn)(void *), void *arg, int intr_alloc_flags,
{
GPIO_CHECK(fn, "GPIO ISR null", ESP_ERR_INVALID_ARG);
gpio_isr_alloc_t p;
#if !CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7995
p.source = ETS_GPIO_INTR_SOURCE;
#else
#if CONFIG_IDF_TARGET_ESP32P4 //TODO: IDF-7995
p.source = ETS_GPIO_INTR0_SOURCE;
#elif CONFIG_IDF_TARGET_ESP32H21 // TODO: IDF-11611
p.source = ETS_GPIO_INTERRUPT_PRO_SOURCE;
#else
p.source = ETS_GPIO_INTR_SOURCE;
#endif
p.intr_alloc_flags = intr_alloc_flags;
#if SOC_ANA_CMPR_INTR_SHARE_WITH_GPIO

View File

@ -42,9 +42,10 @@ if(NOT non_os_build)
"port/esp_clk_tree_common.c"
"dma/esp_dma_utils.c"
"dma/gdma_link.c"
"spi_share_hw_ctrl.c"
"spi_bus_lock.c")
if(CONFIG_SOC_GPSPI_SUPPORTED)
list(APPEND srcs "spi_share_hw_ctrl.c")
endif()
if(CONFIG_SOC_ADC_SUPPORTED)
list(APPEND srcs "adc_share_hw_ctrl.c")
endif()
@ -157,6 +158,12 @@ set(public_include_dirs "include" "include/soc" "include/soc/${target}"
"dma/include" "ldo/include" "debug_probe/include"
"mspi_timing_tuning/include")
if(CONFIG_IDF_TARGET_ESP32H21)
list(REMOVE_ITEM srcs
"sleep_modes.c" # TODO: [ESP32H21] IDF-11515, IDF-11517
)
endif()
idf_component_register(SRCS ${srcs}
INCLUDE_DIRS ${public_include_dirs}
PRIV_INCLUDE_DIRS port/include include/esp_private

View File

@ -28,7 +28,7 @@ typedef enum {
SLEEP_EVENT_HW_GOTO_SLEEP, // Hardware is about to power off
SLEEP_EVENT_SW_CPU_TO_MEM_START, // CPU registers are starting to be saved
SLEEP_EVENT_SW_CPU_TO_MEM_END, // CPU registers have finished saving
#if CONFIG_IDF_TARGET_ESP32H2
#if CONFIG_IDF_TARGET_ESP32H2 || CONFIG_IDF_TARGET_ESP32H21
SLEEP_EVENT_HW_FLASH_BBPLL_EN_START, // Beginning of rtc_clk_bbpll_enable when using FLASH_PLL
SLEEP_EVENT_HW_FLASH_BBPLL_EN_STOP, // End of rtc_clk_bbpll_enable when using FLASH_PLL
#endif

View File

@ -0,0 +1,32 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @file esp32h21/rtc.h
*
* This file contains declarations of rtc related functions.
*/
/**
* @brief Get current value of RTC counter in microseconds
*
* Note: this function may take up to 1 RTC_SLOW_CLK cycle to execute
*
* @return current value of RTC counter in microseconds
*/
uint64_t esp_rtc_get_time_us(void);
#ifdef __cplusplus
}
#endif

View File

@ -1 +1,15 @@
target_include_directories(${COMPONENT_LIB} PUBLIC . include)
set(srcs "rtc_clk.c"
"rtc_time.c"
"chip_info.c"
)
if(CONFIG_SOC_PMU_SUPPORTED)
list(APPEND srcs "rtc_clk_init.c"
"pmu_param.c"
"pmu_init.c"
)
endif()
add_prefix(srcs "${CMAKE_CURRENT_LIST_DIR}/" "${srcs}")
target_sources(${COMPONENT_LIB} PRIVATE "${srcs}")
target_include_directories(${COMPONENT_LIB} PUBLIC . include private_include)

View File

@ -0,0 +1,58 @@
choice ESP32H21_REV_MIN
prompt "Minimum Supported ESP32-H21 Revision"
default ESP32H21_REV_MIN_0
help
Required minimum chip revision. ESP-IDF will check for it and
reject to boot if the chip revision fails the check.
This ensures the chip used will have some modifications (features, or bugfixes).
The complied binary will only support chips above this revision,
this will also help to reduce binary size.
config ESP32H21_REV_MIN_0
bool "Rev v0.0"
endchoice
config ESP32H21_REV_MIN_FULL
int
default 0 if ESP32H21_REV_MIN_0
config ESP_REV_MIN_FULL
int
default ESP32H21_REV_MIN_FULL
#
# MAX Revision
#
comment "Maximum Supported ESP32-H21 Revision (Rev v0.99)"
# Maximum revision that IDF supports.
# It can not be changed by user.
# Only Espressif can change it when a new version will be supported in IDF.
# Supports all chips starting from ESP32H21_REV_MIN_FULL to ESP32H21_REV_MAX_FULL
config ESP32H21_REV_MAX_FULL
int
default 99
# keep in sync the "Maximum Supported Revision" description with this value
config ESP_REV_MAX_FULL
int
default ESP32H21_REV_MAX_FULL
config ESP_EFUSE_BLOCK_REV_MIN_FULL
int "Minimum Supported ESP32-H21 eFuse Block Revision"
default 0
help
Required minimum eFuse Block revision. ESP-IDF will check it at the 2nd bootloader stage
whether the current image can work correctly for this eFuse Block revision.
So that to avoid running an incompatible image on a SoC that contains breaking change in the eFuse Block.
If you want to update this value to run the image that not compatible with the current eFuse Block revision,
please contact to Espressif's business team for details:
https://www.espressif.com.cn/en/contact-us/sales-questions
config ESP_EFUSE_BLOCK_REV_MAX_FULL
int
default 99
comment "Maximum Supported ESP32-H21 eFuse Block Revision (eFuse Block Rev v0.99)"
# The revision in the comment must correspond to the default value of ESP_EFUSE_BLOCK_REV_MAX_FULL

View File

@ -0,0 +1,39 @@
choice RTC_CLK_SRC
prompt "RTC clock source"
default RTC_CLK_SRC_INT_RC
help
Choose which clock is used as RTC clock source.
config RTC_CLK_SRC_INT_RC
bool "Internal 136 kHz RC oscillator"
config RTC_CLK_SRC_EXT_CRYS
bool "External 32 kHz crystal"
select ESP_SYSTEM_RTC_EXT_XTAL
config RTC_CLK_SRC_EXT_OSC
bool "External 32 kHz oscillator at 32K_XP pin"
select ESP_SYSTEM_RTC_EXT_OSC
config RTC_CLK_SRC_INT_RC32K
bool "Internal 32 kHz RC oscillator"
endchoice
config RTC_CLK_CAL_CYCLES
int "Number of cycles for RTC_SLOW_CLK calibration"
default 3000 if RTC_CLK_SRC_EXT_CRYS || RTC_CLK_SRC_EXT_OSC || RTC_CLK_SRC_INT_RC32K
default 1024 if RTC_CLK_SRC_INT_RC
range 0 8190 if RTC_CLK_SRC_EXT_CRYS || RTC_CLK_SRC_EXT_OSC || RTC_CLK_SRC_INT_RC32K
range 0 32766 if RTC_CLK_SRC_INT_RC
help
When the startup code initializes RTC_SLOW_CLK, it can perform
calibration by comparing the RTC_SLOW_CLK frequency with main XTAL
frequency. This option sets the number of RTC_SLOW_CLK cycles measured
by the calibration routine. Higher numbers increase calibration
precision, which may be important for applications which spend a lot of
time in deep sleep. Lower numbers reduce startup time.
When this option is set to 0, clock calibration will not be performed at
startup, and approximate clock frequencies will be assumed:
- 136000 Hz if internal RC oscillator is used as clock source. For this use value 1024.
- 32768 Hz if the 32k crystal oscillator is used. For this use value 3000 or more.
In case more value will help improve the definition of the launch of the crystal.
If the crystal could not start, it will be switched to internal RC.

View File

@ -0,0 +1,18 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <string.h>
#include "esp_chip_info.h"
#include "hal/efuse_hal.h"
void esp_chip_info(esp_chip_info_t *out_info)
{
memset(out_info, 0, sizeof(*out_info));
out_info->model = CHIP_ESP32H21;
out_info->revision = efuse_hal_chip_revision();
out_info->cores = 1;
out_info->features = CHIP_FEATURE_IEEE802154 | CHIP_FEATURE_BLE;
}

View File

@ -0,0 +1,16 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include "sdkconfig.h"
#include "soc/soc.h"
#include "esp_cpu.h"
#include "esp_fault.h"
void esp_cpu_configure_region_protection(void)
{
//TODO: [ESP32H21] IDF-11917
}

View File

@ -0,0 +1,46 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include "esp_clk_tree.h"
#include "esp_err.h"
#include "esp_check.h"
#include "soc/rtc.h"
#include "hal/clk_tree_hal.h"
#include "hal/clk_tree_ll.h"
#include "esp_private/esp_clk_tree_common.h"
//TODO: [ESP32H21] IDF-11521
static const char *TAG = "esp_clk_tree";
esp_err_t esp_clk_tree_src_get_freq_hz(soc_module_clk_t clk_src, esp_clk_tree_src_freq_precision_t precision,
uint32_t *freq_value)
{
ESP_RETURN_ON_FALSE(clk_src > 0 && clk_src < SOC_MOD_CLK_INVALID, ESP_ERR_INVALID_ARG, TAG, "unknown clk src");
ESP_RETURN_ON_FALSE(precision < ESP_CLK_TREE_SRC_FREQ_PRECISION_INVALID, ESP_ERR_INVALID_ARG, TAG, "unknown precision");
ESP_RETURN_ON_FALSE(freq_value, ESP_ERR_INVALID_ARG, TAG, "null pointer");
uint32_t clk_src_freq = 0;
switch (clk_src) {
case SOC_MOD_CLK_PLL_F48M:
clk_src_freq = CLK_LL_PLL_48M_FREQ_MHZ * MHZ;
break;
case SOC_MOD_CLK_PLL_F64M:
clk_src_freq = CLK_LL_PLL_64M_FREQ_MHZ * MHZ;
break;
case SOC_MOD_CLK_PLL_F96M:
clk_src_freq = CLK_LL_PLL_96M_FREQ_MHZ * MHZ;
break;
default:
break;
}
ESP_RETURN_ON_FALSE(clk_src_freq, ESP_FAIL, TAG,
"freq shouldn't be 0, calibration failed");
*freq_value = clk_src_freq;
return ESP_OK;
}

View File

@ -0,0 +1,24 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_cpu.h"
#include "esp_riscv_intr.h"
void esp_cpu_intr_get_desc(int core_id, int intr_num, esp_cpu_intr_desc_t *intr_desc_ret)
{
/* On the ESP32-H21, interrupt:
* - 1 is for Wi-Fi
* - 6 for "permanently disabled interrupt"
*
* Interrupts 3, 4 and 7 are unavailable for PULP CPU as they are bound to Core-Local Interrupts (CLINT)
*/
//TODO: [ESP32H21] IDF-11537
const uint32_t rsvd_mask = BIT(1) | BIT(3) | BIT(4) | BIT(6) | BIT(7);
intr_desc_ret->priority = 1;
intr_desc_ret->type = ESP_CPU_INTR_TYPE_NA;
intr_desc_ret->flags = esp_riscv_intr_num_flags(intr_num, rsvd_mask);
}

