mirror of
https://github.com/espressif/esp-idf
synced 2025-03-10 01:29:21 -04:00
Merge branch 'fix/spi_master_cmd_addr_lsbfirst_v3.0' into 'release/v3.0'
spi_master: fix the command and address field when LSB_FIRST enabled (Backport v3.0) See merge request idf/esp-idf!3444
This commit is contained in:
commit
d02d2d5170
@ -329,6 +329,7 @@ void spicommon_cs_initialize(spi_host_device_t host, int cs_io_num, int cs_num,
|
||||
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], 1);
|
||||
} else {
|
||||
//Use GPIO matrix
|
||||
gpio_set_direction(cs_io_num, GPIO_MODE_INPUT_OUTPUT);
|
||||
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[cs_io_num], PIN_FUNC_GPIO);
|
||||
gpio_matrix_out(cs_io_num, io_signal[host].spics_out[cs_num], false, false);
|
||||
if (cs_num == 0) gpio_matrix_in(cs_io_num, io_signal[host].spics_in, false);
|
||||
|
@ -21,13 +21,13 @@ is a combination of SPI port and CS pin, plus some information about the specifi
|
||||
|
||||
The essence of the interface to a device is a set of queues; one per device. The idea is that to send something to a SPI
|
||||
device, you allocate a transaction descriptor. It contains some information about the transfer like the lenghth, address,
|
||||
command etc, plus pointers to transmit and receive buffer. The address of this block gets pushed into the transmit queue.
|
||||
The SPI driver does its magic, and sends and retrieves the data eventually. The data gets written to the receive buffers,
|
||||
command etc, plus pointers to transmit and receive buffer. The address of this block gets pushed into the transmit queue.
|
||||
The SPI driver does its magic, and sends and retrieves the data eventually. The data gets written to the receive buffers,
|
||||
if needed the transaction descriptor is modified to indicate returned parameters and the entire thing goes into the return
|
||||
queue, where whatever software initiated the transaction can retrieve it.
|
||||
|
||||
The entire thing is run from the SPI interrupt handler. If SPI is done transmitting/receiving but nothing is in the queue,
|
||||
it will not clear the SPI interrupt but just disable it. This way, when a new thing is sent, pushing the packet into the send
|
||||
The entire thing is run from the SPI interrupt handler. If SPI is done transmitting/receiving but nothing is in the queue,
|
||||
it will not clear the SPI interrupt but just disable it. This way, when a new thing is sent, pushing the packet into the send
|
||||
queue and re-enabling the interrupt will trigger the interrupt again, which can then take care of the sending.
|
||||
*/
|
||||
|
||||
@ -67,8 +67,8 @@ typedef struct spi_device_t spi_device_t;
|
||||
|
||||
|
||||
/// struct to hold private transaction data (like tx and rx buffer for DMA).
|
||||
typedef struct {
|
||||
spi_transaction_t *trans;
|
||||
typedef struct {
|
||||
spi_transaction_t *trans;
|
||||
uint32_t *buffer_to_send; //equals to tx_data, if SPI_TRANS_USE_RXDATA is applied; otherwise if original buffer wasn't in DMA-capable memory, this gets the address of a temporary buffer that is;
|
||||
//otherwise sets to the original buffer or NULL if no buffer is assigned.
|
||||
uint32_t *buffer_to_rcv; // similar to buffer_to_send
|
||||
@ -140,10 +140,10 @@ esp_err_t spi_bus_initialize(spi_host_device_t host, const spi_bus_config_t *bus
|
||||
goto nomem;
|
||||
}
|
||||
#endif //CONFIG_PM_ENABLE
|
||||
|
||||
|
||||
spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_MASTER|SPICOMMON_BUSFLAG_QUAD, &native);
|
||||
spihost[host]->no_gpio_matrix=native;
|
||||
|
||||
|
||||
spihost[host]->dma_chan=dma_chan;
|
||||
if (dma_chan == 0) {
|
||||
spihost[host]->max_transfer_sz = 32;
|
||||
@ -180,7 +180,7 @@ esp_err_t spi_bus_initialize(spi_host_device_t host, const spi_bus_config_t *bus
|
||||
spihost[host]->hw->slave.wr_sta_inten=0;
|
||||
|
||||
//Force a transaction done interrupt. This interrupt won't fire yet because we initialized the SPI interrupt as
|
||||
//disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling
|
||||
//disabled. This way, we can just enable the SPI interrupt and the interrupt handler will kick in, handling
|
||||
//any transactions that are queued.
