mirror of
https://github.com/espressif/esp-idf
synced 2025-03-12 18:49:08 -04:00
not only the buffer address but also the buffer size should aligned to the cache line size
365 lines
13 KiB
C
365 lines
13 KiB
C
/*
|
|
* SPDX-FileCopyrightText: 2023-2025 Espressif Systems (Shanghai) CO LTD
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <inttypes.h>
|
|
#include <string.h>
|
|
#include "sdkconfig.h"
|
|
#include "esp_check.h"
|
|
#include "esp_log.h"
|
|
#include "esp_heap_caps.h"
|
|
#include "esp_memory_utils.h"
|
|
#include "esp_dma_utils.h"
|
|
#include "esp_private/esp_dma_utils.h"
|
|
#include "esp_private/esp_cache_private.h"
|
|
#include "soc/soc_caps.h"
|
|
#include "hal/hal_utils.h"
|
|
#include "hal/cache_hal.h"
|
|
#include "hal/cache_ll.h"
|
|
#include "esp_cache.h"
|
|
|
|
static const char *TAG = "dma_utils";
|
|
|
|
#define ALIGN_UP_BY(num, align) (((num) + ((align) - 1)) & ~((align) - 1))
|
|
|
|
esp_err_t esp_dma_split_rx_buffer_to_cache_aligned(void *rx_buffer, size_t buffer_len, dma_buffer_split_array_t *align_buf_array, uint8_t** ret_stash_buffer)
|
|
{
|
|
esp_err_t ret = ESP_OK;
|
|
uint8_t* stash_buffer = NULL;
|
|
ESP_RETURN_ON_FALSE(rx_buffer && buffer_len && align_buf_array, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
|
|
|
|
// read the cache line size of internal and external memory, we also use this information to check if a given memory is behind the cache
|
|
size_t int_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_INT_MEM, CACHE_TYPE_DATA);
|
|
size_t ext_mem_cache_line_size = cache_hal_get_cache_line_size(CACHE_LL_LEVEL_EXT_MEM, CACHE_TYPE_DATA);
|
|
|
|
size_t split_line_size = 0;
|
|
if (esp_ptr_external_ram(rx_buffer)) {
|
|
split_line_size = ext_mem_cache_line_size;
|
|
} else if (esp_ptr_internal(rx_buffer)) {
|
|
split_line_size = int_mem_cache_line_size;
|
|
}
|
|
ESP_LOGV(TAG, "split_line_size:%zu", split_line_size);
|
|
|
|
// allocate the stash buffer from internal RAM
|
|
// Note, the split_line_size can be 0, in this case, the stash_buffer is also NULL, which is fine
|
|
stash_buffer = heap_caps_calloc(2, split_line_size, MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT);
|
|
ESP_RETURN_ON_FALSE(!(split_line_size && !stash_buffer), ESP_ERR_NO_MEM, TAG, "no mem for stash buffer");
|
|
|
|
// clear align_array to avoid garbage data
|
|
memset(align_buf_array, 0, sizeof(dma_buffer_split_array_t));
|
|
bool need_cache_sync[3] = {false};
|
|
|
|
// if split_line_size is non-zero, split the buffer into head, body and tail
|
|
if (split_line_size > 0) {
|
|
// calculate head_overflow_len
|
|
size_t head_overflow_len = (uintptr_t)rx_buffer % split_line_size;
|
|
head_overflow_len = head_overflow_len ? split_line_size - head_overflow_len : 0;
|
|
ESP_LOGV(TAG, "head_addr:%p head_overflow_len:%zu", rx_buffer, head_overflow_len);
|
|
// calculate tail_overflow_len
|
|
size_t tail_overflow_len = ((uintptr_t)rx_buffer + buffer_len) % split_line_size;
|
|
ESP_LOGV(TAG, "tail_addr:%p tail_overflow_len:%zu", rx_buffer + buffer_len - tail_overflow_len, tail_overflow_len);
|
|
|
|
uint8_t extra_buf_count = 0;
|
|
uint8_t* input_buffer = (uint8_t*)rx_buffer;
|
|
align_buf_array->buf.head.recovery_address = input_buffer;
|
|
align_buf_array->buf.head.aligned_buffer = stash_buffer + split_line_size * extra_buf_count++;
|
|
align_buf_array->buf.head.length = head_overflow_len;
|
|
need_cache_sync[0] = int_mem_cache_line_size > 0;
|
|
align_buf_array->buf.body.recovery_address = input_buffer + head_overflow_len;
|
|
align_buf_array->buf.body.aligned_buffer = input_buffer + head_overflow_len;
|
|
align_buf_array->buf.body.length = buffer_len - head_overflow_len - tail_overflow_len;
|
|
need_cache_sync[1] = true;
|
|