View File

@ -0,0 +1,487 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include "soc/soc.h"
#include "soc/clk_tree_defs.h"
#ifdef __cplusplus
extern "C" {
#endif
/************************************************************************************/
/***************** THIS FILE IS CONSIDERED AS A PRIVATE HEADER FILE *****************/
/*** IT IS NOT RECOMMENDED TO USE THE APIS IN THIS FILE DIRECTLY IN APPLICATIONS ****/
/************************************************************************************/
/**
* @file rtc.h
* @brief Low-level RTC power, clock functions.
*
* Functions in this file facilitate configuration of ESP32H21's RTC_CNTL peripheral.
* RTC_CNTL peripheral handles many functions:
* - enables/disables clocks and power to various parts of the chip; this is
* done using direct register access (forcing power up or power down) or by
* allowing state machines to control power and clocks automatically
* - handles sleep and wakeup functions
* - maintains a 48-bit counter which can be used for timekeeping
*
* These functions are not thread safe, and should not be viewed as high level
* APIs. For example, while this file provides a function which can switch
* CPU frequency, this function is on its own is not sufficient to implement
* frequency switching in ESP-IDF context: some coordination with RTOS,
* peripheral drivers, and WiFi/BT stacks is also required.
*
* These functions will normally not be used in applications directly.
* ESP-IDF provides, or will provide, drivers and other facilities to use
* RTC subsystem functionality.
*
* The functions are loosely split into the following groups:
* - rtc_clk: clock switching, calibration
* - rtc_time: reading RTC counter, conversion between counter values and time
* - rtc_sleep: entry into sleep modes
*/
#define MHZ (1000000)
#define RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(cycles) (cycles << 10)
#define RTC_SLOW_CLK_32K_CAL_TIMEOUT_THRES(cycles) (cycles << 12)
#define RTC_FAST_CLK_8M_CAL_TIMEOUT_THRES(cycles) (TIMG_RTC_CALI_TIMEOUT_THRES_V) // Just use the max timeout thres value
#define OTHER_BLOCKS_POWERUP 1
#define OTHER_BLOCKS_WAIT 1
/* Delays for various clock sources to be enabled/switched.
* All values are in microseconds.
*/
#define SOC_DELAY_RTC_FAST_CLK_SWITCH 3
#define SOC_DELAY_RTC_SLOW_CLK_SWITCH 300
#define SOC_DELAY_RC_FAST_ENABLE 50
#define SOC_DELAY_RC_FAST_DIGI_SWITCH 5
#define SOC_DELAY_RC32K_ENABLE 300
#define SOC_DELAY_LP_PLL_SWITCH 3
#define SOC_DELAY_LP_PLL_ENABLE 50
#define RTC_CNTL_PLL_BUF_WAIT_DEFAULT 20
#define RTC_CNTL_XTL_BUF_WAIT_DEFAULT 100
#define RTC_CNTL_CK8M_DFREQ_DEFAULT 860
#define RTC_CNTL_SCK_DCAP_DEFAULT 85
#define RTC_CNTL_RC32K_DFREQ_DEFAULT 700
/* Various delays to be programmed into power control state machines */
#define RTC_CNTL_XTL_BUF_WAIT_SLP_US (250)
#define RTC_CNTL_PLL_BUF_WAIT_SLP_CYCLES (1)
#define RTC_CNTL_CK8M_WAIT_SLP_CYCLES (4)
#define RTC_CNTL_WAKEUP_DELAY_CYCLES (5)
#define RTC_CNTL_OTHER_BLOCKS_POWERUP_CYCLES (1)
#define RTC_CNTL_OTHER_BLOCKS_WAIT_CYCLES (1)
#define RTC_CNTL_MIN_SLP_VAL_MIN (2)
/*
set sleep_init default param
*/
#define RTC_CNTL_DBG_ATTEN_LIGHTSLEEP_DEFAULT 5
#define RTC_CNTL_DBG_ATTEN_LIGHTSLEEP_NODROP 0
#define RTC_CNTL_DBG_ATTEN_DEEPSLEEP_DEFAULT 15
#define RTC_CNTL_DBG_ATTEN_MONITOR_DEFAULT 0
#define RTC_CNTL_BIASSLP_MONITOR_DEFAULT 0
#define RTC_CNTL_BIASSLP_SLEEP_ON 0
#define RTC_CNTL_BIASSLP_SLEEP_DEFAULT 1
#define RTC_CNTL_PD_CUR_MONITOR_DEFAULT 0
#define RTC_CNTL_PD_CUR_SLEEP_ON 0
#define RTC_CNTL_PD_CUR_SLEEP_DEFAULT 1
#define RTC_CNTL_DG_VDD_DRV_B_SLP_DEFAULT 254
/*
The follow value is used to get a reasonable rtc voltage dbias value according to digital dbias & some other value
storing in efuse (based on ATE 5k ECO3 chips)
*/
#define K_RTC_MID_MUL10000 215
#define K_DIG_MID_MUL10000 213
#define V_RTC_MID_MUL10000 10800
#define V_DIG_MID_MUL10000 10860
/**
* @brief CPU clock configuration structure
*/
typedef struct rtc_cpu_freq_config_s {
soc_cpu_clk_src_t source; //!< The clock from which CPU clock is derived
uint32_t source_freq_mhz; //!< Source clock frequency
uint32_t div; //!< Divider, freq_mhz = source_freq_mhz / div
uint32_t freq_mhz; //!< CPU clock frequency
} rtc_cpu_freq_config_t;
#define RTC_CLK_CAL_FRACT 19 //!< Number of fractional bits in values returned by rtc_clk_cal
#define RTC_VDDSDIO_TIEH_1_8V 0 //!< TIEH field value for 1.8V VDDSDIO
#define RTC_VDDSDIO_TIEH_3_3V 1 //!< TIEH field value for 3.3V VDDSDIO
/**
* @brief Clock source to be calibrated using rtc_clk_cal function
*
* @note On previous targets, the enum values somehow reflects the register field values of TIMG_RTC_CALI_CLK_SEL
* However, this is not true on ESP32H21. The conversion to register field values is explicitly done in
* rtc_clk_cal_internal
*/
typedef enum {
RTC_CAL_RTC_MUX = -1, //!< Currently selected RTC_SLOW_CLK
RTC_CAL_RC_SLOW = SOC_RTC_SLOW_CLK_SRC_RC_SLOW, //!< Internal 150kHz RC oscillator
RTC_CAL_RC32K = SOC_RTC_SLOW_CLK_SRC_RC32K, //!< Internal 32kHz RC oscillator, as one type of 32k clock
RTC_CAL_32K_XTAL = SOC_RTC_SLOW_CLK_SRC_XTAL32K, //!< External 32kHz XTAL, as one type of 32k clock
RTC_CAL_32K_OSC_SLOW = SOC_RTC_SLOW_CLK_SRC_OSC_SLOW, //!< External slow clock signal input by lp_pad_gpiox, as one type of 32k clock
RTC_CAL_RC_FAST //!< Internal 8MHz RC oscillator
} rtc_cal_sel_t;
/**
* Initialization parameters for rtc_clk_init
*/
typedef struct {
soc_xtal_freq_t xtal_freq : 8; //!< Main XTAL frequency
uint32_t cpu_freq_mhz : 10; //!< CPU frequency to set, in MHz
soc_rtc_fast_clk_src_t fast_clk_src : 2; //!< RTC_FAST_CLK clock source to choose
soc_rtc_slow_clk_src_t slow_clk_src : 3; //!< RTC_SLOW_CLK clock source to choose
uint32_t clk_rtc_clk_div : 8;
uint32_t clk_8m_clk_div : 3; //!< RC_FAST clock divider (division is by clk_8m_div+1, i.e. 0 means ~8MHz frequency)
uint32_t slow_clk_dcap : 8; //!< RC_SLOW clock adjustment parameter (higher value leads to lower frequency)
uint32_t clk_8m_dfreq : 10; //!< RC_FAST clock adjustment parameter (higher value leads to higher frequency)
uint32_t rc32k_dfreq : 10; //!< Internal RC32K clock adjustment parameter (higher value leads to higher frequency)
} rtc_clk_config_t;
/**
* Default initializer for rtc_clk_config_t
*/
#define RTC_CLK_CONFIG_DEFAULT() { \
.xtal_freq = SOC_XTAL_FREQ_32M, \
.cpu_freq_mhz = 96, \
.fast_clk_src = SOC_RTC_FAST_CLK_SRC_RC_FAST, \
.slow_clk_src = SOC_RTC_SLOW_CLK_SRC_RC_SLOW, \
.clk_rtc_clk_div = 0, \
.clk_8m_clk_div = 0, \
.slow_clk_dcap = RTC_CNTL_SCK_DCAP_DEFAULT, \
.clk_8m_dfreq = RTC_CNTL_CK8M_DFREQ_DEFAULT, \
.rc32k_dfreq = RTC_CNTL_RC32K_DFREQ_DEFAULT, \
}
/**
* Initialize clocks and set CPU frequency
*
* @param cfg clock configuration as rtc_clk_config_t
*/
void rtc_clk_init(rtc_clk_config_t cfg);
/**
* @brief Get main XTAL frequency
*
* This is the value stored in RTC register RTC_XTAL_FREQ_REG by the bootloader. As passed to
* rtc_clk_init function
*
* @return XTAL frequency, one of soc_xtal_freq_t
*/
soc_xtal_freq_t rtc_clk_xtal_freq_get(void);
/**
* @brief Update XTAL frequency
*
* Updates the XTAL value stored in RTC_XTAL_FREQ_REG. Usually this value is ignored
* after startup.
*
* @param xtal_freq New frequency value
*/
void rtc_clk_xtal_freq_update(soc_xtal_freq_t xtal_freq);
/**
* @brief Enable or disable 32 kHz XTAL oscillator
* @param en true to enable, false to disable
*/
void rtc_clk_32k_enable(bool en);
/**
* @brief Configure 32 kHz XTAL oscillator to accept external clock signal
*/
void rtc_clk_32k_enable_external(void);
/**
* @brief Get the state of 32k XTAL oscillator
* @return true if 32k XTAL oscillator has been enabled
*/
bool rtc_clk_32k_enabled(void);
/**
* @brief Enable 32k oscillator, configuring it for fast startup time.
* Note: to achieve higher frequency stability, rtc_clk_32k_enable function
* must be called one the 32k XTAL oscillator has started up. This function
* will initially disable the 32k XTAL oscillator, so it should not be called
* when the system is using 32k XTAL as RTC_SLOW_CLK.
*
* @param cycle Number of 32kHz cycles to bootstrap external crystal.
* If 0, no square wave will be used to bootstrap crystal oscillation.
*/
void rtc_clk_32k_bootstrap(uint32_t cycle);
/**
* @brief Enable or disable 32 kHz internal rc oscillator
* @param en true to enable, false to disable
*/
void rtc_clk_rc32k_enable(bool enable);
/**
* @brief Enable or disable 8 MHz internal oscillator
*
* @param clk_8m_en true to enable 8MHz generator
*/
void rtc_clk_8m_enable(bool clk_8m_en);
/**
* @brief Get the state of 8 MHz internal oscillator
* @return true if the oscillator is enabled
*/
bool rtc_clk_8m_enabled(void);
/**
* @brief Enable or disable LP_PLL_CLK
* Note that to be able to use LP_PLL clock, besides turn on the power for LP_PLL, also needs to turn on the power for
* the LP_PLL clock source (either XTAL32K or RC32K).
* @param enable true to enable, false to disable
*/
void rtc_clk_lp_pll_enable(bool enable);
/**
* @brief Select clock source for LP_PLL_CLK
* @param clk_src clock source (one of soc_lp_pll_clk_src_t values)
*/
void rtc_clk_lp_pll_src_set(soc_lp_pll_clk_src_t clk_src);
/**
* @brief Select source for RTC_SLOW_CLK
* @param clk_src clock source (one of soc_rtc_slow_clk_src_t values)
*/
void rtc_clk_slow_src_set(soc_rtc_slow_clk_src_t clk_src);
/**
* @brief Get the RTC_SLOW_CLK source
* @return currently selected clock source (one of soc_rtc_slow_clk_src_t values)
*/
soc_rtc_slow_clk_src_t rtc_clk_slow_src_get(void);
/**
* @brief Get the approximate frequency of RTC_SLOW_CLK, in Hz
*
* - if SOC_RTC_SLOW_CLK_SRC_RC_SLOW is selected, returns 136000
* - if SOC_RTC_SLOW_CLK_SRC_XTAL32K is selected, returns 32768
* - if SOC_RTC_SLOW_CLK_SRC_RC32K is selected, returns 32768
* - if SOC_RTC_SLOW_CLK_SRC_OSC_SLOW is selected, returns 32768
*
* rtc_clk_cal function can be used to get more precise value by comparing
* RTC_SLOW_CLK frequency to the frequency of main XTAL.
*
* @return RTC_SLOW_CLK frequency, in Hz
*/
uint32_t rtc_clk_slow_freq_get_hz(void);
/**
* @brief Select source for RTC_FAST_CLK
* @param clk_src clock source (one of soc_rtc_fast_clk_src_t values)
*/
void rtc_clk_fast_src_set(soc_rtc_fast_clk_src_t clk_src);
/**
* @brief Get the RTC_FAST_CLK source
* @return currently selected clock source (one of soc_rtc_fast_clk_src_t values)
*/
soc_rtc_fast_clk_src_t rtc_clk_fast_src_get(void);
/**
* @brief Get CPU frequency config for a given frequency
* @param freq_mhz Frequency in MHz
* @param[out] out_config Output, CPU frequency configuration structure
* @return true if frequency can be obtained, false otherwise
*/
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t *out_config);
/**
* @brief Switch CPU frequency
*
* This function sets CPU frequency according to the given configuration
* structure. It enables PLLs, if necessary.
*
* @note This function in not intended to be called by applications in FreeRTOS
* environment. This is because it does not adjust various timers based on the
* new CPU frequency.
*
* @param config CPU frequency configuration structure
*/
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t *config);
/**
* @brief Switch CPU frequency (optimized for speed)
*
* This function is a faster equivalent of rtc_clk_cpu_freq_set_config.
* It works faster because it does not disable PLLs when switching from PLL to
* XTAL and does not enabled them when switching back. If PLL is not already
* enabled when this function is called to switch from XTAL to PLL frequency,
* or the PLL which is enabled is the wrong one, this function will fall back
* to calling rtc_clk_cpu_freq_set_config.
*
* Unlike rtc_clk_cpu_freq_set_config, this function relies on static data,
* so it is less safe to use it e.g. from a panic handler (when memory might
* be corrupted).
*
* @note This function in not intended to be called by applications in FreeRTOS
* environment. This is because it does not adjust various timers based on the
* new CPU frequency.
*
* @param config CPU frequency configuration structure
*/
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t *config);
/**
* @brief Get the currently used CPU frequency configuration
* @param[out] out_config Output, CPU frequency configuration structure
*/
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t *out_config);
/**
* @brief Switch CPU clock source to XTAL
*
* Short form for filling in rtc_cpu_freq_config_t structure and calling
* rtc_clk_cpu_freq_set_config when a switch to XTAL is needed.
* Assumes that XTAL frequency has been determined  don't call in startup code.
*
* @note On ESP32H21, this function will check whether BBPLL can be disabled. If there is no consumer, then BBPLL will be
* turned off. The behaviour is the same as using rtc_clk_cpu_freq_set_config to switch cpu clock source to XTAL.
*/
void rtc_clk_cpu_freq_set_xtal(void);
/**
* @brief Get the current stored APB frequency.
* @return The APB frequency value as last set via rtc_clk_apb_freq_update(), in Hz.
*/
uint32_t rtc_clk_apb_freq_get(void);
/**
* @brief Measure RTC slow clock's period, based on main XTAL frequency
*
* This function will time out and return 0 if the time for the given number
* of cycles to be counted exceeds the expected time twice. This may happen if
* 32k XTAL is being calibrated, but the oscillator has not started up (due to
* incorrect loading capacitance, board design issue, or lack of 32 XTAL on board).
*
* @param cal_clk clock to be measured
* @param slow_clk_cycles number of slow clock cycles to average
* @return average slow clock period in microseconds, Q13.19 fixed point format,
* or 0 if calibration has timed out
*/
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slow_clk_cycles);
/**
* @brief Convert time interval from microseconds to RTC_SLOW_CLK cycles
* @param time_in_us Time interval in microseconds
* @param slow_clk_period Period of slow clock in microseconds, Q13.19
* fixed point format (as returned by rtc_slowck_cali).
* @return number of slow clock cycles
*/
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period);
/**
* @brief Convert time interval from RTC_SLOW_CLK to microseconds
* @param time_in_us Time interval in RTC_SLOW_CLK cycles
* @param slow_clk_period Period of slow clock in microseconds, Q13.19
* fixed point format (as returned by rtc_slowck_cali).
* @return time interval in microseconds
*/
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period);
/**
* @brief Get current value of RTC counter
*
* RTC has a 48-bit counter which is incremented by 2 every 2 RTC_SLOW_CLK
* cycles. Counter value is not writable by software. The value is not adjusted
* when switching to a different RTC_SLOW_CLK source.
*
* Note: this function may take up to 1 RTC_SLOW_CLK cycle to execute
*
* @return current value of RTC counter
*/
uint64_t rtc_time_get(void);
/**
* @brief Enable the rtc digital 8M clock
*
* This function is used to enable the digital rtc 8M clock to support peripherals.
* For enabling the analog 8M clock, using `rtc_clk_8M_enable` function above.
*/
void rtc_dig_clk8m_enable(void);
/**
* @brief Disable the rtc digital 8M clock
*
* This function is used to disable the digital rtc 8M clock, which is only used to support peripherals.
*/
void rtc_dig_clk8m_disable(void);
/**
* @brief Get whether the rtc digital 8M clock is enabled
*/
bool rtc_dig_8m_enabled(void);
/**
* @brief Calculate the real clock value after the clock calibration
*
* @param cal_val Average slow clock period in microseconds, fixed point value as returned from `rtc_clk_cal`
* @return Frequency of the clock in Hz
*/
uint32_t rtc_clk_freq_cal(uint32_t cal_val);
// -------------------------- CLOCK TREE DEFS ALIAS ----------------------------
// **WARNING**: The following are only for backwards compatibility.
// Please use the declarations in soc/clk_tree_defs.h instead.
/**
* @brief CPU clock source
*/
typedef soc_cpu_clk_src_t rtc_cpu_freq_src_t;
#define RTC_CPU_FREQ_SRC_XTAL SOC_CPU_CLK_SRC_XTAL //!< XTAL
#define RTC_CPU_FREQ_SRC_PLL SOC_CPU_CLK_SRC_PLL //!< PLL (96M)
#define RTC_CPU_FREQ_SRC_8M SOC_CPU_CLK_SRC_RC_FAST //!< Internal 8M RTC oscillator
/**
* @brief RTC SLOW_CLK frequency values
*/
typedef soc_rtc_slow_clk_src_t rtc_slow_freq_t;
#define RTC_SLOW_FREQ_RTC SOC_RTC_SLOW_CLK_SRC_RC_SLOW //!< Internal 150 kHz RC oscillator
#define RTC_SLOW_FREQ_32K_XTAL SOC_RTC_SLOW_CLK_SRC_XTAL32K //!< External 32 kHz XTAL
/**
* @brief RTC FAST_CLK frequency values
*/
typedef soc_rtc_fast_clk_src_t rtc_fast_freq_t;
#define RTC_FAST_FREQ_XTALD4 SOC_RTC_FAST_CLK_SRC_XTAL_DIV //!< Main XTAL, divided by 2
#define RTC_FAST_FREQ_8M SOC_RTC_FAST_CLK_SRC_RC_FAST //!< Internal 8 MHz RC oscillator
/**
* @brief Possible main XTAL frequency values.
*/
typedef soc_xtal_freq_t rtc_xtal_freq_t;
#define RTC_XTAL_FREQ_32M SOC_XTAL_FREQ_32M //!< 32 MHz XTAL
/* Alias of frequency related macros */
#define RTC_FAST_CLK_FREQ_APPROX SOC_CLK_RC_FAST_FREQ_APPROX
#define RTC_FAST_CLK_FREQ_8M SOC_CLK_RC_FAST_FREQ_APPROX
#define RTC_SLOW_CLK_FREQ_150K SOC_CLK_RC_SLOW_FREQ_APPROX
#define RTC_SLOW_CLK_FREQ_32K SOC_CLK_XTAL32K_FREQ_APPROX
/* Alias of deprecated function names */
#define rtc_clk_slow_freq_set(slow_freq) rtc_clk_slow_src_set(slow_freq)
#define rtc_clk_slow_freq_get() rtc_clk_slow_src_get()
#define rtc_clk_fast_freq_set(fast_freq) rtc_clk_fast_src_set(fast_freq)
#define rtc_clk_fast_freq_get() rtc_clk_fast_src_get()
#ifdef __cplusplus
}
#endif