|
||||
spihost[host]->hw->slave.trans_inten=1;
|
||||
spihost[host]->hw->slave.trans_done=1;
|
||||
@ -271,7 +271,6 @@ esp_err_t spi_bus_add_device(spi_host_device_t host, spi_device_interface_config
|
||||
|
||||
//Set CS pin, CS options
|
||||
if (dev_config->spics_io_num >= 0) {
|
||||
gpio_set_direction(dev_config->spics_io_num, GPIO_MODE_OUTPUT);
|
||||
spicommon_cs_initialize(host, dev_config->spics_io_num, freecs, spihost[host]->no_gpio_matrix == false);
|
||||
}
|
||||
if (dev_config->flags&SPI_DEVICE_CLK_AS_CS) {
|
||||
@ -397,7 +396,7 @@ static void IRAM_ATTR spi_intr(void *arg)
|
||||
/*------------ deal with the in-flight transaction -----------------*/
|
||||
if (host->cur_cs != NO_CS) {
|
||||
spi_transaction_t *cur_trans = host->cur_trans_buf.trans;
|
||||
//Okay, transaction is done.
|
||||
//Okay, transaction is done.
|
||||
if (host->cur_trans_buf.buffer_to_rcv && host->dma_chan == 0 ) {
|
||||
//Need to copy from SPI regs to result buffer.
|
||||
for (int x=0; x < cur_trans->rxlength; x+=32) {
|
||||
@ -411,7 +410,7 @@ static void IRAM_ATTR spi_intr(void *arg)
|
||||
//Call post-transaction callback, if any
|
||||
if (host->device[host->cur_cs]->cfg.post_cb) host->device[host->cur_cs]->cfg.post_cb(cur_trans);
|
||||
//Return transaction descriptor.
|
||||
xQueueSendFromISR(host->device[host->cur_cs]->ret_queue, &host->cur_trans_buf, &do_yield);
|
||||
xQueueSendFromISR(host->device[host->cur_cs]->ret_queue, &host->cur_trans_buf, &do_yield);
|
||||
prevCs=host->cur_cs;
|
||||
host->cur_cs = NO_CS;
|
||||
}
|
||||
@ -443,7 +442,7 @@ static void IRAM_ATTR spi_intr(void *arg)
|
||||
host->cur_cs=i;
|
||||
//We should be done with the transmission.
|
||||
assert(host->hw->cmd.usr == 0);
|
||||
|
||||
|
||||
//Reconfigure according to device settings, but only if we change CSses.
|
||||
if (i!=prevCs) {
|
||||
//Assumes a hardcoded 80MHz Fapb for now. ToDo: figure out something better once we have
|
||||
@ -453,7 +452,7 @@ static void IRAM_ATTR spi_intr(void *arg)
|
||||
//Configure bit order
|
||||
host->hw->ctrl.rd_bit_order=(dev->cfg.flags & SPI_DEVICE_RXBIT_LSBFIRST)?1:0;
|
||||
host->hw->ctrl.wr_bit_order=(dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST)?1:0;
|
||||
|
||||
|
||||
//Configure polarity
|
||||
//SPI iface needs to be configured for a delay in some cases.
|
||||
int nodelay=0;
|
||||
@ -548,7 +547,7 @@ static void IRAM_ATTR spi_intr(void *arg)
|
||||
host->hw->dma_in_link.start=1;
|
||||
}
|
||||
} else {
|
||||
//DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon
|
||||
//DMA temporary workaround: let RX DMA work somehow to avoid the issue in ESP32 v0/v1 silicon
|
||||
if (host->dma_chan != 0 ) {
|
||||
host->hw->dma_in_link.addr=0;
|
||||
host->hw->dma_in_link.start=1;
|
||||
@ -601,17 +600,38 @@ static void IRAM_ATTR spi_intr(void *arg)
|
||||
host->hw->user.usr_addr=addrlen?1:0;
|
||||
host->hw->user.usr_command=cmdlen?1:0;
|
||||
|
||||
// output command will be sent from bit 7 to 0 of command_value, and then bit 15 to 8 of the same register field.
|
||||
if ((dev->cfg.flags & SPI_DEVICE_TXBIT_LSBFIRST)==0) {
|
||||
/* Output command will be sent from bit 7 to 0 of command_value, and
|
||||
* then bit 15 to 8 of the same register field. Shift and swap to send
|
||||
* more straightly.
|
||||
*/
|
||||
uint16_t command = trans->cmd << (16-cmdlen); //shift to MSB
|
||||
host->hw->user2.usr_command_value = (command>>8)|(command<<8); //swap the first and second byte
|
||||
// shift the address to MSB of addr (and maybe slv_wr_status) register.
|
||||
// output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register.
|
||||
if (addrlen>32) {
|
||||
host->hw->addr = trans->addr >> (addrlen- 32);
|
||||
|
||||
// shift the address to MSB of addr (and maybe slv_wr_status) register.
|
||||
// output address will be sent from MSB to LSB of addr register, then comes the MSB to LSB of slv_wr_status register.
|
||||
if (addrlen > 32) {
|
||||
host->hw->addr = trans->addr >> (addrlen - 32);
|
||||
host->hw->slv_wr_status = trans->addr << (64 - addrlen);
|
||||
} else {
|
||||
host->hw->addr = trans->addr << (32 - addrlen);
|
||||
}
|
||||
} else {
|
||||
/* The output command start from bit0 to bit 15, kept as is.