align_buf_array->buf.tail.recovery_address = input_buffer + buffer_len - tail_overflow_len;
|
|
align_buf_array->buf.tail.aligned_buffer = stash_buffer + split_line_size * extra_buf_count++;
|
|
align_buf_array->buf.tail.length = tail_overflow_len;
|
|
need_cache_sync[2] = int_mem_cache_line_size > 0;
|
|
|
|
// special handling when input_buffer length is no more than buffer alignment
|
|
if (head_overflow_len >= buffer_len || tail_overflow_len >= buffer_len) {
|
|
align_buf_array->buf.head.length = buffer_len ;
|
|
align_buf_array->buf.body.length = 0 ;
|
|
align_buf_array->buf.tail.length = 0 ;
|
|
}
|
|
} else {
|
|
align_buf_array->buf.body.aligned_buffer = rx_buffer;
|
|
align_buf_array->buf.body.recovery_address = rx_buffer;
|
|
align_buf_array->buf.body.length = buffer_len;
|
|
need_cache_sync[1] = false;
|
|
}
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
if (align_buf_array->aligned_buffer[i].length == 0) {
|
|
align_buf_array->aligned_buffer[i].aligned_buffer = NULL;
|
|
align_buf_array->aligned_buffer[i].recovery_address = NULL;
|
|
need_cache_sync[i] = false;
|
|
}
|
|
}
|
|
|
|
// invalidate the aligned buffer if necessary
|
|
for (int i = 0; i < 3; i++) {
|
|
if (need_cache_sync[i]) {
|
|
size_t sync_size = align_buf_array->aligned_buffer[i].length;
|
|
if (sync_size < split_line_size) {
|
|
// If the buffer is smaller than the cache line size, we need to sync the whole buffer
|
|
sync_size = split_line_size;
|
|
}
|
|
esp_err_t res = esp_cache_msync(align_buf_array->aligned_buffer[i].aligned_buffer, sync_size, ESP_CACHE_MSYNC_FLAG_DIR_M2C);
|
|
ESP_GOTO_ON_ERROR(res, err, TAG, "failed to do cache sync");
|
|
}
|
|
}
|
|
|
|
*ret_stash_buffer = stash_buffer;
|
|
return ESP_OK;
|
|
err:
|
|
if (stash_buffer) {
|
|
free(stash_buffer);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
esp_err_t esp_dma_merge_aligned_rx_buffers(dma_buffer_split_array_t *align_array)
|
|
{
|
|
ESP_RETURN_ON_FALSE_ISR(align_array, ESP_ERR_INVALID_ARG, TAG, "invalid argument");
|
|
|
|
// only need to copy the head and tail buffer
|
|
if (align_array->buf.head.length) {
|
|
memcpy(align_array->buf.head.recovery_address, align_array->buf.head.aligned_buffer, align_array->buf.head.length);
|
|
}
|
|
if (align_array->buf.tail.length) {
|
|
memcpy(align_array->buf.tail.recovery_address, align_array->buf.tail.aligned_buffer, align_array->buf.tail.length);
|
|
}
|
|
return ESP_OK;
|
|
}
|
|
|
|
size_t esp_dma_calculate_node_count(size_t buffer_size, size_t buffer_alignment, size_t max_buffer_size_per_node)
|
|
{
|
|
// buffer_alignment should be power of 2
|
|
ESP_RETURN_ON_FALSE(buffer_alignment && ((buffer_alignment & (buffer_alignment - 1)) == 0), 0, TAG, "invalid buffer alignment");
|
|
// align down the max_buffer_size_per_node
|
|
max_buffer_size_per_node = max_buffer_size_per_node & ~(buffer_alignment - 1);
|
|
// calculate the number of nodes
|
|
return (buffer_size + max_buffer_size_per_node - 1) / max_buffer_size_per_node;
|
|
}
|
|
|
|
esp_err_t esp_dma_capable_malloc(size_t size, const esp_dma_mem_info_t *dma_mem_info, void **out_ptr, size_t *actual_size)
|
|
{
|
|
ESP_RETURN_ON_FALSE_ISR(dma_mem_info && out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
|
|
size_t alignment_bytes = 0;
|
|
|
|
//dma align
|
|
size_t dma_alignment_bytes = dma_mem_info->dma_alignment_bytes;
|
|
|
|
//cache align
|
|
int cache_flags = 0;
|
|
size_t cache_alignment_bytes = 0;
|
|
|
|
int heap_caps = dma_mem_info->extra_heap_caps | MALLOC_CAP_DMA;
|
|
if (dma_mem_info->extra_heap_caps & MALLOC_CAP_SPIRAM) {
|
|
cache_flags |= MALLOC_CAP_SPIRAM;
|
|
heap_caps = dma_mem_info->extra_heap_caps | MALLOC_CAP_SPIRAM;
|
|
/**
|
|
* This is a workaround because we don't have `MALLOC_CAP_DMA | MALLOC_CAP_SPIRAM`
|
|
* match when using heap_cap related allocations.