View File

@ -0,0 +1,8 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
//TODO: [ESP32H21] IDF-11611

View File

@ -0,0 +1,458 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <assert.h>
#include <stdlib.h>
#include "sdkconfig.h"
#include "rom/rtc.h"
#include "soc/rtc.h"
#include "esp_private/rtc_clk.h"
#include "esp_hw_log.h"
#include "esp_rom_sys.h"
#include "hal/clk_tree_ll.h"
#include "hal/regi2c_ctrl_ll.h"
#include "soc/io_mux_reg.h"
#include "soc/lp_aon_reg.h"
#include "esp_private/sleep_event.h"
#include "esp_private/regi2c_ctrl.h"
static const char *TAG = "rtc_clk";
// Current PLL frequency, in 96MHz. Zero if PLL is not enabled.
static int s_cur_pll_freq;
static uint32_t s_bbpll_digi_consumers_ref_count = 0; // Currently, it only tracks whether the 48MHz PHY clock is in-use by USB Serial/JTAG
void rtc_clk_bbpll_add_consumer(void)
{
s_bbpll_digi_consumers_ref_count += 1;
}
void rtc_clk_bbpll_remove_consumer(void)
{
s_bbpll_digi_consumers_ref_count -= 1;
}
void rtc_clk_32k_enable(bool enable)
{
if (enable) {
clk_ll_xtal32k_enable(CLK_LL_XTAL32K_ENABLE_MODE_CRYSTAL);
} else {
clk_ll_xtal32k_disable();
}
}
void rtc_clk_32k_enable_external(void)
{
// EXT_OSC_SLOW_GPIO_NUM == GPIO_NUM_13
PIN_INPUT_ENABLE(IO_MUX_GPIO13_REG);
REG_SET_BIT(LP_AON_GPIO_HOLD0_REG, BIT(EXT_OSC_SLOW_GPIO_NUM));
clk_ll_xtal32k_enable(CLK_LL_XTAL32K_ENABLE_MODE_EXTERNAL);
}
void rtc_clk_32k_bootstrap(uint32_t cycle)
{
/* No special bootstrapping needed for ESP32-H2, 'cycle' argument is to keep the signature
* same as for the ESP32. Just enable the XTAL here.
*/
(void)cycle;
rtc_clk_32k_enable(true);
}
bool rtc_clk_32k_enabled(void)
{
return clk_ll_xtal32k_is_enabled();
}
void rtc_clk_rc32k_enable(bool enable)
{
if (enable) {
clk_ll_rc32k_enable();
esp_rom_delay_us(SOC_DELAY_RC32K_ENABLE);
} else {
clk_ll_rc32k_disable();
}
}
void rtc_clk_8m_enable(bool clk_8m_en)
{
if (clk_8m_en) {
clk_ll_rc_fast_enable();
esp_rom_delay_us(SOC_DELAY_RC_FAST_ENABLE);
} else {
clk_ll_rc_fast_disable();
}
}
bool rtc_clk_8m_enabled(void)
{
return clk_ll_rc_fast_is_enabled();
}
void rtc_clk_lp_pll_enable(bool enable)
{
if (enable) {
clk_ll_lp_pll_enable();
esp_rom_delay_us(SOC_DELAY_LP_PLL_ENABLE);
} else {
clk_ll_lp_pll_disable();
}
}
void rtc_clk_lp_pll_src_set(soc_lp_pll_clk_src_t clk_src)
{
clk_ll_lp_pll_set_src(clk_src);
esp_rom_delay_us(SOC_DELAY_LP_PLL_SWITCH);
}
void rtc_clk_slow_src_set(soc_rtc_slow_clk_src_t clk_src)
{
clk_ll_rtc_slow_set_src(clk_src);
esp_rom_delay_us(SOC_DELAY_RTC_SLOW_CLK_SWITCH);
}
soc_rtc_slow_clk_src_t rtc_clk_slow_src_get(void)
{
return clk_ll_rtc_slow_get_src();
}
uint32_t rtc_clk_slow_freq_get_hz(void)
{
switch (rtc_clk_slow_src_get()) {
case SOC_RTC_SLOW_CLK_SRC_RC_SLOW: return SOC_CLK_RC_SLOW_FREQ_APPROX;
case SOC_RTC_SLOW_CLK_SRC_XTAL32K: return SOC_CLK_XTAL32K_FREQ_APPROX;
case SOC_RTC_SLOW_CLK_SRC_RC32K: return SOC_CLK_RC32K_FREQ_APPROX;
case SOC_RTC_SLOW_CLK_SRC_OSC_SLOW: return SOC_CLK_OSC_SLOW_FREQ_APPROX;
default: return 0;
}
}
void rtc_clk_fast_src_set(soc_rtc_fast_clk_src_t clk_src)
{
clk_ll_rtc_fast_set_src(clk_src);
esp_rom_delay_us(SOC_DELAY_RTC_FAST_CLK_SWITCH);
}
soc_rtc_fast_clk_src_t rtc_clk_fast_src_get(void)
{
return clk_ll_rtc_fast_get_src();
}
static void rtc_clk_bbpll_disable(void)
{
clk_ll_bbpll_disable();
s_cur_pll_freq = 0;
}
static void rtc_clk_bbpll_enable(void)
{
clk_ll_bbpll_enable();
}
static void rtc_clk_bbpll_configure(soc_xtal_freq_t xtal_freq, int pll_freq)
{
/* Digital part */
clk_ll_bbpll_set_freq_mhz(pll_freq);
/* Analog part */
ANALOG_CLOCK_ENABLE();
/* BBPLL CALIBRATION START */
regi2c_ctrl_ll_bbpll_calibration_start();
clk_ll_bbpll_set_config(pll_freq, xtal_freq);
/* WAIT CALIBRATION DONE */
while(!regi2c_ctrl_ll_bbpll_calibration_is_done());
esp_rom_delay_us(10);
/* BBPLL CALIBRATION STOP */
regi2c_ctrl_ll_bbpll_calibration_stop();
ANALOG_CLOCK_DISABLE();
s_cur_pll_freq = pll_freq;
}
/**
* Switch to use XTAL as the CPU clock source.
* Must satisfy: cpu_freq = XTAL_FREQ / div.
* Does not disable the PLL.
*/
static void rtc_clk_cpu_freq_to_xtal(int cpu_freq, int div)
{
// let f_cpu = f_ahb
clk_ll_cpu_set_divider(div);
clk_ll_ahb_set_divider(div);
clk_ll_cpu_set_src(SOC_CPU_CLK_SRC_XTAL);
clk_ll_bus_update();
esp_rom_set_cpu_ticks_per_us(cpu_freq);
}
static void rtc_clk_cpu_freq_to_8m(void)
{
// let f_cpu = f_ahb
clk_ll_cpu_set_divider(1);
clk_ll_ahb_set_divider(1);
clk_ll_cpu_set_src(SOC_CPU_CLK_SRC_RC_FAST);
clk_ll_bus_update();
esp_rom_set_cpu_ticks_per_us(8);
}
/**
* Switch to one of PLL-based frequencies. Current frequency can be XTAL or PLL.
* PLL must already be enabled.
* @param cpu_freq new CPU frequency
*/
static void rtc_clk_cpu_freq_to_pll_mhz(int cpu_freq_mhz)
{
// f_hp_root = 96MHz
uint32_t cpu_divider = CLK_LL_PLL_96M_FREQ_MHZ / cpu_freq_mhz;
clk_ll_cpu_set_divider(cpu_divider);
// Constraint: f_ahb <= 32MHz; f_cpu = N * f_ahb (N = 1, 2, 3...)
uint32_t ahb_divider = (cpu_divider == 1) ? 3 :
(cpu_divider == 2) ? 4 : cpu_divider;
clk_ll_ahb_set_divider(ahb_divider);
clk_ll_cpu_set_src(SOC_CPU_CLK_SRC_PLL);
clk_ll_bus_update();
esp_rom_set_cpu_ticks_per_us(cpu_freq_mhz);
}
/**
* Switch to FLASH_PLL as cpu clock source.
* On ESP32H2, FLASH_PLL frequency is 64MHz.
* PLL must already be enabled.
*/
static void rtc_clk_cpu_freq_to_flash_pll(uint32_t cpu_freq_mhz, uint32_t cpu_divider)
{
// f_hp_root = 64MHz
clk_ll_cpu_set_divider(cpu_divider);
// Constraint: f_ahb <= 32MHz; f_cpu = N * f_ahb (N = 1, 2, 3...)
uint32_t ahb_divider = (cpu_divider == 1) ? 2 : cpu_divider;
clk_ll_ahb_set_divider(ahb_divider);
clk_ll_cpu_set_src(SOC_CPU_CLK_SRC_FLASH_PLL);
clk_ll_bus_update();
esp_rom_set_cpu_ticks_per_us(cpu_freq_mhz);
}
bool rtc_clk_cpu_freq_mhz_to_config(uint32_t freq_mhz, rtc_cpu_freq_config_t *out_config)
{
uint32_t source_freq_mhz;
soc_cpu_clk_src_t source;
uint32_t divider; // divider = freq of SOC_ROOT_CLK / freq of CPU_CLK
uint32_t real_freq_mhz;
uint32_t xtal_freq = (uint32_t)rtc_clk_xtal_freq_get();
if (freq_mhz <= xtal_freq && freq_mhz != 0) {
divider = xtal_freq / freq_mhz;
real_freq_mhz = (xtal_freq + divider / 2) / divider; /* round */
if (real_freq_mhz != freq_mhz) {
// no suitable divider
return false;
}
source_freq_mhz = xtal_freq;
source = SOC_CPU_CLK_SRC_XTAL;
} else if (freq_mhz == 96) {
real_freq_mhz = freq_mhz;
source = SOC_CPU_CLK_SRC_PLL;
source_freq_mhz = CLK_LL_PLL_96M_FREQ_MHZ;
divider = 1;
} else if (freq_mhz == 64) {
real_freq_mhz = freq_mhz;
source = SOC_CPU_CLK_SRC_FLASH_PLL;
source_freq_mhz = CLK_LL_PLL_64M_FREQ_MHZ;
divider = 1;
} else if (freq_mhz == 48) {
real_freq_mhz = freq_mhz;
source = SOC_CPU_CLK_SRC_PLL;
source_freq_mhz = CLK_LL_PLL_96M_FREQ_MHZ;
divider = 2;
} else {
// unsupported frequency
return false;
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.div = divider,
.source_freq_mhz = source_freq_mhz,
.freq_mhz = real_freq_mhz
};
return true;
}
__attribute__((weak)) void rtc_clk_set_cpu_switch_to_pll(int event_id)
{
}
void rtc_clk_cpu_freq_set_config(const rtc_cpu_freq_config_t *config)
{
soc_cpu_clk_src_t old_cpu_clk_src = clk_ll_cpu_get_src();
if (config->source == SOC_CPU_CLK_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
if ((old_cpu_clk_src == SOC_CPU_CLK_SRC_PLL || old_cpu_clk_src == SOC_CPU_CLK_SRC_FLASH_PLL) &&
!s_bbpll_digi_consumers_ref_count) {
rtc_clk_bbpll_disable();
}
} else if (config->source == SOC_CPU_CLK_SRC_PLL) {
if (old_cpu_clk_src != SOC_CPU_CLK_SRC_PLL && old_cpu_clk_src != SOC_CPU_CLK_SRC_FLASH_PLL) {
rtc_clk_set_cpu_switch_to_pll(SLEEP_EVENT_HW_PLL_EN_START);
rtc_clk_bbpll_enable();
rtc_clk_bbpll_configure(rtc_clk_xtal_freq_get(), config->source_freq_mhz);
}
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