|
||||
* The output address start from the LSB of the highest byte, i.e.
|
||||
* addr[24] -> addr[31]
|
||||
* ...
|
||||
* addr[0] -> addr[7]
|
||||
* slv_wr_status[24] -> slv_wr_status[31]
|
||||
* ...
|
||||
* slv_wr_status[0] -> slv_wr_status[7]
|
||||
* So swap the byte order to let the LSB sent first.
|
||||
*/
|
||||
host->hw->user2.usr_command_value = trans->cmd;
|
||||
uint64_t addr = __builtin_bswap64(trans->addr);
|
||||
host->hw->addr = addr>>32;
|
||||
host->hw->slv_wr_status = addr;
|
||||
}
|
||||
|
||||
host->hw->user.usr_mosi=( (!(dev->cfg.flags & SPI_DEVICE_HALFDUPLEX) && trans_buf->buffer_to_rcv) || trans_buf->buffer_to_send)?1:0;
|
||||
host->hw->user.usr_miso=(trans_buf->buffer_to_rcv)?1:0;
|
||||
@ -630,13 +650,13 @@ esp_err_t spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *
|
||||
esp_err_t ret = ESP_OK;
|
||||
BaseType_t r;
|
||||
SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
|
||||
//check transmission length
|
||||
//check transmission length
|
||||
SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_RXDATA)==0 ||trans_desc->rxlength <= 32, "rxdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
|
||||
SPI_CHECK((trans_desc->flags & SPI_TRANS_USE_TXDATA)==0 ||trans_desc->length <= 32, "txdata transfer > 32 bits without configured DMA", ESP_ERR_INVALID_ARG);
|
||||
SPI_CHECK(trans_desc->length <= handle->host->max_transfer_sz*8, "txdata transfer > host maximum", ESP_ERR_INVALID_ARG);
|
||||
SPI_CHECK(trans_desc->rxlength <= handle->host->max_transfer_sz*8, "rxdata transfer > host maximum", ESP_ERR_INVALID_ARG);
|
||||
SPI_CHECK((handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || trans_desc->rxlength <= trans_desc->length, "rx length > tx length in full duplex mode", ESP_ERR_INVALID_ARG);
|
||||
//check working mode
|
||||
//check working mode
|
||||
SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (handle->cfg.flags & SPI_DEVICE_3WIRE)), "incompatible iface params", ESP_ERR_INVALID_ARG);
|
||||
SPI_CHECK(!((trans_desc->flags & (SPI_TRANS_MODE_DIO|SPI_TRANS_MODE_QIO)) && (!(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX))), "incompatible iface params", ESP_ERR_INVALID_ARG);
|
||||
SPI_CHECK( !(handle->cfg.flags & SPI_DEVICE_HALFDUPLEX) || handle->host->dma_chan == 0 || !(trans_desc->flags & SPI_TRANS_USE_RXDATA || trans_desc->rx_buffer != NULL)
|
||||
@ -655,7 +675,7 @@ esp_err_t spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *
|
||||
// rx memory assign
|
||||
if ( trans_desc->flags & SPI_TRANS_USE_RXDATA ) {
|
||||
trans_buf.buffer_to_rcv = (uint32_t*)&trans_desc->rx_data[0];
|
||||
} else {
|
||||
} else {
|
||||
//if not use RXDATA neither rx_buffer, buffer_to_rcv assigned to NULL
|
||||
trans_buf.buffer_to_rcv = trans_desc->rx_buffer;
|
||||
}
|
||||
@ -668,12 +688,12 @@ esp_err_t spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *
|
||||
goto clean_up;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
const uint32_t *txdata;
|
||||
// tx memory assign
|
||||
if ( trans_desc->flags & SPI_TRANS_USE_TXDATA ) {
|
||||
txdata = (uint32_t*)&trans_desc->tx_data[0];
|
||||
} else {
|
||||
} else {
|
||||
//if not use TXDATA neither tx_buffer, tx data assigned to NULL
|
||||
txdata = trans_desc->tx_buffer ;
|
||||
}
|
||||
@ -686,11 +706,11 @@ esp_err_t spi_device_queue_trans(spi_device_handle_t handle, spi_transaction_t *
|
||||
goto clean_up;
|
||||
}
|
||||
memcpy( trans_buf.buffer_to_send, txdata, (trans_desc->length+7)/8 );
|
||||
} else {
|
||||
} else {
|
||||
// else use the original buffer (forced-conversion) or assign to NULL
|
||||
trans_buf.buffer_to_send = (uint32_t*)txdata;
|
||||
}
|
||||
|
||||
|
||||
#ifdef CONFIG_PM_ENABLE
|
||||
esp_pm_lock_acquire(handle->host->pm_lock);
|
||||
#endif
|
||||
@ -710,10 +730,10 @@ clean_up:
|
||||
// free malloc-ed buffer (if needed) before return.