|
|
*/
|
|
heap_caps &= ~MALLOC_CAP_DMA;
|
|
}
|
|
|
|
// Return value unused if asserts are disabled
|
|
esp_err_t __attribute((unused)) ret = esp_cache_get_alignment(cache_flags, &cache_alignment_bytes);
|
|
assert(ret == ESP_OK);
|
|
|
|
//Get the least common multiple of two alignment
|
|
alignment_bytes = hal_utils_calc_lcm(dma_alignment_bytes, cache_alignment_bytes);
|
|
|
|
//malloc
|
|
size = ALIGN_UP_BY(size, alignment_bytes);
|
|
void *ptr = heap_caps_aligned_alloc(alignment_bytes, size, heap_caps);
|
|
ESP_RETURN_ON_FALSE_ISR(ptr, ESP_ERR_NO_MEM, TAG, "Not enough heap memory");
|
|
|
|
*out_ptr = ptr;
|
|
if (actual_size) {
|
|
*actual_size = size;
|
|
}
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_dma_capable_calloc(size_t calloc_num, size_t size, const esp_dma_mem_info_t *dma_mem_info, void **out_ptr, size_t *actual_size)
|
|
{
|
|
esp_err_t ret = ESP_FAIL;
|
|
size_t size_bytes = 0;
|
|
bool ovf = false;
|
|
|
|
ovf = __builtin_mul_overflow(calloc_num, size, &size_bytes);
|
|
ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow");
|
|
|
|
void *ptr = NULL;
|
|
ret = esp_dma_capable_malloc(size_bytes, dma_mem_info, &ptr, actual_size);
|
|
if (ret == ESP_OK) {
|
|
memset(ptr, 0, size_bytes);
|
|
*out_ptr = ptr;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool s_buf_in_region(const void *ptr, size_t size, esp_dma_buf_location_t location)
|
|
{
|
|
bool found = false;
|
|
if (location == ESP_DMA_BUF_LOCATION_INTERNAL) {
|
|
if (esp_ptr_dma_capable(ptr) && esp_ptr_dma_capable(ptr + size - 1)) {
|
|
found = true;
|
|
}
|
|
} else if (location == ESP_DMA_BUF_LOCATION_PSRAM) {
|
|
#if SOC_PSRAM_DMA_CAPABLE
|
|
if (esp_ptr_external_ram(ptr) && esp_ptr_external_ram(ptr + size - 1)) {
|
|
found = true;
|
|
}
|
|
#endif
|
|
}
|
|
return found;
|
|
}
|
|
|
|
static inline bool s_is_buf_aligned(intptr_t ptr, size_t alignment)
|
|
{
|
|
return (ptr % alignment == 0);
|
|
}
|
|
|
|
bool esp_dma_is_buffer_alignment_satisfied(const void *ptr, size_t size, esp_dma_mem_info_t dma_mem_info)
|
|
{
|
|
assert(ptr);
|
|
|
|
bool found = false;
|
|
for (int i = ESP_DMA_BUF_LOCATION_INTERNAL; i < ESP_DMA_BUF_LOCATION_AUTO; i++) {
|
|
if (s_buf_in_region(ptr, size, i)) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
return false;
|
|
}
|
|
|
|
size_t alignment_bytes = 0;
|
|
|
|
//dma align
|
|
size_t dma_alignment_bytes = dma_mem_info.dma_alignment_bytes;
|
|
|
|
//cache align
|
|
int cache_flags = 0;
|
|
size_t cache_alignment_bytes = 0;
|
|
if (esp_ptr_external_ram(ptr)) {
|
|
cache_flags |= MALLOC_CAP_SPIRAM;
|
|
}
|
|
// Return value unused if asserts are disabled
|
|
esp_err_t __attribute__((unused)) ret = esp_cache_get_alignment(cache_flags, &cache_alignment_bytes);
|
|
assert(ret == ESP_OK);
|
|
|
|
//Get the least common multiple of two alignment
|
|
alignment_bytes = hal_utils_calc_lcm(dma_alignment_bytes, cache_alignment_bytes);
|
|
|
|
bool is_aligned = s_is_buf_aligned((intptr_t)ptr, alignment_bytes) && s_is_buf_aligned((intptr_t)size, alignment_bytes);
|
|
return is_aligned;
|
|
}
|
|
|
|
|
|
//-----------------------Deprecated APIs-----------------------//