rtc_clk_set_cpu_switch_to_pll(SLEEP_EVENT_HW_PLL_EN_STOP);
} else if (config->source == SOC_CPU_CLK_SRC_RC_FAST) {
rtc_clk_cpu_freq_to_8m();
if ((old_cpu_clk_src == SOC_CPU_CLK_SRC_PLL || old_cpu_clk_src == SOC_CPU_CLK_SRC_FLASH_PLL) &&
!s_bbpll_digi_consumers_ref_count) {
rtc_clk_bbpll_disable();
}
} else if (config->source == SOC_CPU_CLK_SRC_FLASH_PLL) {
if (old_cpu_clk_src != SOC_CPU_CLK_SRC_PLL && old_cpu_clk_src != SOC_CPU_CLK_SRC_FLASH_PLL) {
// On ESP32H2, FLASH_PLL (64MHz) is directly derived from the BBPLL (96MHz)
// Therefore, enabling and configuration are applied to BBPLL.
rtc_clk_set_cpu_switch_to_pll(SLEEP_EVENT_HW_FLASH_BBPLL_EN_START);
rtc_clk_bbpll_enable();
rtc_clk_bbpll_configure(rtc_clk_xtal_freq_get(), CLK_LL_PLL_96M_FREQ_MHZ);
}
rtc_clk_cpu_freq_to_flash_pll(config->freq_mhz, config->div);
rtc_clk_set_cpu_switch_to_pll(SLEEP_EVENT_HW_FLASH_BBPLL_EN_STOP);
}
}
void rtc_clk_cpu_freq_get_config(rtc_cpu_freq_config_t *out_config)
{
soc_cpu_clk_src_t source = clk_ll_cpu_get_src();
uint32_t source_freq_mhz;
uint32_t div = clk_ll_cpu_get_divider(); // div = freq of SOC_ROOT_CLK / freq of CPU_CLK
uint32_t freq_mhz;
switch (source) {
case SOC_CPU_CLK_SRC_XTAL: {
source_freq_mhz = (uint32_t)rtc_clk_xtal_freq_get();
freq_mhz = source_freq_mhz / div;
break;
}
case SOC_CPU_CLK_SRC_PLL: {
source_freq_mhz = clk_ll_bbpll_get_freq_mhz();
freq_mhz = source_freq_mhz / div;
break;
}
case SOC_CPU_CLK_SRC_RC_FAST:
source_freq_mhz = 8;
freq_mhz = source_freq_mhz / div;
break;
case SOC_CPU_CLK_SRC_FLASH_PLL:
source_freq_mhz = clk_ll_flash_pll_get_freq_mhz();
freq_mhz = source_freq_mhz / div;
break;
default:
ESP_HW_LOGE(TAG, "unsupported frequency configuration");
abort();
}
*out_config = (rtc_cpu_freq_config_t) {
.source = source,
.source_freq_mhz = source_freq_mhz,
.div = div,
.freq_mhz = freq_mhz
};
}
void rtc_clk_cpu_freq_set_config_fast(const rtc_cpu_freq_config_t *config)
{
if (config->source == SOC_CPU_CLK_SRC_XTAL) {
rtc_clk_cpu_freq_to_xtal(config->freq_mhz, config->div);
} else if (config->source == SOC_CPU_CLK_SRC_PLL &&
s_cur_pll_freq == config->source_freq_mhz) {
rtc_clk_cpu_freq_to_pll_mhz(config->freq_mhz);
} else if (config->source == SOC_CPU_CLK_SRC_RC_FAST) {
rtc_clk_cpu_freq_to_8m();
} else if (config->source == SOC_CPU_CLK_SRC_FLASH_PLL &&
s_cur_pll_freq == clk_ll_bbpll_get_freq_mhz()) {
// On ESP32H2, FLASH_PLL (64MHz) is directly derived from the BBPLL (96MHz)
// Therefore, as long as bbpll was not disabled, no need to re-enable and re-configure parameters for the source clock
rtc_clk_cpu_freq_to_flash_pll(config->freq_mhz, config->div);
} else {
/* fallback */
rtc_clk_cpu_freq_set_config(config);
}
}
void rtc_clk_cpu_freq_set_xtal(void)
{
rtc_clk_cpu_set_to_default_config();
rtc_clk_bbpll_disable();
}
void rtc_clk_cpu_set_to_default_config(void)
{
int freq_mhz = (int)rtc_clk_xtal_freq_get();
rtc_clk_cpu_freq_to_xtal(freq_mhz, 1);
s_cur_pll_freq = 0; // no disable PLL, but set freq to 0 to trigger a PLL calibration after wake-up from sleep
}
soc_xtal_freq_t rtc_clk_xtal_freq_get(void)
{
uint32_t xtal_freq_mhz = clk_ll_xtal_load_freq_mhz();
if (xtal_freq_mhz == 0) {
ESP_HW_LOGW(TAG, "invalid RTC_XTAL_FREQ_REG value, assume 32MHz");
return SOC_XTAL_FREQ_32M;
}
return (soc_xtal_freq_t)xtal_freq_mhz;
}
void rtc_clk_xtal_freq_update(soc_xtal_freq_t xtal_freq)
{
clk_ll_xtal_store_freq_mhz(xtal_freq);
}
static uint32_t rtc_clk_ahb_freq_get(void)
{
soc_cpu_clk_src_t source = clk_ll_cpu_get_src();
uint32_t soc_root_freq_mhz;
uint32_t divider = clk_ll_ahb_get_divider();
switch (source) {
case SOC_CPU_CLK_SRC_XTAL:
soc_root_freq_mhz = rtc_clk_xtal_freq_get();
break;
case SOC_CPU_CLK_SRC_PLL:
soc_root_freq_mhz = clk_ll_bbpll_get_freq_mhz();
break;
case SOC_CPU_CLK_SRC_RC_FAST:
soc_root_freq_mhz = 8;
break;
case SOC_CPU_CLK_SRC_FLASH_PLL:
soc_root_freq_mhz = clk_ll_flash_pll_get_freq_mhz();
break;
default:
// Unknown SOC_ROOT clock source
soc_root_freq_mhz = 0;
ESP_HW_LOGE(TAG, "Invalid SOC_ROOT_CLK");
break;
}
return soc_root_freq_mhz / divider;
}
uint32_t rtc_clk_apb_freq_get(void)
{
return rtc_clk_ahb_freq_get() / clk_ll_apb_get_divider() * MHZ;
}
void rtc_dig_clk8m_enable(void)
{
clk_ll_rc_fast_digi_enable();
esp_rom_delay_us(SOC_DELAY_RC_FAST_DIGI_SWITCH);
}
void rtc_dig_clk8m_disable(void)
{
clk_ll_rc_fast_digi_disable();
esp_rom_delay_us(SOC_DELAY_RC_FAST_DIGI_SWITCH);
}
bool rtc_dig_8m_enabled(void)
{
return clk_ll_rc_fast_digi_is_enabled();
}

View File

@ -0,0 +1,86 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdbool.h>
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include "rom/ets_sys.h"
#include "rom/rtc.h"
#include "rom/uart.h"
#include "soc/rtc.h"
#include "esp_cpu.h"
#include "regi2c_ctrl.h"
#include "soc/lp_clkrst_reg.h"
#include "soc/regi2c_pmu.h"
#include "esp_hw_log.h"
#include "sdkconfig.h"
#include "esp_rom_uart.h"
#include "hal/clk_tree_ll.h"
#include "soc/pmu_reg.h"
#include "pmu_param.h"
static const char *TAG = "rtc_clk_init";
void rtc_clk_init(rtc_clk_config_t cfg)
{
rtc_cpu_freq_config_t old_config, new_config;
/* Set tuning parameters for RC_FAST, RC_SLOW, and RC32K clocks.
* Note: this doesn't attempt to set the clocks to precise frequencies.
* Instead, we calibrate these clocks against XTAL frequency later, when necessary.
* - SCK_DCAP value controls tuning of RC_SLOW clock.
* The higher the value of DCAP is, the lower is the frequency.
* - CK8M_DFREQ value controls tuning of RC_FAST clock.
* CLK_8M_DFREQ constant gives the best temperature characteristics.
* - RC32K_DFREQ value controls tuning of RC32K clock.
*/
REG_SET_FIELD(LP_CLKRST_FOSC_CNTL_REG, LP_CLKRST_FOSC_DFREQ, cfg.clk_8m_dfreq);
REGI2C_WRITE_MASK(I2C_PMU, I2C_PMU_OC_SCK_DCAP, cfg.slow_clk_dcap);
REG_SET_FIELD(LP_CLKRST_RC32K_CNTL_REG, LP_CLKRST_RC32K_DFREQ, cfg.rc32k_dfreq);
REGI2C_WRITE_MASK(I2C_PMU, I2C_PMU_EN_I2C_RTC_DREG, 0);
REGI2C_WRITE_MASK(I2C_PMU, I2C_PMU_EN_I2C_DIG_DREG, 0);
uint32_t hp_cali_dbias = get_act_hp_dbias();
uint32_t lp_cali_dbias = get_act_lp_dbias();
SET_PERI_REG_BITS(PMU_HP_MODEM_HP_REGULATOR0_REG, PMU_HP_MODEM_HP_REGULATOR_DBIAS, hp_cali_dbias, PMU_HP_MODEM_HP_REGULATOR_DBIAS_S);
SET_PERI_REG_BITS(PMU_HP_ACTIVE_HP_REGULATOR0_REG, PMU_HP_ACTIVE_HP_REGULATOR_DBIAS, hp_cali_dbias, PMU_HP_ACTIVE_HP_REGULATOR_DBIAS_S);
SET_PERI_REG_BITS(PMU_HP_SLEEP_LP_REGULATOR0_REG, PMU_HP_SLEEP_LP_REGULATOR_DBIAS, lp_cali_dbias, PMU_HP_SLEEP_LP_REGULATOR_DBIAS_S);
soc_xtal_freq_t xtal_freq = cfg.xtal_freq;
esp_rom_output_tx_wait_idle(0);
rtc_clk_xtal_freq_update(xtal_freq);
/* Set CPU frequency */
rtc_clk_cpu_freq_get_config(&old_config);
uint32_t freq_before = old_config.freq_mhz;
bool res = rtc_clk_cpu_freq_mhz_to_config(cfg.cpu_freq_mhz, &new_config);
if (!res) {
ESP_HW_LOGE(TAG, "invalid CPU frequency value");
abort();
}
rtc_clk_cpu_freq_set_config(&new_config);
/* Re-calculate the ccount to make time calculation correct. */
esp_cpu_set_cycle_count( (uint64_t)esp_cpu_get_cycle_count() * cfg.cpu_freq_mhz / freq_before );
/* Slow & fast clocks setup */
// We will not power off RC_FAST in bootloader stage even if it is not being used as any
// cpu / rtc_fast / rtc_slow clock sources, this is because RNG always needs it in the bootloader stage.
bool need_rc_fast_en = true;
if (cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_XTAL32K) {
rtc_clk_32k_enable(true);
} else if (cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_OSC_SLOW) {
rtc_clk_32k_enable_external();
} else if (cfg.slow_clk_src == SOC_RTC_SLOW_CLK_SRC_RC32K) {
rtc_clk_rc32k_enable(true);
}
rtc_clk_8m_enable(need_rc_fast_en);
rtc_clk_fast_src_set(cfg.fast_clk_src);
rtc_clk_slow_src_set(cfg.slow_clk_src);
}