|
||||
if ( (void*)trans_buf.buffer_to_rcv != trans_desc->rx_buffer && (void*)trans_buf.buffer_to_rcv != &trans_desc->rx_data[0] ) {
|
||||
free( trans_buf.buffer_to_rcv );
|
||||
}
|
||||
}
|
||||
if ( (void*)trans_buf.buffer_to_send!= trans_desc->tx_buffer && (void*)trans_buf.buffer_to_send != &trans_desc->tx_data[0] ) {
|
||||
free( trans_buf.buffer_to_send );
|
||||
}
|
||||
}
|
||||
assert( ret != ESP_OK );
|
||||
return ret;
|
||||
}
|
||||
@ -722,12 +742,12 @@ esp_err_t spi_device_get_trans_result(spi_device_handle_t handle, spi_transactio
|
||||
{
|
||||
BaseType_t r;
|
||||
spi_trans_priv trans_buf;
|
||||
|
||||
|
||||
SPI_CHECK(handle!=NULL, "invalid dev handle", ESP_ERR_INVALID_ARG);
|
||||
r=xQueueReceive(handle->ret_queue, (void*)&trans_buf, ticks_to_wait);
|
||||
if (!r) {
|
||||
// The memory occupied by rx and tx DMA buffer destroyed only when receiving from the queue (transaction finished).
|
||||
// If timeout, wait and retry.
|
||||
// If timeout, wait and retry.
|
||||
// Every on-flight transaction request occupies internal memory as DMA buffer if needed.
|
||||
return ESP_ERR_TIMEOUT;
|
||||
}
|
||||
@ -736,12 +756,12 @@ esp_err_t spi_device_get_trans_result(spi_device_handle_t handle, spi_transactio
|
||||
|
||||
if ( (void*)trans_buf.buffer_to_send != &(*trans_desc)->tx_data[0] && trans_buf.buffer_to_send != (*trans_desc)->tx_buffer ) {
|
||||
free( trans_buf.buffer_to_send );
|
||||
}
|
||||
}
|
||||
|
||||
//copy data from temporary DMA-capable buffer back to IRAM buffer and free the temporary one.
|
||||
if ( (void*)trans_buf.buffer_to_rcv != &(*trans_desc)->rx_data[0] && trans_buf.buffer_to_rcv != (*trans_desc)->rx_buffer ) {
|
||||
if ( (*trans_desc)->flags & SPI_TRANS_USE_RXDATA ) {
|
||||
memcpy( (uint8_t*)&(*trans_desc)->rx_data[0], trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
|
||||
memcpy( (uint8_t*)&(*trans_desc)->rx_data[0], trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
|
||||
} else {
|
||||
memcpy( (*trans_desc)->rx_buffer, trans_buf.buffer_to_rcv, ((*trans_desc)->rxlength+7)/8 );
|
||||
}
|
||||
|
@ -96,7 +96,6 @@ esp_err_t spi_slave_initialize(spi_host_device_t host, const spi_bus_config_t *b
|
||||
spihost[host]->id = host;
|
||||
|
||||
spicommon_bus_initialize_io(host, bus_config, dma_chan, SPICOMMON_BUSFLAG_SLAVE, &native);
|
||||
gpio_set_direction(slave_config->spics_io_num, GPIO_MODE_INPUT);
|
||||
spicommon_cs_initialize(host, slave_config->spics_io_num, 0, native==false);
|
||||
// The slave DMA suffers from unexpected transactions. Forbid reading if DMA is enabled by disabling the CS line.
|
||||
if (dma_chan != 0) spicommon_freeze_cs(host);
|
||||
|
@ -390,7 +390,7 @@ TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
|
||||
trans[4].rxlength = 8*4;
|
||||
trans[4].tx_buffer = data_drom;
|
||||
trans[4].flags = SPI_TRANS_USE_RXDATA;
|
||||
|
||||
|
||||
trans[5].length = 8*4;
|
||||
trans[5].flags = SPI_TRANS_USE_RXDATA | SPI_TRANS_USE_TXDATA;
|
||||
|
||||
@ -412,7 +412,7 @@ TEST_CASE("SPI Master DMA test, TX and RX in different regions", "[spi]")
|
||||
}
|
||||
|
||||
|
||||
static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
|
||||
static inline void int_connect( uint32_t gpio, uint32_t sigo, uint32_t sigi )
|
||||
{
|
||||
gpio_matrix_out( gpio, sigo, false, false );
|
||||
gpio_matrix_in( gpio, sigi, false );
|
||||
@ -430,7 +430,7 @@ TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
|
||||