|
|
esp_err_t s_legacy_malloc(size_t size, uint32_t flags, void **out_ptr, size_t *actual_size)
|
|
{
|
|
ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
|
|
int heap_caps = 0;
|
|
if (flags & ESP_DMA_MALLOC_FLAG_PSRAM) {
|
|
heap_caps |= MALLOC_CAP_SPIRAM;
|
|
} else {
|
|
heap_caps |= MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL;
|
|
}
|
|
|
|
esp_dma_mem_info_t dma_mem_info = {
|
|
.extra_heap_caps = heap_caps,
|
|
.dma_alignment_bytes = 4, //legacy API behaviour is only check max dma buffer alignment
|
|
};
|
|
|
|
ESP_RETURN_ON_ERROR_ISR(esp_dma_capable_malloc(size, &dma_mem_info, out_ptr, actual_size), TAG, "failed to do malloc");
|
|
|
|
return ESP_OK;
|
|
}
|
|
|
|
esp_err_t esp_dma_malloc(size_t size, uint32_t flags, void **out_ptr, size_t *actual_size)
|
|
{
|
|
return s_legacy_malloc(size, flags, out_ptr, actual_size);
|
|
}
|
|
|
|
esp_err_t esp_dma_calloc(size_t n, size_t size, uint32_t flags, void **out_ptr, size_t *actual_size)
|
|
{
|
|
ESP_RETURN_ON_FALSE_ISR(out_ptr, ESP_ERR_INVALID_ARG, TAG, "null pointer");
|
|
|
|
esp_err_t ret = ESP_FAIL;
|
|
size_t size_bytes = 0;
|
|
bool ovf = false;
|
|
|
|
ovf = __builtin_mul_overflow(n, size, &size_bytes);
|
|
ESP_RETURN_ON_FALSE_ISR(!ovf, ESP_ERR_INVALID_ARG, TAG, "wrong size, total size overflow");
|
|
|
|
void *ptr = NULL;
|
|
ret = s_legacy_malloc(size_bytes, flags, &ptr, actual_size);
|
|
if (ret == ESP_OK) {
|
|
memset(ptr, 0, size_bytes);
|
|
*out_ptr = ptr;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static bool s_buf_in_region_legacy(const void *ptr, size_t size, esp_dma_buf_location_t location, int *heap_caps)
|
|
{
|
|
bool found = false;
|
|
if (location == ESP_DMA_BUF_LOCATION_INTERNAL) {
|
|
if (esp_ptr_dma_capable(ptr) && esp_ptr_dma_capable(ptr + size - 1)) {
|
|
*heap_caps = MALLOC_CAP_DMA | MALLOC_CAP_INTERNAL;
|
|
found = true;
|
|
}
|
|
} else if (location == ESP_DMA_BUF_LOCATION_PSRAM) {
|
|
#if SOC_PSRAM_DMA_CAPABLE
|
|
if (esp_ptr_external_ram(ptr) && esp_ptr_external_ram(ptr + size - 1)) {
|
|
*heap_caps = MALLOC_CAP_SPIRAM;
|
|
found = true;
|
|
}
|
|
#endif
|
|
}
|
|
return found;
|
|
}
|
|
|
|
bool esp_dma_is_buffer_aligned(const void *ptr, size_t size, esp_dma_buf_location_t location)
|
|
{
|
|
assert(ptr);
|
|
|
|
bool found = false;
|
|
int heap_caps = 0;
|
|
if (location == ESP_DMA_BUF_LOCATION_AUTO) {
|
|
for (int i = ESP_DMA_BUF_LOCATION_INTERNAL; i < ESP_DMA_BUF_LOCATION_AUTO; i++) {
|
|
if (s_buf_in_region_legacy(ptr, size, i, &heap_caps)) {
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
} else if (location == ESP_DMA_BUF_LOCATION_INTERNAL) {
|
|
found = s_buf_in_region_legacy(ptr, size, ESP_DMA_BUF_LOCATION_INTERNAL, &heap_caps);
|
|
} else {
|
|
found = s_buf_in_region_legacy(ptr, size, ESP_DMA_BUF_LOCATION_PSRAM, &heap_caps);
|
|
}
|
|
if (!found) {
|
|
return false;
|
|
}
|
|
|
|
esp_dma_mem_info_t dma_mem_info = {
|
|
.extra_heap_caps = heap_caps,
|
|
.dma_alignment_bytes = 4, //legacy API behaviour is only check max dma buffer alignment
|
|
};
|
|
return esp_dma_is_buffer_alignment_satisfied(ptr, size, dma_mem_info);
|
|
}
|