View File

@ -0,0 +1,292 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include "rom/ets_sys.h"
#include "soc/rtc.h"
#include "hal/lp_timer_hal.h"
#include "hal/clk_tree_ll.h"
#include "hal/timer_ll.h"
#include "soc/timer_group_reg.h"
#include "soc/pcr_reg.h"
#include "esp_rom_sys.h"
#include "assert.h"
#include "hal/efuse_hal.h"
#include "soc/chip_revision.h"
#include "esp_private/periph_ctrl.h"
__attribute__((unused)) static const char *TAG = "rtc_time";
/* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
* RTC_SLOW_CLK cycles.
*
* Slow clock calibration feature has two modes of operation: one-off and cycling.
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
* enabled using TIMG_RTC_CALI_START bit.
*/
/* On ESP32H21, TIMG_RTC_CALI_CLK_SEL can config to 0, 1, 2, 3
* 0 or 3: calibrate RC_SLOW clock
* 1: calibrate RC_FAST clock
* 2: calibrate 32K clock, which 32k depends on reg_32k_sel: 0: Internal 32 kHz RC oscillator, 1: External 32 kHz XTAL, 2: External 32kHz clock input by gpio13
*/
#define TIMG_RTC_CALI_CLK_SEL_RC_SLOW 0
#define TIMG_RTC_CALI_CLK_SEL_RC_FAST 1
#define TIMG_RTC_CALI_CLK_SEL_32K 2
/**
* @brief Clock calibration function used by rtc_clk_cal
*
* Calibration of RTC_SLOW_CLK is performed using a special feature of TIMG0.
* This feature counts the number of XTAL clock cycles within a given number of
* RTC_SLOW_CLK cycles.
*
* Slow clock calibration feature has two modes of operation: one-off and cycling.
* In cycling mode (which is enabled by default on SoC reset), counting of XTAL
* cycles within RTC_SLOW_CLK cycle is done continuously. Cycling mode is enabled
* using TIMG_RTC_CALI_START_CYCLING bit. In one-off mode counting is performed
* once, and TIMG_RTC_CALI_RDY bit is set when counting is done. One-off mode is
* enabled using TIMG_RTC_CALI_START bit.
*
* @param cal_clk which clock to calibrate
* @param slowclk_cycles number of slow clock cycles to count
* @return number of XTAL clock cycles within the given number of slow clock cycles
*/
static uint32_t rtc_clk_cal_internal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
assert(slowclk_cycles < TIMG_RTC_CALI_MAX_V);
uint32_t cali_clk_sel = 0;
soc_rtc_slow_clk_src_t slow_clk_src = rtc_clk_slow_src_get();
soc_rtc_slow_clk_src_t old_32k_cal_clk_sel = clk_ll_32k_calibration_get_target();
if (cal_clk == RTC_CAL_RTC_MUX) {
cal_clk = (rtc_cal_sel_t)slow_clk_src;
}
if (cal_clk == RTC_CAL_RC_FAST) {
cali_clk_sel = TIMG_RTC_CALI_CLK_SEL_RC_FAST;
} else if (cal_clk == RTC_CAL_RC_SLOW) {
cali_clk_sel = TIMG_RTC_CALI_CLK_SEL_RC_SLOW;
} else {
cali_clk_sel = TIMG_RTC_CALI_CLK_SEL_32K;
clk_ll_32k_calibration_set_target((soc_rtc_slow_clk_src_t)cal_clk);
}
/* Enable requested clock (150k clock is always on) */
// All clocks on/off takes time to be stable, so we shouldn't frequently enable/disable the clock
// Only enable if originally was disabled, and set back to the disable state after calibration is done
// If the clock is already on, then do nothing
bool dig_32k_xtal_enabled = clk_ll_xtal32k_digi_is_enabled();
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_enabled) {
clk_ll_xtal32k_digi_enable();
}
bool rc_fast_enabled = clk_ll_rc_fast_is_enabled();
bool dig_rc_fast_enabled = clk_ll_rc_fast_digi_is_enabled();
if (cal_clk == RTC_CAL_RC_FAST) {
if (!rc_fast_enabled) {
rtc_clk_8m_enable(true);
}
if (!dig_rc_fast_enabled) {
rtc_dig_clk8m_enable();
}
}
bool rc32k_enabled = clk_ll_rc32k_is_enabled();
bool dig_rc32k_enabled = clk_ll_rc32k_digi_is_enabled();
if (cal_clk == RTC_CAL_RC32K) {
if (!rc32k_enabled) {
rtc_clk_rc32k_enable(true);
}
if (!dig_rc32k_enabled) {
clk_ll_rc32k_digi_enable();
}
}
/* There may be another calibration process already running during we call this function,
* so we should wait the last process is done.
*/
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING)) {
/**
* Set a small timeout threshold to accelerate the generation of timeout.
* The internal circuit will be reset when the timeout occurs and will not affect the next calibration.
*/
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, 1);
while (!GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)
&& !GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT));
}
/* Prepare calibration */
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_CLK_SEL, cali_clk_sel);
if (cali_clk_sel == TIMG_RTC_CALI_CLK_SEL_RC_FAST) {
clk_ll_rc_fast_tick_conf();
}
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START_CYCLING);
REG_SET_FIELD(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_MAX, slowclk_cycles);
/* Figure out how long to wait for calibration to finish */
/* Set timeout reg and expect time delay*/
uint32_t expected_freq;
if (cali_clk_sel == TIMG_RTC_CALI_CLK_SEL_32K) {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_32K_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = SOC_CLK_XTAL32K_FREQ_APPROX;
} else if (cali_clk_sel == TIMG_RTC_CALI_CLK_SEL_RC_FAST) {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_FAST_CLK_8M_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = SOC_CLK_RC_FAST_FREQ_APPROX;
if (ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 2)) {
expected_freq = expected_freq >> CLK_LL_RC_FAST_CALIB_TICK_DIV_BITS;
}
} else {
REG_SET_FIELD(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT_THRES, RTC_SLOW_CLK_150K_CAL_TIMEOUT_THRES(slowclk_cycles));
expected_freq = SOC_CLK_RC_SLOW_FREQ_APPROX;
}
uint32_t us_time_estimate = (uint32_t) (((uint64_t) slowclk_cycles) * MHZ / expected_freq);
/* Start calibration */
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
SET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
/* Wait for calibration to finish up to another us_time_estimate */
esp_rom_delay_us(us_time_estimate);
uint32_t cal_val;
while (true) {
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_RDY)) {
cal_val = REG_GET_FIELD(TIMG_RTCCALICFG1_REG(0), TIMG_RTC_CALI_VALUE);
/*The Fosc CLK of calibration circuit is divided by 32 for ECO2.
So we need to multiply the frequency of the Fosc for ECO2 and above chips by 32 times.
And ensure that this modification will not affect ECO0 and ECO1.
And the 32-divider belongs to REF_TICK module, so we need to enable its clock during
calibration. */
if (ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 2)) {
if (cal_clk == RTC_CAL_RC_FAST) {
cal_val = cal_val >> CLK_LL_RC_FAST_CALIB_TICK_DIV_BITS;
CLEAR_PERI_REG_MASK(PCR_CTRL_TICK_CONF_REG, PCR_TICK_ENABLE);
}
}
break;
}
if (GET_PERI_REG_MASK(TIMG_RTCCALICFG2_REG(0), TIMG_RTC_CALI_TIMEOUT)) {
cal_val = 0;
break;
}
}
CLEAR_PERI_REG_MASK(TIMG_RTCCALICFG_REG(0), TIMG_RTC_CALI_START);
/* if dig_32k_xtal was originally off and enabled due to calibration, then set back to off state */
if (cal_clk == RTC_CAL_32K_XTAL && !dig_32k_xtal_enabled) {
clk_ll_xtal32k_digi_disable();
}
if (cal_clk == RTC_CAL_RC_FAST) {
if (!dig_rc_fast_enabled) {
rtc_dig_clk8m_disable();
}
if (!rc_fast_enabled) {
rtc_clk_8m_enable(false);
}
}
if (cal_clk == RTC_CAL_RC32K) {
if (!dig_rc32k_enabled) {
clk_ll_rc32k_digi_disable();
}
if (!rc32k_enabled) {
rtc_clk_rc32k_enable(false);
}
}
// Always set back the calibration 32kHz clock selection
if (old_32k_cal_clk_sel != SOC_RTC_SLOW_CLK_SRC_INVALID) {
clk_ll_32k_calibration_set_target(old_32k_cal_clk_sel);
}
return cal_val;
}
static bool rtc_clk_cal_32k_valid(uint32_t xtal_freq, uint32_t slowclk_cycles, uint64_t actual_xtal_cycles)
{
uint64_t expected_xtal_cycles = (xtal_freq * 1000000ULL * slowclk_cycles) >> 15; // xtal_freq(hz) * slowclk_cycles / 32768
uint64_t delta = expected_xtal_cycles / 2000; // 5/10000 = 0.05% error range
return (actual_xtal_cycles >= (expected_xtal_cycles - delta)) && (actual_xtal_cycles <= (expected_xtal_cycles + delta));
}
uint32_t rtc_clk_cal(rtc_cal_sel_t cal_clk, uint32_t slowclk_cycles)
{
assert(slowclk_cycles);
soc_xtal_freq_t xtal_freq = rtc_clk_xtal_freq_get();
/*The Fosc CLK of calibration circuit is divided by 32 for ECO2.
So we need to divide the calibrate cycles of the FOSC for ECO1 and above chips by 32 to
avoid excessive calibration time.*/
if (ESP_CHIP_REV_ABOVE(efuse_hal_chip_revision(), 2)) {
if (cal_clk == RTC_CAL_RC_FAST) {
slowclk_cycles = slowclk_cycles >> CLK_LL_RC_FAST_CALIB_TICK_DIV_BITS;
SET_PERI_REG_MASK(PCR_CTRL_TICK_CONF_REG, PCR_TICK_ENABLE);
}
}
uint64_t xtal_cycles = rtc_clk_cal_internal(cal_clk, slowclk_cycles);
if (cal_clk == RTC_CAL_32K_XTAL && !rtc_clk_cal_32k_valid((uint32_t)xtal_freq, slowclk_cycles, xtal_cycles)) {
return 0;
}
uint64_t divider = ((uint64_t)xtal_freq) * slowclk_cycles;
uint64_t period_64 = ((xtal_cycles << RTC_CLK_CAL_FRACT) + divider / 2 - 1) / divider;
uint32_t period = (uint32_t)(period_64 & UINT32_MAX);
return period;
}
uint64_t rtc_time_us_to_slowclk(uint64_t time_in_us, uint32_t period)
{
assert(period);
/* Overflow will happen in this function if time_in_us >= 2^45, which is about 400 days.
* TODO: fix overflow.
*/
return (time_in_us << RTC_CLK_CAL_FRACT) / period;
}
uint64_t rtc_time_slowclk_to_us(uint64_t rtc_cycles, uint32_t period)
{
return (rtc_cycles * period) >> RTC_CLK_CAL_FRACT;
}
uint64_t rtc_time_get(void)
{
ESP_EARLY_LOGW(TAG, "rtc_timer has not been implemented yet");
return 0;
//TODO: [ESP32H21] IDF-11548
// return lp_timer_hal_get_cycle_count();
}
uint32_t rtc_clk_freq_cal(uint32_t cal_val)
{
if (cal_val == 0) {
return 0; // cal_val will be denominator, return 0 as the symbol of failure.
}
return 1000000ULL * (1 << RTC_CLK_CAL_FRACT) / cal_val;
}
/// @brief if the calibration is used, we need to enable the timer group0 first
__attribute__((constructor))
static void enable_timer_group0_for_calibration(void)
{
#ifndef BOOTLOADER_BUILD
PERIPH_RCC_ACQUIRE_ATOMIC(PERIPH_TIMG0_MODULE, ref_count) {
if (ref_count == 0) {
timer_ll_enable_bus_clock(0, true);
timer_ll_reset_register(0);
}
}
#else
_timer_ll_enable_bus_clock(0, true);
_timer_ll_reset_register(0);
#endif
}

View File

@ -0,0 +1,21 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_private/systimer.h"
/**
* @brief When systimer's clock source is XTAL (32MHz), it has a fixed fractional divider (2).
* So the resolution of the systimer is 32MHz/2 = 16MHz.
*/
uint64_t systimer_ticks_to_us(uint64_t ticks)
{
return ticks / 16;
}
uint64_t systimer_us_to_ticks(uint64_t us)
{
return us * 16;
}