esp_err_t ret;
|
||||
spi_device_handle_t spi;
|
||||
spi_bus_config_t buscfg={
|
||||
.miso_io_num=PIN_NUM_MISO,
|
||||
.miso_io_num=PIN_NUM_MISO,
|
||||
.mosi_io_num=PIN_NUM_MOSI,
|
||||
.sclk_io_num=PIN_NUM_CLK,
|
||||
.quadwp_io_num=-1,
|
||||
@ -441,7 +441,7 @@ TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
|
||||
.mode=0, //SPI mode 0
|
||||
.spics_io_num=PIN_NUM_CS, //CS pin
|
||||
.queue_size=7, //We want to be able to queue 7 transactions at a time
|
||||
.pre_cb=NULL,
|
||||
.pre_cb=NULL,
|
||||
};
|
||||
//Initialize the SPI bus
|
||||
ret=spi_bus_initialize(HSPI_HOST, &buscfg, 1);
|
||||
@ -454,14 +454,14 @@ TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
|
||||
int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, HSPIQ_IN_IDX );
|
||||
|
||||
memset(rx_buf, 0x66, 320);
|
||||
|
||||
|
||||
for ( int i = 0; i < 8; i ++ ) {
|
||||
memset( rx_buf, 0x66, sizeof(rx_buf));
|
||||
|
||||
spi_transaction_t t = {};
|
||||
t.length = 8*(i+1);
|
||||
t.rxlength = 0;
|
||||
t.tx_buffer = tx_buf+2*i;
|
||||
t.tx_buffer = tx_buf+2*i;
|
||||
t.rx_buffer = rx_buf + i;
|
||||
|
||||
if ( i == 1 ) {
|
||||
@ -470,7 +470,7 @@ TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
|
||||
} else if ( i == 2 ) {
|
||||
//test rx length != tx_length
|
||||
t.rxlength = t.length - 8;
|
||||
}
|
||||
}
|
||||
spi_device_transmit( spi, &t );
|
||||
|
||||
for( int i = 0; i < 16; i ++ ) {
|
||||
@ -486,7 +486,7 @@ TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
|
||||
} else {
|
||||
//normal check
|
||||
TEST_ASSERT( memcmp(t.tx_buffer, t.rx_buffer, t.length/8)==0 );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
|
||||
@ -495,14 +495,15 @@ TEST_CASE("SPI Master DMA test: length, start, not aligned", "[spi]")
|
||||
|
||||
static const char MASTER_TAG[] = "test_master";
|
||||
static const char SLAVE_TAG[] = "test_slave";
|
||||
DRAM_ATTR static uint8_t master_send[] = {0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
|
||||
//DRAM_ATTR static uint8_t master_send[] = {0x93, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0xaa, 0xcc, 0xff, 0xee, 0x55, 0x77, 0x88, 0x43};
|
||||
DRAM_ATTR static uint8_t slave_send[] = { 0xaa, 0xdc, 0xba, 0x98, 0x76, 0x54, 0x32, 0x10, 0x13, 0x57, 0x9b, 0xdf, 0x24, 0x68, 0xac, 0xe0 };
|
||||
|
||||
/*
|
||||
static void master_init( spi_device_handle_t* spi, int mode, uint32_t speed)
|
||||
{
|
||||
esp_err_t ret;
|
||||
spi_bus_config_t buscfg={
|
||||
.miso_io_num=PIN_NUM_MISO,
|
||||
.miso_io_num=PIN_NUM_MISO,
|
||||
.mosi_io_num=PIN_NUM_MOSI,
|
||||
.sclk_io_num=PIN_NUM_CLK,
|
||||
.quadwp_io_num=-1,
|
||||
@ -513,7 +514,7 @@ static void master_init( spi_device_handle_t* spi, int mode, uint32_t speed)
|
||||
.mode=mode, //SPI mode 0
|
||||
.spics_io_num=PIN_NUM_CS, //CS pin
|
||||
.queue_size=16, //We want to be able to queue 7 transactions at a time
|
||||
.pre_cb=NULL,
|
||||
.pre_cb=NULL,
|
||||
.cs_ena_pretrans = 0,
|
||||
};
|
||||
//Initialize the SPI bus
|
||||
@ -546,6 +547,7 @@ static void slave_init(int mode, int dma_chan)
|
||||
//Initialize SPI slave interface
|
||||
TEST_ESP_OK( spi_slave_initialize(VSPI_HOST, &buscfg, &slvcfg, dma_chan) );
|
||||
}
|
||||
*/
|
||||
|
||||
typedef struct {
|
||||
uint32_t len;
|
||||
@ -604,6 +606,7 @@ static void task_slave(void* arg)
|
||||
t.tx_buffer = txdata.start;
|
||||
t.rx_buffer = recvbuf+4;
|
||||
//loop until trans_len != 0 to skip glitches
|
||||
memset(recvbuf, 0x66, sizeof(recvbuf));