View File

@ -0,0 +1,26 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdlib.h>
#include <stdint.h>
#include "sdkconfig.h"
#include "soc/ext_mem_defs.h"
#include "../ext_mem_layout.h"
#include "hal/mmu_types.h"
/**
* The start addresses in this list should always be sorted from low to high, as MMU driver will need to
* coalesce adjacent regions
*/
const mmu_mem_region_t g_mmu_mem_regions[SOC_MMU_LINEAR_ADDRESS_REGION_NUM] = {
[0] = {
.start = SOC_MMU_IRAM0_LINEAR_ADDRESS_LOW,
.end = SOC_MMU_IRAM0_LINEAR_ADDRESS_HIGH,
.size = SOC_BUS_SIZE(SOC_MMU_IRAM0_LINEAR),
.bus_id = CACHE_BUS_IBUS0 | CACHE_BUS_DBUS0,
.targets = MMU_TARGET_FLASH0,
.caps = MMU_MEM_CAP_EXEC | MMU_MEM_CAP_READ | MMU_MEM_CAP_32BIT | MMU_MEM_CAP_8BIT,
},
};

View File

@ -103,6 +103,8 @@
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32H2
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32H21
#define REF_CLK_DIV_MIN 2
#elif CONFIG_IDF_TARGET_ESP32P4
#define REF_CLK_DIV_MIN 2
#endif

View File

@ -84,7 +84,7 @@ uint32_t gpio_input_get(void);
*/
void gpio_pin_wakeup_enable(uint32_t i, GPIO_INT_TYPE intr_state);
/**c
/**
* @brief disable GPIOs to wakeup the ESP32.
* Please do not call this function in SDK.
*

View File

@ -53,14 +53,16 @@ extern "C" {
*/
//TODO: [ESP32H21] IDF-1154, need to check from esp_rom
#define RTC_SLOW_CLK_CAL_REG LP_AON_STORE1_REG
#define RTC_BOOT_TIME_LOW_REG LP_AON_STORE2_REG
#define RTC_BOOT_TIME_HIGH_REG LP_AON_STORE3_REG
#define RTC_XTAL_FREQ_REG LP_AON_STORE4_REG
#define RTC_ENTRY_LENGTH_REG LP_AON_STORE5_REG
#define RTC_ENTRY_ADDR_REG LP_AON_STORE6_REG
#define RTC_MEMORY_CRC_REG LP_AON_STORE7_REG
#define ROM_LOG_CTRL_REG LP_AON_STORE4_REG
#define RTC_SLOW_CLK_CAL_REG LP_AON_STORE1_REG
#define RTC_BOOT_TIME_LOW_REG LP_AON_STORE2_REG
#define RTC_BOOT_TIME_HIGH_REG LP_AON_STORE3_REG
#define RTC_XTAL_FREQ_REG LP_AON_STORE4_REG
#define RTC_APB_FREQ_REG LP_AON_STORE5_REG
#define RTC_ENTRY_ADDR_REG LP_AON_STORE6_REG
#define RTC_RESET_CAUSE_REG LP_AON_STORE6_REG
#define RTC_MEMORY_CRC_REG LP_AON_STORE7_REG
#define RTC_SLEEP_WAKE_STUB_ADDR_REG LP_AON_STORE8_REG
#define RTC_SLEEP_MODE_REG LP_AON_STORE9_REG
#define RTC_DISABLE_ROM_LOG ((1 << 0) | (1 << 16)) //!< Disable logging from the ROM code.

View File

@ -226,9 +226,8 @@ gpio_input_get = 0x4000069c;
gpio_matrix_in = 0x400006a0;
gpio_matrix_out = 0x400006a4;
//TODO: [ESP32H21] IDF-11621
gpio_output_disable = 0x400006a8;
gpio_output_enable = 0x400006ac;
/*gpio_output_disable = 0x400006a8;*/
/*gpio_output_enable = 0x400006ac;*/
gpio_output_set = 0x400006b0;
gpio_pad_hold = 0x400006b4;

View File

@ -0,0 +1,112 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
/* ROM function interface esp32h21.rom.libgcc.ld for esp32h21
*
*
* Generated from ./target/esp32h21/interface-esp32h21.yml md5sum dee73289acb146ae14dd9544143527f0
*
* Compatible with ROM where ECO version equal or greater to 0.
*
* THIS FILE WAS AUTOMATICALLY GENERATED. DO NOT EDIT.
*/
/***************************************
Group libgcc
***************************************/
/* Functions */
__absvdi2 = 0x4000084c;
__absvsi2 = 0x40000850;
__adddf3 = 0x40000854;
__addsf3 = 0x40000858;
__addvdi3 = 0x4000085c;
__addvsi3 = 0x40000860;
__ashldi3 = 0x40000864;
__ashrdi3 = 0x40000868;
__bswapdi2 = 0x4000086c;
__bswapsi2 = 0x40000870;
__clear_cache = 0x40000874;
__clrsbdi2 = 0x40000878;
__clrsbsi2 = 0x4000087c;
__clzdi2 = 0x40000880;
__clzsi2 = 0x40000884;
__cmpdi2 = 0x40000888;
__ctzdi2 = 0x4000088c;
__ctzsi2 = 0x40000890;
__divdc3 = 0x40000894;
__divdf3 = 0x40000898;
__divdi3 = 0x4000089c;
__divsc3 = 0x400008a0;
__divsf3 = 0x400008a4;
__divsi3 = 0x400008a8;
__eqdf2 = 0x400008ac;
__eqsf2 = 0x400008b0;
__extendsfdf2 = 0x400008b4;
__ffsdi2 = 0x400008b8;
__ffssi2 = 0x400008bc;
__fixdfdi = 0x400008c0;
__fixdfsi = 0x400008c4;
__fixsfdi = 0x400008c8;
__fixsfsi = 0x400008cc;
__fixunsdfsi = 0x400008d0;
__fixunssfdi = 0x400008d4;
__fixunssfsi = 0x400008d8;
__floatdidf = 0x400008dc;
__floatdisf = 0x400008e0;
__floatsidf = 0x400008e4;
__floatsisf = 0x400008e8;
__floatundidf = 0x400008ec;
__floatundisf = 0x400008f0;
__floatunsidf = 0x400008f4;
__floatunsisf = 0x400008f8;
__gcc_bcmp = 0x400008fc;
__gedf2 = 0x40000900;
__gesf2 = 0x40000904;
__gtdf2 = 0x40000908;
__gtsf2 = 0x4000090c;
__ledf2 = 0x40000910;
__lesf2 = 0x40000914;
__lshrdi3 = 0x40000918;
__ltdf2 = 0x4000091c;
__ltsf2 = 0x40000920;
__moddi3 = 0x40000924;
__modsi3 = 0x40000928;
__muldc3 = 0x4000092c;
__muldf3 = 0x40000930;
__muldi3 = 0x40000934;
__mulsc3 = 0x40000938;
__mulsf3 = 0x4000093c;
__mulsi3 = 0x40000940;
__mulvdi3 = 0x40000944;
__mulvsi3 = 0x40000948;
__nedf2 = 0x4000094c;
__negdf2 = 0x40000950;
__negdi2 = 0x40000954;
__negsf2 = 0x40000958;
__negvdi2 = 0x4000095c;
__negvsi2 = 0x40000960;
__nesf2 = 0x40000964;
__paritysi2 = 0x40000968;
__popcountdi2 = 0x4000096c;
__popcountsi2 = 0x40000970;
__powidf2 = 0x40000974;
__powisf2 = 0x40000978;
__subdf3 = 0x4000097c;
__subsf3 = 0x40000980;
__subvdi3 = 0x40000984;
__subvsi3 = 0x40000988;
__truncdfsf2 = 0x4000098c;
__ucmpdi2 = 0x40000990;
__udivdi3 = 0x40000994;
__udivmoddi4 = 0x40000998;
__udivsi3 = 0x4000099c;
__udiv_w_sdiv = 0x400009a0;
__umoddi3 = 0x400009a4;
__umodsi3 = 0x400009a8;
__unorddf2 = 0x400009ac;
__unordsf2 = 0x400009b0;
__extenddftf2 = 0x400009b4;
__trunctfdf2 = 0x400009b8;

View File

@ -0,0 +1,187 @@
/**
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "esp_rom_sys.h"
#include "esp_attr.h"
#include "soc/i2c_ana_mst_reg.h"
#include "hal/regi2c_ctrl_ll.h"
/**
* BB - 0x67 - BIT0
* TXRF - 0x6B - BIT1
* SDM - 0x63 - BIT2
* PLL - 0x62 - BIT3
* BIAS - 0x6A - BIT4
* BBPLL - 0x66 - BIT5
* ULP - 0x61 - BIT6
* SAR - 0x69 - BIT7
* PMU - 0x6d - BIT8
*/
#define REGI2C_BIAS_MST_SEL (BIT(8))
#define REGI2C_BBPLL_MST_SEL (BIT(9))
#define REGI2C_ULP_CAL_MST_SEL (BIT(10))
#define REGI2C_SAR_I2C_MST_SEL (BIT(11))
#define REGI2C_DIG_REG_MST_SEL (BIT(12))
#define REGI2C_BIAS_RD_MASK (~BIT(6) & I2C_MST_ANA_CONF1_M)
#define REGI2C_BBPLL_RD_MASK (~BIT(7) & I2C_MST_ANA_CONF1_M)
#define REGI2C_ULP_CAL_RD_MASK (~BIT(8) & I2C_MST_ANA_CONF1_M)
#define REGI2C_SAR_I2C_RD_MASK (~BIT(9) & I2C_MST_ANA_CONF1_M)
#define REGI2C_DIG_REG_RD_MASK (~BIT(10) & I2C_MST_ANA_CONF1_M)
#define I2C_ANA_MST_I2C_CTRL_REG(n) (I2C_MST_I2C0_CTRL_REG + n*4) // 0: I2C_ANA_MST_I2C0_CTRL_REG; 1: I2C_ANA_MST_I2C1_CTRL_REG
#define REGI2C_RTC_BUSY (BIT(25))
#define REGI2C_RTC_BUSY_M (BIT(25))
#define REGI2C_RTC_BUSY_V 0x1
#define REGI2C_RTC_BUSY_S 25
#define REGI2C_RTC_WR_CNTL (BIT(24))
#define REGI2C_RTC_WR_CNTL_M (BIT(24))
#define REGI2C_RTC_WR_CNTL_V 0x1
#define REGI2C_RTC_WR_CNTL_S 24
#define REGI2C_RTC_DATA 0x000000FF
#define REGI2C_RTC_DATA_M ((I2C_RTC_DATA_V)<<(I2C_RTC_DATA_S))
#define REGI2C_RTC_DATA_V 0xFF
#define REGI2C_RTC_DATA_S 16
#define REGI2C_RTC_ADDR 0x000000FF
#define REGI2C_RTC_ADDR_M ((I2C_RTC_ADDR_V)<<(I2C_RTC_ADDR_S))
#define REGI2C_RTC_ADDR_V 0xFF
#define REGI2C_RTC_ADDR_S 8
#define REGI2C_RTC_SLAVE_ID 0x000000FF
#define REGI2C_RTC_SLAVE_ID_M ((I2C_RTC_SLAVE_ID_V)<<(I2C_RTC_SLAVE_ID_S))
#define REGI2C_RTC_SLAVE_ID_V 0xFF
#define REGI2C_RTC_SLAVE_ID_S 0
/* SLAVE */
#define REGI2C_BBPLL (0x66)
#define REGI2C_BBPLL_HOSTID 0
#define REGI2C_BIAS (0x6a)
#define REGI2C_BIAS_HOSTID 0
#define REGI2C_PMU (0x6d)
#define REGI2C_PMU_HOSTID 0
#define REGI2C_ULP_CAL (0x61)
#define REGI2C_ULP_CAL_HOSTID 0
#define REGI2C_SAR_I2C (0x69)
#define REGI2C_SAR_I2C_HOSTID 0
/* SLAVE END */
uint8_t esp_rom_regi2c_read(uint8_t block, uint8_t host_id, uint8_t reg_add) __attribute__((alias("regi2c_read_impl")));
uint8_t esp_rom_regi2c_read_mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb) __attribute__((alias("regi2c_read_mask_impl")));
void esp_rom_regi2c_write(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data) __attribute__((alias("regi2c_write_impl")));
void esp_rom_regi2c_write_mask(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data) __attribute__((alias("regi2c_write_mask_impl")));
static IRAM_ATTR uint8_t regi2c_enable_block(uint8_t block)
{
uint32_t i2c_sel = 0;
regi2c_ctrl_ll_master_enable_clock(true);
/* Before config I2C register, enable corresponding slave. */
switch (block) {
case REGI2C_BBPLL :
i2c_sel = REG_GET_BIT(I2C_MST_ANA_CONF2_REG, REGI2C_BBPLL_MST_SEL);
REG_WRITE(I2C_MST_ANA_CONF1_REG, REGI2C_BBPLL_RD_MASK);
break;
case REGI2C_BIAS :
i2c_sel = REG_GET_BIT(I2C_MST_ANA_CONF2_REG, REGI2C_BIAS_MST_SEL);
REG_WRITE(I2C_MST_ANA_CONF1_REG, REGI2C_BIAS_RD_MASK);
break;
case REGI2C_PMU:
i2c_sel = REG_GET_BIT(I2C_MST_ANA_CONF2_REG, REGI2C_DIG_REG_MST_SEL);
REG_WRITE(I2C_MST_ANA_CONF1_REG, REGI2C_DIG_REG_RD_MASK);
break;
case REGI2C_ULP_CAL:
i2c_sel = REG_GET_BIT(I2C_MST_ANA_CONF2_REG, REGI2C_ULP_CAL_MST_SEL);
REG_WRITE(I2C_MST_ANA_CONF1_REG, REGI2C_ULP_CAL_RD_MASK);
break;
case REGI2C_SAR_I2C:
i2c_sel = REG_GET_BIT(I2C_MST_ANA_CONF2_REG, REGI2C_SAR_I2C_MST_SEL);
REG_WRITE(I2C_MST_ANA_CONF1_REG, REGI2C_SAR_I2C_RD_MASK);
break;
}
return (uint8_t)(i2c_sel ? 0: 1);
}
uint8_t IRAM_ATTR regi2c_read_impl(uint8_t block, uint8_t host_id, uint8_t reg_add)
{
(void)host_id;
uint8_t i2c_sel = regi2c_enable_block(block);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY)); // wait i2c idle
uint32_t temp = ((block & REGI2C_RTC_SLAVE_ID_V) << REGI2C_RTC_SLAVE_ID_S)
| (reg_add & REGI2C_RTC_ADDR_V) << REGI2C_RTC_ADDR_S;
REG_WRITE(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), temp);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY));
uint8_t ret = REG_GET_FIELD(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_DATA);
return ret;
}
uint8_t IRAM_ATTR regi2c_read_mask_impl(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb)
{
assert(msb - lsb < 8);
uint8_t i2c_sel = regi2c_enable_block(block);
(void)host_id;
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY)); // wait i2c idle
uint32_t temp = ((block & REGI2C_RTC_SLAVE_ID_V) << REGI2C_RTC_SLAVE_ID_S)
| (reg_add & REGI2C_RTC_ADDR_V) << REGI2C_RTC_ADDR_S;
REG_WRITE(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), temp);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY));
uint32_t data = REG_GET_FIELD(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_DATA);
uint8_t ret = (uint8_t)((data >> lsb) & (~(0xFFFFFFFF << (msb - lsb + 1))));
return ret;
}
void IRAM_ATTR regi2c_write_impl(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t data)
{
(void)host_id;
uint8_t i2c_sel = regi2c_enable_block(block);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY)); // wait i2c idle
uint32_t temp = ((block & REGI2C_RTC_SLAVE_ID_V) << REGI2C_RTC_SLAVE_ID_S)
| ((reg_add & REGI2C_RTC_ADDR_V) << REGI2C_RTC_ADDR_S)
| ((0x1 & REGI2C_RTC_WR_CNTL_V) << REGI2C_RTC_WR_CNTL_S) // 0: READ I2C register; 1: Write I2C register;
| (((uint32_t)data & REGI2C_RTC_DATA_V) << REGI2C_RTC_DATA_S);
REG_WRITE(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), temp);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY));
}
void IRAM_ATTR regi2c_write_mask_impl(uint8_t block, uint8_t host_id, uint8_t reg_add, uint8_t msb, uint8_t lsb, uint8_t data)
{
(void)host_id;
assert(msb - lsb < 8);
uint8_t i2c_sel = regi2c_enable_block(block);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY));
/*Read the i2c bus register*/
uint32_t temp = ((block & REGI2C_RTC_SLAVE_ID_V) << REGI2C_RTC_SLAVE_ID_S)
| (reg_add & REGI2C_RTC_ADDR_V) << REGI2C_RTC_ADDR_S;
REG_WRITE(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), temp);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY));
temp = REG_GET_FIELD(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_DATA);
/*Write the i2c bus register*/
temp &= ((~(0xFFFFFFFF << lsb)) | (0xFFFFFFFF << (msb + 1)));
temp = (((uint32_t)data & (~(0xFFFFFFFF << (msb - lsb + 1)))) << lsb) | temp;
temp = ((block & REGI2C_RTC_SLAVE_ID_V) << REGI2C_RTC_SLAVE_ID_S)
| ((reg_add & REGI2C_RTC_ADDR_V) << REGI2C_RTC_ADDR_S)
| ((0x1 & REGI2C_RTC_WR_CNTL_V) << REGI2C_RTC_WR_CNTL_S)
| ((temp & REGI2C_RTC_DATA_V) << REGI2C_RTC_DATA_S);
REG_WRITE(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), temp);
while (REG_GET_BIT(I2C_ANA_MST_I2C_CTRL_REG(i2c_sel), REGI2C_RTC_BUSY));
}

View File

@ -0,0 +1,16 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include "soc/soc.h"
#include "soc/pcr_reg.h"
#pragma once
static inline void esp_crypto_clk_init(void)
{
// Set crypto clock (`clk_sec`) to use 96M PLL clock
REG_SET_FIELD(PCR_SEC_CONF_REG, PCR_SEC_CLK_SEL, 0x3);
}

View File

@ -20,6 +20,10 @@
#include "esp_gdbstub.h"
#endif
#if CONFIG_IDF_TARGET_ESP32H21
#define ETS_FROM_CPU_INTR0_SOURCE ETS_CPU_INTR_FROM_CPU_0_SOURCE
#endif
#define REASON_YIELD BIT(0)
#define REASON_FREQ_SWITCH BIT(1)
#define REASON_PRINT_BACKTRACE BIT(2)

View File

@ -50,8 +50,11 @@ void bootloader_clock_configure(void)
{
s_warn();
esp_rom_output_tx_wait_idle(0);
#if CONFIG_IDF_TARGET_ESP32H21
uint32_t xtal_freq_mhz = 32;
#else
uint32_t xtal_freq_mhz = 40;
#endif
#ifdef CONFIG_IDF_TARGET_ESP32S2
uint32_t apb_freq_hz = 20000000;
#else

View File

@ -28,6 +28,11 @@
#include "esp_private/sleep_retention.h"
#endif
#if CONFIG_IDF_TARGET_ESP32H21
#define ETS_TG0_WDT_LEVEL_INTR_SOURCE ETS_TG0_WDT_INTR_SOURCE
#define ETS_TG1_WDT_LEVEL_INTR_SOURCE ETS_TG1_WDT_INTR_SOURCE
#endif
#if SOC_TIMER_GROUPS > 1
/* If we have two hardware timer groups, use the second one for interrupt watchdog. */

View File

@ -17,6 +17,7 @@
#include "soc/periph_defs.h"
#include "riscv/interrupt.h"
#include "hal/cache_ll.h"
#include "esp_private/cache_err_int.h"
// TODO: [ESP32H21] IDF-11524
@ -24,14 +25,15 @@ static const char *TAG = "CACHE_ERR";
const char cache_error_msg[] = "Cache access error";
const char *esp_cache_err_panic_string(void)
void esp_cache_err_get_panic_info(esp_cache_err_info_t *err_info)
{
if (err_info == NULL) {
return;
}
const uint32_t access_err_status = cache_ll_l1_get_access_error_intr_status(0, CACHE_LL_L1_ACCESS_EVENT_MASK);
/* Return the error string if a cache error is active */
const char* err_str = access_err_status ? cache_error_msg : NULL;
return err_str;
err_info->err_str = access_err_status ? cache_error_msg : NULL;
}
bool esp_cache_err_has_active_err(void)

View File

@ -42,7 +42,6 @@
#define MHZ (1000000)
static void select_rtc_slow_clk(soc_rtc_slow_clk_src_t rtc_slow_clk_src);
static __attribute__((unused)) void recalib_bbpll(void);
static const char *TAG = "clk";

View File

@ -23,7 +23,6 @@
#include "hal/wdt_hal.h"
#include "hal/spimem_flash_ll.h"
#include "esp_private/cache_err_int.h"
#include "esp_private/mspi_timing_tuning.h"
#include "esp32h21/rom/cache.h"
#include "esp32h21/rom/rtc.h"
@ -98,16 +97,6 @@ void IRAM_ATTR esp_restart_noos(void)
esp_system_reset_modules_on_exit();
#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
/**
* Turn down MSPI speed
*
* We set MSPI clock to a high speed one before, ROM doesn't have such high speed clock source option.
* This function will change clock source to a ROM supported one when system restarts.
*/
mspi_timing_change_speed_mode_cache_safe(true);
#endif //#if !CONFIG_APP_BUILD_TYPE_PURE_RAM_APP
// Set CPU back to XTAL source, same as hard reset, but keep BBPLL on so that USB Serial JTAG can log at 1st stage bootloader.
#if !CONFIG_IDF_ENV_FPGA
rtc_clk_cpu_set_to_default_config();

View File

@ -29,8 +29,11 @@
#define TWDT_PRESCALER MWDT_LL_DEFAULT_CLK_PRESCALER // Tick period of 500us if WDT source clock is 80MHz
#define TWDT_PERIPH_MODULE PERIPH_TIMG0_MODULE
#define TWDT_TIMER_GROUP 0
#if CONFIG_IDF_TARGET_ESP32H21
#define TWDT_INTR_SOURCE ETS_TG0_WDT_INTR_SOURCE
#else
#define TWDT_INTR_SOURCE ETS_TG0_WDT_LEVEL_INTR_SOURCE
#endif
/**
* Context for the software implementation of the Task WatchDog Timer.
* This will be passed as a parameter to public functions below. */

View File

@ -45,8 +45,8 @@ Set the frequency division factor of ref_tick
The FOSC of rtc calibration uses the 32 frequency division clock for ECO2,
So the frequency division factor of ref_tick must be greater than or equal to 32
*/
#define CLK_LL_RC_FAST_TICK_DIV_BITS 5
#define REG_FOSC_TICK_NUM 255
#define CLK_LL_RC_FAST_CALIB_TICK_DIV_BITS 5
#define REG_FOSC_TICK_NUM 255
/**
* @brief XTAL32K_CLK enable modes

View File

@ -0,0 +1,7 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
//TODO: [ESP32H21] IDF-11918

View File

@ -242,13 +242,14 @@ static inline void spimem_flash_set_cs_hold_delay(spi_mem_dev_t *dev, uint32_t c
* Initialize auto wait idle mode
*
* @param dev Beginning address of the peripheral registers.
* @param auto_waiti Enable/disable auto wait-idle function
* @param per_waiti Enable wait-idle with time delay function after resume.
* @param pes_waiti Enable wait-idle with time delay function after suspend.
*/
static inline void spimem_flash_ll_auto_wait_idle_init(spi_mem_dev_t *dev, bool auto_waiti)
static inline void spimem_flash_ll_auto_wait_idle_init(spi_mem_dev_t *dev, bool per_waiti, bool pes_waiti)
{
HAL_FORCE_MODIFY_U32_REG_FIELD(dev->flash_waiti_ctrl, waiti_cmd, 0x05);
dev->flash_sus_ctrl.flash_per_wait_en = auto_waiti;
dev->flash_sus_ctrl.flash_pes_wait_en = auto_waiti;
dev->flash_sus_ctrl.flash_per_wait_en = per_waiti;
dev->flash_sus_ctrl.flash_pes_wait_en = pes_waiti;
}
/**
@ -474,27 +475,6 @@ static inline void spimem_flash_ll_set_read_mode(spi_mem_dev_t *dev, esp_flash_i
dev->ctrl.val = ctrl.val;
}
__attribute__((always_inline))
static inline void spimem_flash_ll_set_clock_source(soc_periph_mspi_clk_src_t clk_src)
{
switch (clk_src) {
case MSPI_CLK_SRC_XTAL:
PCR.mspi_conf.mspi_clk_sel = 0;
break;
case MSPI_CLK_SRC_RC_FAST:
PCR.mspi_conf.mspi_clk_sel = 1;
break;
case MSPI_CLK_SRC_PLL_F64M:
PCR.mspi_conf.mspi_clk_sel = 2;
break;
case MSPI_CLK_SRC_PLL_F48M:
PCR.mspi_conf.mspi_clk_sel = 3;
break;
default:
HAL_ASSERT(false);
}
}
/**
* Set clock frequency to work at.
*