|
||||
do {
|
||||
TEST_ESP_OK( spi_slave_transmit( VSPI_HOST, &t, portMAX_DELAY ) );
|
||||
} while ( t.trans_len == 0 );
|
||||
@ -613,118 +616,177 @@ static void task_slave(void* arg)
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("SPI master variable cmd & addr test","[spi]")
|
||||
#define TEST_SPI_HOST HSPI_HOST
|
||||
#define TEST_SLAVE_HOST VSPI_HOST
|
||||
|
||||
static uint8_t bitswap(uint8_t in)
|
||||
{
|
||||
uint8_t *tx_buf=master_send;
|
||||
uint8_t rx_buf[320];
|
||||
uint8_t *rx_buf_ptr = rx_buf;
|
||||
uint8_t out = 0;
|
||||
for (int i = 0; i < 8; i++) {
|
||||
out = out >> 1;
|
||||
if (in&0x80) out |= 0x80;
|
||||
in = in << 1;
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
spi_slave_task_context_t slave_context = {};
|
||||
esp_err_t err = init_slave_context( &slave_context );
|
||||
TEST_ASSERT( err == ESP_OK );
|
||||
#define SPI_BUS_TEST_DEFAULT_CONFIG() {\
|
||||
.miso_io_num=PIN_NUM_MISO, \
|
||||
.mosi_io_num=PIN_NUM_MOSI,\
|
||||
.sclk_io_num=PIN_NUM_CLK,\
|
||||
.quadwp_io_num=-1,\
|
||||
.quadhd_io_num=-1\
|
||||
}
|
||||
|
||||
#define SPI_DEVICE_TEST_DEFAULT_CONFIG() {\
|
||||
.clock_speed_hz=10*1000*1000,\
|
||||
.mode=0,\
|
||||
.spics_io_num=PIN_NUM_CS,\
|
||||
.queue_size=16,\
|
||||
.pre_cb=NULL, \
|
||||
.cs_ena_pretrans = 0,\
|
||||
.cs_ena_posttrans = 0,\
|
||||
}
|
||||
|
||||
#define SPI_SLAVE_TEST_DEFAULT_CONFIG() {\
|
||||
.mode=0,\
|
||||
.spics_io_num=PIN_NUM_CS,\
|
||||
.queue_size=3,\
|
||||
.flags=0,\
|
||||
}
|
||||
|
||||
void test_cmd_addr(spi_slave_task_context_t *slave_context, bool lsb_first)
|
||||
{
|
||||
spi_device_handle_t spi;
|
||||
//initial master, mode 0, 1MHz
|
||||
master_init( &spi, 0, 1*1000*1000 );
|
||||
//initial slave, mode 0, no dma
|
||||
slave_init(0, 0);
|
||||
ESP_LOGI(MASTER_TAG, ">>>>>>>>> TEST %s FIRST <<<<<<<<<<<", lsb_first?"LSB":"MSB");
|
||||
|
||||
//do internal connection
|
||||
//initial master, mode 0, 1MHz
|
||||
spi_bus_config_t buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
|
||||
TEST_ESP_OK(spi_bus_initialize(TEST_SPI_HOST, &buscfg, 1));
|
||||
spi_device_interface_config_t devcfg=SPI_DEVICE_TEST_DEFAULT_CONFIG();
|
||||
devcfg.clock_speed_hz = 1*1000*1000;
|
||||
if (lsb_first) devcfg.flags |= SPI_DEVICE_BIT_LSBFIRST;
|
||||
TEST_ESP_OK(spi_bus_add_device(TEST_SPI_HOST, &devcfg, &spi));
|
||||
|
||||
//connecting pins to two peripherals breaks the output, fix it.
|
||||
int_connect( PIN_NUM_MOSI, HSPID_OUT_IDX, VSPIQ_IN_IDX );
|
||||
int_connect( PIN_NUM_MISO, VSPIQ_OUT_IDX, HSPID_IN_IDX );
|
||||
int_connect( PIN_NUM_CS, HSPICS0_OUT_IDX, VSPICS0_IN_IDX );
|
||||
int_connect( PIN_NUM_CLK, HSPICLK_OUT_IDX, VSPICLK_IN_IDX );
|
||||
|
||||
for (int i= 0; i < 8; i++) {
|
||||
//prepare slave tx data
|
||||
slave_txdata_t slave_txdata = (slave_txdata_t) {
|
||||
.start = slave_send,
|
||||
.len = 256,
|
||||
};
|
||||
xQueueSend(slave_context->data_to_send, &slave_txdata, portMAX_DELAY);
|
||||
|
||||
vTaskDelay(50);
|
||||
//prepare master tx data
|
||||
int cmd_bits = (i+1)*2;
|
||||
int addr_bits = 56-8*i;
|
||||
int round_up = (cmd_bits+addr_bits+7)/8*8;
|
||||
addr_bits = round_up - cmd_bits;
|
||||
|
||||
spi_transaction_ext_t trans = (spi_transaction_ext_t) {
|
||||
.base = {
|
||||
.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
|
||||
.addr = 0x456789abcdef0123,
|
||||
.cmd = 0xcdef,
|
||||
},
|
||||
.command_bits = cmd_bits,
|
||||
.address_bits = addr_bits,