View File

@ -0,0 +1,103 @@
/*
* SPDX-FileCopyrightText: 2022-2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <stdint.h>
#include <stdlib.h>
#include "esp_attr.h"
#include "sdkconfig.h"
#include "soc/soc.h"
#include "heap_memory_layout.h"
#include "esp_heap_caps.h"
//TODO: [ESP32H21] IDF-11525
/**
* @brief Memory type descriptors. These describe the capabilities of a type of memory in the SoC.
* Each type of memory map consists of one or more regions in the address space.
* Each type contains an array of prioritized capabilities.
* Types with later entries are only taken if earlier ones can't fulfill the memory request.
*
* - For a normal malloc (MALLOC_CAP_DEFAULT), give away the DRAM-only memory first, then pass off any dual-use IRAM regions, finally eat into the application memory.
* - For a malloc where 32-bit-aligned-only access is okay, first allocate IRAM, then DRAM, finally application IRAM.
* - Most other malloc caps only fit in one region anyway.
*
*/
/* Index of memory in `soc_memory_types[]` */
enum {
SOC_MEMORY_TYPE_RAM = 0,
SOC_MEMORY_TYPE_RTCRAM = 1,
SOC_MEMORY_TYPE_NUM,
};
/* COMMON_CAPS is the set of attributes common to all types of memory on this chip */
#ifdef CONFIG_ESP_SYSTEM_PMP_IDRAM_SPLIT
#define ESP32H21_MEM_COMMON_CAPS (MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL | MALLOC_CAP_32BIT | MALLOC_CAP_8BIT)
#else
#define ESP32H21_MEM_COMMON_CAPS (MALLOC_CAP_DEFAULT | MALLOC_CAP_INTERNAL | MALLOC_CAP_32BIT | MALLOC_CAP_8BIT | MALLOC_CAP_EXEC)
#endif
/**
* Defined the attributes and allocation priority of each memory on the chip,
* The heap allocator will traverse all types of memory types in column High Priority Matching and match the specified caps at first,
* if no memory caps matched or the allocation is failed, it will go to columns Medium Priority Matching and Low Priority Matching
* in turn to continue matching.
*/
const soc_memory_type_desc_t soc_memory_types[SOC_MEMORY_TYPE_NUM] = {
/* Mem Type Name High Priority Matching Medium Priority Matching Low Priority Matching */
[SOC_MEMORY_TYPE_RAM] = { "RAM", { ESP32H21_MEM_COMMON_CAPS | MALLOC_CAP_DMA, 0, 0 }},
[SOC_MEMORY_TYPE_RTCRAM] = { "RTCRAM", { MALLOC_CAP_RTCRAM, ESP32H21_MEM_COMMON_CAPS, 0 }},
};
const size_t soc_memory_type_count = sizeof(soc_memory_types) / sizeof(soc_memory_type_desc_t);
/**
* @brief Region descriptors. These describe all regions of memory available, and map them to a type in the above type.
*
* @note Because of requirements in the coalescing code which merges adjacent regions,
* this list should always be sorted from low to high by start address.
*
*/
/**
* Register the shared buffer area of the last memory block into the heap during heap initialization
*/
#define APP_USABLE_DRAM_END (SOC_ROM_STACK_START - SOC_ROM_STACK_SIZE)
const soc_memory_region_t soc_memory_regions[] = {
{ 0x40800000, 0x10000, SOC_MEMORY_TYPE_RAM, 0x40800000, false}, //D/IRAM level 0
{ 0x40810000, 0x10000, SOC_MEMORY_TYPE_RAM, 0x40810000, false}, //D/IRAM level 1
{ 0x40820000, 0x10000, SOC_MEMORY_TYPE_RAM, 0x40820000, false}, //D/IRAM level 2
{ 0x40830000, 0x10000, SOC_MEMORY_TYPE_RAM, 0x40830000, false}, //D/IRAM level 3
{ 0x40840000, APP_USABLE_DRAM_END-0x40840000, SOC_MEMORY_TYPE_RAM, 0x40840000, false}, //D/IRAM level 4
{ APP_USABLE_DRAM_END, (SOC_DIRAM_DRAM_HIGH-APP_USABLE_DRAM_END), SOC_MEMORY_TYPE_RAM, APP_USABLE_DRAM_END, true}, //D/IRAM level 4
#ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
{ 0x50000000, 0x1000, SOC_MEMORY_TYPE_RTCRAM, 0, false}, //Fast RTC memory
#endif
};
const size_t soc_memory_region_count = sizeof(soc_memory_regions) / sizeof(soc_memory_region_t);
extern int _data_start, _heap_start, _iram_start, _iram_end, _rtc_force_slow_end;
extern int _rtc_reserved_start, _rtc_reserved_end;
/**
* Reserved memory regions.
* These are removed from the soc_memory_regions array when heaps are created.
*
*/
// Static data region. DRAM used by data+bss and possibly rodata
SOC_RESERVE_MEMORY_REGION((intptr_t)&_data_start, (intptr_t)&_heap_start, dram_data);
// Target has a shared D/IRAM virtual address, no need to calculate I_D_OFFSET like previous chips
SOC_RESERVE_MEMORY_REGION((intptr_t)&_iram_start, (intptr_t)&_iram_end, iram_code);
#ifdef CONFIG_ESP_SYSTEM_ALLOW_RTC_FAST_MEM_AS_HEAP
SOC_RESERVE_MEMORY_REGION(SOC_RTC_DRAM_LOW, (intptr_t)&_rtc_force_slow_end, rtcram_data);
#endif
SOC_RESERVE_MEMORY_REGION((intptr_t)&_rtc_reserved_start, (intptr_t)&_rtc_reserved_end, rtc_reserved_data);

View File

@ -195,10 +195,6 @@ config SOC_DS_KEY_CHECK_MAX_WAIT_US
int
default 1100
config SOC_AHB_GDMA_VERSION
int
default 1
config SOC_GDMA_NUM_GROUPS_MAX
int
default 1
@ -507,10 +503,6 @@ config SOC_EFUSE_BLOCK9_KEY_PURPOSE_QUIRK
bool
default y
config SOC_EFUSE_ECDSA_USE_HARDWARE_K
bool
default y
config SOC_EFUSE_ECDSA_KEY
bool
default y

View File

@ -230,23 +230,6 @@ typedef enum {
MWDT_CLK_SRC_DEFAULT = SOC_MOD_CLK_XTAL, /*!< Select PLL as the default clock choice */
} soc_periph_mwdt_clk_src_t;
//////////////////////////////////////////////////MSPI///////////////////////////////////////////////////////////////////
/**
* @brief Array initializer for all supported clock sources of MSPI digital controller
*/
#define SOC_MSPI_CLKS {SOC_MOD_CLK_XTAL, SOC_MOD_CLK_RC_FAST, SOC_MOD_CLK_PLL_F64M, SOC_MOD_CLK_PLL_F48M}
/**
* @brief MSPI digital controller clock source
*/
typedef enum {
MSPI_CLK_SRC_XTAL = SOC_MOD_CLK_XTAL, /*!< Select XTAL as the source clock */
MSPI_CLK_SRC_RC_FAST = SOC_MOD_CLK_RC_FAST, /*!< Select RC_FAST as the source clock */
MSPI_CLK_SRC_PLL_F64M = SOC_MOD_CLK_PLL_F64M, /*!< Select PLL_F64M as the source clock */
MSPI_CLK_SRC_PLL_F48M = SOC_MOD_CLK_PLL_F48M, /*!< Select PLL_F48M as the source clock */
MSPI_CLK_SRC_DEFAULT = SOC_MOD_CLK_PLL_F64M, /*!< Select PLL_F64M as the default clock choice */
MSPI_CLK_SRC_ROM_DEFAULT = SOC_MOD_CLK_XTAL, /*!< Select XTAL as ROM default clock source */
} soc_periph_mspi_clk_src_t;
//////////////////////////////////////////////CLOCK OUTPUT///////////////////////////////////////////////////////////
typedef enum {
CLKOUT_SIG_XTAL = 5, /*!< Main crystal oscillator clock */

View File

@ -19,10 +19,11 @@
// TODO: IDF-11856
#define DR_REG_UHCI_BASE(i) (DR_REG_UHCI0_BASE - (i) * 0x8000)
#define DR_REG_UART_BASE(i) (DR_REG_UART0_BASE + (i) * 0x1000)
#define REG_UART_BASE(i) (DR_REG_UART0_BASE + (i) * 0x1000)
#define DR_REG_UART_AHB_BASE(i) (0x60000000 + (i) * 0x10000)
#define DR_UART_FIFO_AHB_REG(i) (REG_UART_AHB_BASE(i) + 0x0)
#define DR_REG_I2S_BASE(i) (DR_REG_I2S_BASE) // only one I2S on H21
#define DR_REG_TIMG_BASE(i) (DR_REG_TIMERGROUP0_BASE + (i)*0x1000)
#define DR_REG_TIMG_BASE(i) (DR_REG_TIMERG0_BASE + (i)*0x1000)
#define DR_REG_SPI_MEM_BASE(i) (DR_REG_SPIMEM0_BASE + (i) * 0x1000)
#define DR_REG_SPI_BASE(i) (((i)==2) ? (DR_REG_SPI2_BASE) : (0)) // only one GPSPI
#define DR_REG_I2C_BASE(i) (DR_REG_I2C_EXT0_BASE + (i) * 0x1000)

View File

@ -176,7 +176,7 @@
#define SOC_DS_KEY_CHECK_MAX_WAIT_US (1100)
/*-------------------------- GDMA CAPS -------------------------------------*/
#define SOC_AHB_GDMA_VERSION 1U
// #define SOC_AHB_GDMA_VERSION 1U
#define SOC_GDMA_NUM_GROUPS_MAX 1U
#define SOC_GDMA_PAIRS_PER_GROUP_MAX 3
// #define SOC_GDMA_SUPPORT_ETM 1 // Support ETM submodule
@ -459,7 +459,7 @@
#define SOC_EFUSE_SOFT_DIS_JTAG 1
#define SOC_EFUSE_DIS_ICACHE 1
#define SOC_EFUSE_BLOCK9_KEY_PURPOSE_QUIRK 1 // XTS-AES and ECDSA key purposes not supported for this block
#define SOC_EFUSE_ECDSA_USE_HARDWARE_K 1 // Force use hardware TRNG supplied K for ECDSA
// #define SOC_EFUSE_ECDSA_USE_HARDWARE_K 1 // Force use hardware TRNG supplied K for ECDSA
#define SOC_EFUSE_ECDSA_KEY 1
/*-------------------------- Secure Boot CAPS----------------------------*/

View File

@ -9,20 +9,20 @@
// MSPI IOMUX PINs
#define MSPI_FUNC_NUM 0
#define MSPI_IOMUX_PIN_NUM_HD 18
#define MSPI_IOMUX_PIN_NUM_WP 17
#define MSPI_IOMUX_PIN_NUM_CS0 15
#define MSPI_IOMUX_PIN_NUM_CLK 19
#define MSPI_IOMUX_PIN_NUM_MOSI 20
#define MSPI_IOMUX_PIN_NUM_MISO 16
#define MSPI_IOMUX_PIN_NUM_HD 23
#define MSPI_IOMUX_PIN_NUM_WP 22
#define MSPI_IOMUX_PIN_NUM_CS0 20
#define MSPI_IOMUX_PIN_NUM_CLK 24
#define MSPI_IOMUX_PIN_NUM_MOSI 25
#define MSPI_IOMUX_PIN_NUM_MISO 21
// GPSPI2 IOMUX PINs
#define SPI2_FUNC_NUM 2
#define SPI2_IOMUX_PIN_NUM_MISO 0
#define SPI2_IOMUX_PIN_NUM_HD 3
#define SPI2_IOMUX_PIN_NUM_WP 2
#define SPI2_IOMUX_PIN_NUM_CLK 4
#define SPI2_IOMUX_PIN_NUM_MOSI 5
#define SPI2_IOMUX_PIN_NUM_CS 1
#define SPI2_IOMUX_PIN_NUM_MISO 4
#define SPI2_IOMUX_PIN_NUM_HD 1
#define SPI2_IOMUX_PIN_NUM_WP 0
#define SPI2_IOMUX_PIN_NUM_CLK 2
#define SPI2_IOMUX_PIN_NUM_MOSI 3
#define SPI2_IOMUX_PIN_NUM_CS 12
#endif

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,10 @@
choice ESPTOOLPY_FLASHFREQ
prompt "Flash SPI speed"
default ESPTOOLPY_FLASHFREQ_32M
config ESPTOOLPY_FLASHFREQ_64M
bool "64 MHz"
config ESPTOOLPY_FLASHFREQ_32M
bool "32 MHz"
config ESPTOOLPY_FLASHFREQ_16M
bool "16 MHz"
endchoice

View File

@ -0,0 +1,8 @@
#####################################################
# This file is auto-generated from SoC caps
# using gen_soc_caps_kconfig.py, do not edit manually
#####################################################
config SPI_FLASH_VENDOR_XMC_SUPPORTED
bool
default y

View File

@ -0,0 +1,8 @@
/*
* SPDX-FileCopyrightText: 2024 Espressif Systems (Shanghai) CO LTD
*
* SPDX-License-Identifier: Apache-2.0
*/
#pragma once
#define SPI_FLASH_VENDOR_XMC_SUPPORTED (1)

View File

@ -10,4 +10,4 @@ examples/get-started/blink:
examples/get-started/hello_world:
enable:
- if: INCLUDE_DEFAULT == 1 or IDF_TARGET in ["linux", "esp32c5", "esp32c61"]
- if: INCLUDE_DEFAULT == 1 or IDF_TARGET in ["linux", "esp32h21"]

View File

@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 | Linux |
| ----------------- | ----- | -------- | -------- | -------- | -------- | --------- | -------- | -------- | -------- | -------- | ----- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-H21 | ESP32-P4 | ESP32-S2 | ESP32-S3 | Linux |
| ----------------- | ----- | -------- | -------- | -------- | -------- | --------- | -------- | --------- | -------- | -------- | -------- | ----- |
# Hello World Example

View File

@ -64,7 +64,7 @@ build_stage2() {
--size-file size.json \
--keep-going \
--collect-size-info size_info.txt \
--default-build-targets esp32 esp32s2 esp32s3 esp32c2 esp32c3 esp32c5 esp32c6 esp32h2 esp32p4 esp32c61
--default-build-targets esp32 esp32s2 esp32s3 esp32c2 esp32c3 esp32c5 esp32c6 esp32h2 esp32p4 esp32c61 esp32h21
}
build_stage1() {
@ -78,7 +78,7 @@ build_stage1() {
--build-log ${BUILD_LOG_CMAKE} \
--size-file size.json \
--collect-size-info size_info.txt \
--default-build-targets esp32 esp32s2 esp32s3 esp32c2 esp32c3 esp32c5 esp32c6 esp32h2 esp32p4 esp32c61
--default-build-targets esp32 esp32s2 esp32s3 esp32c2 esp32c3 esp32c5 esp32c6 esp32h2 esp32p4 esp32c61 esp32h21
}
# Default arguments

View File

@ -32,7 +32,7 @@ tools/test_apps/system/esp_intr_dump:
tools/test_apps/system/g0_components:
enable:
- if: INCLUDE_DEFAULT == 1 or IDF_TARGET in ["esp32p4", "esp32c5", "esp32c61"] # preview targets
- if: INCLUDE_DEFAULT == 1 or IDF_TARGET in ["esp32p4", "esp32c5", "esp32c61", "esp32h21"] # preview targets
tools/test_apps/system/g1_components:

View File

@ -1,5 +1,5 @@
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | --------- | -------- | -------- | -------- | -------- |
| Supported Targets | ESP32 | ESP32-C2 | ESP32-C3 | ESP32-C5 | ESP32-C6 | ESP32-C61 | ESP32-H2 | ESP32-H21 | ESP32-P4 | ESP32-S2 | ESP32-S3 |
| ----------------- | ----- | -------- | -------- | -------- | -------- | --------- | -------- | --------- | -------- | -------- | -------- |
# "G0"-components-only app