|
||||
};
|
||||
|
||||
ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
|
||||
ESP_LOGI(MASTER_TAG, "cmd_bits: %d, addr_bits: %d", cmd_bits, addr_bits);
|
||||
TEST_ESP_OK(spi_device_transmit(spi, (spi_transaction_t*)&trans));
|
||||
//wait for both master and slave end
|
||||
|
||||
size_t rcv_len;
|
||||
slave_rxdata_t *rcv_data = xRingbufferReceive(slave_context->data_received, &rcv_len, portMAX_DELAY);
|
||||
rcv_len-=4;
|
||||
uint8_t *buffer = rcv_data->data;
|
||||
|
||||
ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
|
||||
TEST_ASSERT_EQUAL(rcv_len, (rcv_data->len+7)/8);
|
||||
TEST_ASSERT_EQUAL(rcv_data->len, cmd_bits+addr_bits);
|
||||
ESP_LOG_BUFFER_HEX("slave rx", buffer, rcv_len);
|
||||
|
||||
uint16_t cmd_expected = trans.base.cmd & (BIT(cmd_bits) - 1);
|
||||
uint64_t addr_expected = trans.base.addr & ((1ULL<<addr_bits) - 1);
|
||||
|
||||
uint8_t *data_ptr = buffer;
|
||||
uint16_t cmd_got = *(uint16_t*)data_ptr;
|
||||
data_ptr += cmd_bits/8;
|
||||
cmd_got = __builtin_bswap16(cmd_got);
|
||||
cmd_got = cmd_got >> (16-cmd_bits);
|
||||
int remain_bits = cmd_bits % 8;
|
||||
|
||||
uint64_t addr_got = *(uint64_t*)data_ptr;
|
||||
data_ptr += 8;
|
||||
addr_got = __builtin_bswap64(addr_got);
|
||||
addr_got = (addr_got << remain_bits);
|
||||
addr_got |= (*data_ptr >> (8-remain_bits));
|
||||
addr_got = addr_got >> (64-addr_bits);
|
||||
|
||||
if (lsb_first) {
|
||||
cmd_got = __builtin_bswap16(cmd_got);
|
||||
addr_got = __builtin_bswap64(addr_got);
|
||||
|
||||
uint8_t *swap_ptr = (uint8_t*)&cmd_got;
|
||||
swap_ptr[0] = bitswap(swap_ptr[0]);
|
||||
swap_ptr[1] = bitswap(swap_ptr[1]);
|
||||
cmd_got = cmd_got >> (16-cmd_bits);
|
||||
|
||||
swap_ptr = (uint8_t*)&addr_got;
|
||||
for (int j = 0; j < 8; j++) swap_ptr[j] = bitswap(swap_ptr[j]);
|
||||
addr_got = addr_got >> (64-addr_bits);
|
||||
}
|
||||
|
||||
ESP_LOGI(SLAVE_TAG, "cmd_got: %04X, addr_got: %08X%08X", cmd_got, (uint32_t)(addr_got>>32), (uint32_t)addr_got);
|
||||
|
||||
TEST_ASSERT_EQUAL_HEX16(cmd_expected, cmd_got);
|
||||
if (addr_bits > 0) {
|
||||
TEST_ASSERT_EQUAL_HEX32(addr_expected, addr_got);
|
||||
TEST_ASSERT_EQUAL_HEX32(addr_expected >> 8, addr_got >> 8);
|
||||
}
|
||||
|
||||
//clean
|
||||
vRingbufferReturnItem(slave_context->data_received, buffer);
|
||||
}
|
||||
|
||||
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
|
||||
TEST_ASSERT(spi_bus_free(TEST_SPI_HOST) == ESP_OK);
|
||||
}
|
||||
|
||||
TEST_CASE("SPI master variable cmd & addr test","[spi]")
|
||||
{
|
||||
spi_slave_task_context_t slave_context = {};
|
||||
esp_err_t err = init_slave_context( &slave_context );
|
||||
TEST_ASSERT( err == ESP_OK );
|
||||
TaskHandle_t handle_slave;
|
||||
xTaskCreate( task_slave, "spi_slave", 4096, &slave_context, 0, &handle_slave);
|
||||
|
||||
slave_txdata_t slave_txdata[16];
|
||||
spi_transaction_ext_t trans[16];
|
||||
for( int i= 0; i < 16; i ++ ) {
|
||||
//prepare slave tx data
|
||||
slave_txdata[i] = (slave_txdata_t) {
|
||||
.start = slave_send + 4*(i%3),
|
||||
.len = 256,
|
||||
};
|
||||
xQueueSend( slave_context.data_to_send, &slave_txdata[i], portMAX_DELAY );
|
||||
//prepare master tx data
|
||||
trans[i] = (spi_transaction_ext_t) {
|
||||
.base = {
|
||||
.flags = SPI_TRANS_VARIABLE_CMD | SPI_TRANS_VARIABLE_ADDR,
|
||||
.addr = 0x456789ab,
|
||||
.cmd = 0xcdef,
|
||||
//initial slave, mode 0, no dma
|
||||
int dma_chan = 0;
|
||||
int slave_mode = 0;
|
||||
spi_bus_config_t slv_buscfg=SPI_BUS_TEST_DEFAULT_CONFIG();
|
||||
spi_slave_interface_config_t slvcfg=SPI_SLAVE_TEST_DEFAULT_CONFIG();
|
||||
slvcfg.mode = slave_mode;
|
||||
//Initialize SPI slave interface
|
||||
TEST_ESP_OK( spi_slave_initialize(TEST_SLAVE_HOST, &slv_buscfg, &slvcfg, dma_chan) );
|
||||
|
||||
.length = 8*i,
|
||||
.tx_buffer = tx_buf+i,
|
||||
.rx_buffer = rx_buf_ptr,
|
||||
},
|
||||
.command_bits = ((i+1)%3) * 8,
|
||||
.address_bits = ((i/3)%5) * 8,
|
||||
};
|
||||
if ( trans[i].base.length == 0 ) {
|
||||
trans[i].base.tx_buffer = NULL;
|
||||
trans[i].base.rx_buffer = NULL;
|
||||
} else {
|
||||
rx_buf_ptr += (trans[i].base.length + 31)/32*4;
|
||||
}
|
||||
}
|
||||
|
||||
vTaskDelay(10);
|
||||
|
||||
for ( int i = 0; i < 16; i ++ ) {
|
||||
TEST_ESP_OK (spi_device_queue_trans( spi, (spi_transaction_t*)&trans[i], portMAX_DELAY ) );
|
||||
vTaskDelay(10);
|
||||
}
|
||||
|
||||
for( int i= 0; i < 16; i ++ ) {
|
||||
//wait for both master and slave end
|
||||
ESP_LOGI( MASTER_TAG, "===== test%d =====", i );
|
||||
spi_transaction_ext_t *t;
|
||||
size_t rcv_len;
|
||||
spi_device_get_trans_result( spi, (spi_transaction_t**)&t, portMAX_DELAY );
|
||||
TEST_ASSERT( t == &trans[i] );
|
||||
if ( trans[i].base.length != 0 ) {
|
||||
ESP_LOG_BUFFER_HEX( "master tx", trans[i].base.tx_buffer, trans[i].base.length/8 );
|
||||
ESP_LOG_BUFFER_HEX( "master rx", trans[i].base.rx_buffer, trans[i].base.length/8 );
|
||||
} else {
|
||||
ESP_LOGI( "master tx", "no data" );
|
||||
ESP_LOGI( "master rx", "no data" );
|
||||
}
|
||||
|
||||
slave_rxdata_t *rcv_data = xRingbufferReceive( slave_context.data_received, &rcv_len, portMAX_DELAY );
|
||||
uint8_t *buffer = rcv_data->data;
|
||||
rcv_len = rcv_data->len;
|
||||
ESP_LOGI(SLAVE_TAG, "trans_len: %d", rcv_len);
|
||||
ESP_LOG_BUFFER_HEX( "slave tx", slave_txdata[i].start, (rcv_len+7)/8);
|
||||
ESP_LOG_BUFFER_HEX( "slave rx", buffer, (rcv_len+7)/8);
|
||||
//check result
|
||||
uint8_t *ptr_addr = (uint8_t*)&t->base.addr;
|
||||
uint8_t *ptr_cmd = (uint8_t*)&t->base.cmd;
|
||||
for ( int j = 0; j < t->command_bits/8; j ++ ) {
|
||||
TEST_ASSERT_EQUAL( buffer[j], ptr_cmd[t->command_bits/8-j-1] );
|
||||
}
|
||||
for ( int j = 0; j < t->address_bits/8; j ++ ) {
|
||||
TEST_ASSERT_EQUAL( buffer[t->command_bits/8+j], ptr_addr[t->address_bits/8-j-1] );
|
||||
}
|
||||
if ( t->base.length != 0) {
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(t->base.tx_buffer, buffer + (t->command_bits + t->address_bits)/8, t->base.length/8);
|
||||
TEST_ASSERT_EQUAL_HEX8_ARRAY(slave_txdata[i].start + (t->command_bits + t->address_bits)/8, t->base.rx_buffer, t->base.length/8);
|
||||
}
|
||||
TEST_ASSERT_EQUAL( t->base.length + t->command_bits + t->address_bits, rcv_len );
|
||||
|
||||
//clean
|
||||
vRingbufferReturnItem( slave_context.data_received, buffer );
|
||||
}
|
||||
test_cmd_addr(&slave_context, false);
|
||||
test_cmd_addr(&slave_context, true);
|
||||
|
||||
vTaskDelete( handle_slave );
|
||||
handle_slave = 0;
|
||||
|
||||
deinit_slave_context(&slave_context);
|
||||
|
||||
TEST_ASSERT(spi_slave_free(VSPI_HOST) == ESP_OK);
|
||||
|
||||
TEST_ASSERT(spi_bus_remove_device(spi) == ESP_OK);
|
||||
TEST_ASSERT(spi_bus_free(HSPI_HOST) == ESP_OK);
|
||||
TEST_ASSERT(spi_slave_free(TEST_SLAVE_HOST) == ESP_OK);
|
||||
|
||||
ESP_LOGI(MASTER_TAG, "test passed.");
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user